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Abstract

Coexistence of superconducting and normal components in nanowires at currents below the critical 
(a “mixed” state) would have important consequences for the nature and range of potential applications 
of these systems. For clean samples, it represents a genuine interaction effect, not seen in the mean-field 
theory. Here we consider properties of such a state in the gravity dual of a strongly coupled superconduc-
tor constructed from D3 and D5 branes. We find numerically uniform gapless solutions containing both 
components but argue that they are unstable against phase separation, as their free energies are not convex. 
We speculate on the possible nature of the resulting non-uniform sate (“emulsion”) and draw analogies 
between that state and the familiar mixed state of a type II superconductor in a magnetic field.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Many proposed applications of nanoscale superconductors require understanding of how these 
systems behave under currents close to the critical. For instance, in designing superconducting 
qubits, it is essential to know how to use current to suppress the potential barrier separating the 
basis states.

The best studied example of nanoscale superconductor is a point-like weak link—a Josephson 
junction (JJ). It can often be described by a single-degree of freedom θ—the phase difference 
between the leads—subject to a “tilted washboard” potential

V (θ) = −V0 cos θ − Iθ. (1)
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Here I is the electric current in units of 2e; e is the electron charge. For static θ (when V equals 
the total energy of the system), variation of (1) produces the equation V0 sin θ = I , showing that 
the current I is due to a gradient of the phase, that is, I is entirely a supercurrent: I = Is . For a 
time-dependent θ , however, the current contains both superconducting and normal components. 
Thus, in general

I = Is + In. (2)

The normal component In includes not only the normal current through the JJ itself (due, for 
instance, to thermal quasiparticles) but also currents through various external resistors (“shunts”) 
connected in parallel to it. This is because all such currents couple to Is via voltage fluctuations, 
which are proportional to the time derivative of θ .

For any −V0 < I < V0, the potential (1) has infinitely many minima, equally spaced by 2π , 
and important fluctuations are those that take the system from one minimum to the next. These 
are known as phase slips. Each phase slip generates a voltage spike in the external circuit. If such 
spikes occur at a non-negligible rate, at a finite I they will produce a nonzero time-averaged 
voltage, i.e., a finite resistance.

Recently, a number of experimental techniques have been developed for synthesizing sys-
tems in which superconductivity is one-dimensional—superconducting (SC) nanowires. These 
techniques, described in the books [1,2], result in wires of uniform thickness with linear cross-
sectional dimensions of a few nanometers. For such thin wires, one can assume that SC properties 
(e.g., the supercurrent density) depend only on the lengthwise direction, even though the elec-
tron density of states still retains the 3d character. These novel systems promise a potentially new 
class of devices for control of superconductivity by current.

Even though we do not expect the model (1) to apply literally to the case of wires, some of 
the notions discussed above do carry over. The phase of the order parameter, φ(x, t), is now a 
function of the coordinate x along the wire and time t . The supercurrent is proportional to the 
gradient of the phase: Is ∝ ∇φ. For states where φ is a continuous function of x, we can identify 
the winding number as

W(t) = 1

2π

[
φ(L, t) − φ(0, t)

]
(3)

(L is the length of the wire) and a phase slip as an event that changes W by ±1. There is a novel 
aspect to a phase slip in a wire (as opposed to the case of JJ), which has to do with the conti-
nuity of φ. Namely, the process now occurs locally, at some point x, where the order parameter 
momentarily vanishes, allowing the phase to unwind [3].

Similarly to the case of JJ, one can imagine a nanowire shunted by various external 
impedances, resulting in a normal current connected in parallel to the superconducting one, for 
the total given by the same Eq. (2). In this paper, however, we wish to consider the possibility of 
an intrinsic resistive effect, namely, a normal component that is formed in the wire itself (and, 
unlike thermal quasiparticles, survives in the limit T → 0). Such a resistor will remain even in a 
wire effectively decoupled from any external dissipative environment, for example, in a SC loop 
operated via inductive coupling to a coil.

For a nanowire, one can consider, at least theoretically, two extreme limits. One is the clean 
limit—a perfectly uniform wire without disorder; the other is the dirty limit—a wire with strong 
disorder scattering. The second limit is presumably more realistic, but the first is simpler and, 
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as such, may be a useful starting point. In this paper, we consider the clean limit exclusively. 
We also restrict ourselves to T = 0, where the question of existence of an intrinsic normal 
component is in a sense the sharpest, although the method we propose is applicable also at 
T �= 0.

As in a JJ, the SC and normal components in a wire are coupled via phase slips. The clean limit 
is momentum-conserving, so the momentum unwound by a phase slip from the supercurrent must 
be picked up, in its entirety, by the normal component. The latter may in principle include small 
oscillations of the SC density (the plasma waves [4,5]), which, similarly to waves in a waveguide, 
are characterized by a finite impedance, but a more detailed study shows that there is a quantum 
anomaly involved, and each phase slip produces, via level crossing, fermionic quasiparticles, 
in precisely the right number to account for conservation of momentum [6].

The requirement of quasiparticle production affects the energy balance in a phase slip: for the 
process to occur spontaneously, the energy unwound from the supercurrent must be enough to 
offset the cost of the produced fermions. In mean-field theory, the free energy unwound from a 
loop of length L gives directly the supercurrent:

Is = 1

2π

∂F

∂W
, (4)

where W is the winding number (3). So, one may suppose that phase slips become more favorable 
at larger Is . While that is true to a degree, a direct calculation shows that, within mean-field 
theory, the energy ∂F/∂W is never large enough—that is not until Is reaches the depairing 
current Idep.1 The question we wish to ask is whether this conclusion is a mean-field artifact; 
in other words, whether a window in which SC and normal components can coexist will open 
(below Idep) once electron–electron interactions are fully taken into account.

One possible way to answer this question is to construct a superconductor from strings and 
branes and go over to the strong-coupling (large N ) limit, in which N coincident branes behave 
as a classical gravitating object [7]; such an alternative description of a quantum system is know 
as a gravity dual. A well-known example of gauge/gravity duality is the AdS/CFT correspon-
dence [8], for which a “holographic” dictionary connecting the two sides of the duality has been 
established [9,10]. Calculations using a gravity dual, however, are possible even in cases where 
a complete dictionary is not known, as long as one concentrates on those quantities that can in 
fact be unambiguously defined on the gravity side. The quantity we are interested in here is the 
energy of the ground state, F(Ps), as a function of the momentum of the SC component, Ps , 
at fixed total momentum P . The difference

Pn = P − Ps (5)

can then be attributed to the normal component. This can be seen as a clean-limit version of the 
formula (2).2 A ground state with both component present corresponds to a minimum of F(Ps)

for which both Ps and Pn are nonzero.

1 This conclusion holds rather generally, provided one neglects corrections suppressed by the ratio of the gap to the 
energy scale of the band structure. It does not depend on Galilean invariance or other such special symmetries.

2 In our earlier paper [11], current and momentum were spoken of largely interchangeably. Here, we aim to be more 
careful about the distinction.
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A brane construction suitable for modeling a SC nanowire has been proposed in [11]. It is 
based on a system of D3 and D5 branes in type IIB string theory.3 The key aspects of it are as 
follows:

(i) The setup contains a large number N of coincident D3 branes and a D5 probe intersecting 
them over a line. This breaks all supersymmetries. The direction along the line, x ≡ x1, corre-
sponds to the direction of the wire, and the two directions transverse to all branes, x8 + ix9, 
to the SC order parameter. (ii) N is identified with the number of occupied channels (transverse 
wavefunctions) in the wire, N = Nch.4 (iii) Supercurrent corresponds to the D5 winding around 
the D3s as one moves along x. If the branes actually intersect, the low-energy spectrum of 3/5 
strings contains N species of massless (1 +1)-dimensional fermions (both left and right movers). 
At low values of P , however, the intersection is unstable, and the D5 moves a finite distance away 
from the D3s; this corresponds to a fully gapped, supercurrent-only state.

Supercurrent-only solutions have been found in [11]. The Chern–Simons term in the D5 action 
has the effect that the solution with winding number W carries NW units of the D5 worldvol-
ume charge. A phase slip corresponds to the D5 crossing the D3s, with W changing by one. 
Conservation of charge then implies that N fundamental strings, stretching between the D5 and 
the D3s, must be produced. This can be seen, on the one hand, as a version of the Hanany–
Witten effect [20] in string theory (creation of branes and strings at intersections) and, on the 
other, as a parallel to the requirement of quasiparticle production noted earlier. This parallel al-
lows one to identify the worldvolume charge with the supercurrent momentum Ps (which, for a 
supercurrent-only state, is also the total momentum), as follows:

Ps = NW, (6)

where by convention Ps is in units of the Fermi momentum. Instead of W , we will often use the 
winding number density

q = 2πW/L, (7)

where an extra factor 2π is added for convenience.
In the leading large-N limit, supercurrent-only solutions exist for all q , no matter how 

large. At q above a certain qm, however, phase slips become energetically favorable, and 
the supercurrent-only state unstable. The instability has nothing to do with depairing. Indeed, 
qm ∼ 1/R, where R is the length scale of the D3 metric (the only length scale seen by classical 
gravity). Meanwhile, the value q = qdep corresponding to depairing is of order of the gap Δ, i.e., 
of order R in units of the string tension. One sees that the ratio qdep/qm scales to infinity in the 
large N limit.5

Instability of the supercurrent-only state at q > qm means that for

P > Pm = NqmL/2π (8)

3 Our approach is different from other holographic descriptions of superconductivity that have been proposed in the 
literature. It is distinct from the one in [12–14] in that it does not use a bulk U(1) gauge field. (States with nonzero 
supercurrent in the model of [12,13] have been considered in [15–18].) And our approach is distinct from the brane 
construction of [19] in that it preserves the worldvolume gauge symmetry. We use the corresponding conserved charge 
to describe the linear momentum (quantized in units of the Fermi momentum kF ).

4 Nch is proportional to the cross-sectional area of the wire and in practice is of order of a few thousand, for the 
thinnest wires available. The large value reflects the 3d character of the electron density of states; this is in contrast to SC 
properties, which vary only along x.

5 This may explain why no depairing is seen in the calculation of [11].
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not all of the total momentum P in the true ground state is carried by supercurrent; some must 
be carried by quasiparticles. On the other hand, we find that the normal-only state is unstable for 
any P . We conclude that, at P exceeding the bound (8), supercurrent and quasiparticles must 
coexist in some mixed state.

A priori, it is not clear what the nature of the mixed state is and, in particular, if it can be 
described by a uniform (in x) time-independent solution of dual gravity (as the supercurrent-only 
state could). Nevertheless, looking for such solutions is a natural first step, and that is what we 
describe in this paper. We find that, for a given total P , a uniform time-independent solution 
exists for all Ps between the value at which the normal-only state first becomes unstable and 
the maximum Ps = P . For these solutions, the D5 crosses the D3s’ horizon; we argue their 
existence by considering the near-horizon limit and by numerical evidence. We find, however, 
that the free energy of such a solution is never a convex function of Ps . This means that the 
uniform mixed state is unstable towards phase separation, fragmenting eventually, we believe, 
into an “emulsion” of quasiparticle-rich droplets in a nearly quasiparticle-free matrix.6 Some 
implications of this picture are discussed in the conclusion.

2. Preliminaries

The 10-dimensional metric sourced by N coincident extremal D3 branes in type IIB super-
gravity is [21]

ds2 = 1√
f

(−dt2 + (
dxi

)2) + √
f

(
dρ2 + ρ2dΩ2

3 + dΔ2 + Δ2dφ2). (9)

The coordinates along the D3s are t and xi , i = 1, 2, 3. The transverse coordinates are x4, . . . , x9, 
out of which we have constructed a spherical system for x4, . . . , x7, with radius ρ, and a polar 
system for x8, x9, with radius Δ. Thus, φ is equivalent to φ +2π . The metric function f depends 
only on r = (ρ2 + Δ2)1/2 and equals

f (r) = 1 + R4

r4
= 1 + R4

(ρ2 + Δ2)2
, (10)

where

R4 = 4πgs

(
α′)2

N, (11)

gs is the closed string coupling, and 1/(2πα′) is the string tension.
The probe D5 wraps x1 and x4, . . . , x7 (breaking all supersymmetries). Thus, the only spatial 

direction common to all branes is x1 ≡ x, and the directions in which all branes have definite 
positions are Δ and φ. The complex position

Ψ = Δeiφ = x8 + ix9 (12)

of the D5 relative to the D3s plays the role of a superconducting order parameter. We will also 
use the real position vector

X = (
x8, x9) = (Δ cosφ,Δ sinφ). (13)

6 The term “mixed state” may then be quite apt, as such a state would be reminiscent of the mixed state of type II 
superconductors in a magnetic field, with a difference that the droplets now carry “electric” rather than magnetic fluxes.



6 S. Khlebnikov / Nuclear Physics B 887 (2014) 1–18
Embedding the D5 in the geometry (9) means specifying x2, x3, x8, x9 and the worldvolume 
gauge field A, all as functions of the worldvolume coordinates. In this paper, we consider only 
embeddings that have x2 = x3 = 0 and are constant over the 3-sphere in (9). These, then, are 
specified by

X = X(t, x, ρ), (14)

Aa = Aa(t, x, ρ), (15)

where a = t, x, ρ. The normal state corresponds to

X = 0, (16)

At = At(ρ), (17)

with all the other components of A equal to zero. We refer to this as the trivial embedding.
As we will see, the trivial embedding is unstable: the D5 develops a nontrivial profile Δ(x, ρ)

with characteristic magnitude Δ ∼ R. As a result, the near-horizon (decoupling) limit r 
 R, 
in which the background (9) approaches the AdS5 × S5 space, and the type IIB string theory on 
it becomes dual to a conformal field theory (CFT) [8–10], cannot be taken here. This means that, 
in the description of the SC state, one cannot replace the 3/5 strings with their ground states; 
the entire ladder of excited string states remains. In a superconductor, that can be interpreted as 
quasiparticles acquiring an internal structure. While there is nothing wrong with this in principle, 
in practice one faces the problem of how to define, let alone use, this theory. On the other hand, 
on the gravity side, the low-energy modes are described by the action of the D5 embedded in the 
full D3 geometry (9), and the high-energy (stringy) modes are described by strings connecting 
the branes. As a result, many properties of the superconductor can be computed on the gravity 
side even without a complete definition of the dual quantum theory. In this paper, we consider 
several of these properties. They are (i) the symmetry breaking pattern, (ii) the quasiparticle gap 
(which is given by the minimal energy of the 3/5 strings), and (iii) the free energy, computed 
from the action of the D5 in the geometry (9).

Our theory has two U(1) symmetries: one is the phase rotation of Ψ , and the other is the 
gauge symmetry on the D5 worldvolume; the latter has (15) for the gauge field. The first U(1) 
is spontaneously broken by a nonzero Δ,7 but the worldvolume U(1) remains exact.8 The corre-
sponding conserved charge has been identified with the linear momentum (in units of the Fermi 
momentum) in the superconductor [11], and we will mention one motivation for that shortly. 
Incidentally, this identification implies that, to describe a disordered superconductors, where 
momentum is not conserved, one will need will need a mechanism for breaking the worldvolume 
U(1). We will touch upon this problem in the conclusion but for the rest of the paper proceed 
with the clean, momentum-conserving case.

The action for the D5 consists of the DBI action and a Chern–Simons (CS) term [22]; the latter 
describes interaction of the D5 with the 5-form field strength sourced by the D3s. For embeddings 
of the form (14), (15), the action can be written concisely with the help of a fictitious metric

7 Quantum fluctuations that could conceivably restore this symmetry in a thin wire are not seen in the leading order of 
the large-N approximation.

8 This makes our construction quite different from that of [19], in which superconductivity is related to breaking of a 
worldvolume gauge symmetry.
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hab = diag(−1/f,1/f,1), (18)

where f is the function (10). Let us also define the quantities

Ba = 1

2
εabcFbc, (19)

where Fab = ∂aAb − ∂bAa and εabc is the completely antisymmetric unit tensor (εtxρ = 1), and 
the cross product

X,a × X,b = x8
,ax

9
,b − x9

,ax
8
,b. (20)

Subscript commas denote partial derivatives.
In what follows, we choose R as our unit of length: R = 1.
By lowering (raising) indices with hab (its inverse), the DBI term can be written as

SDBI = −2π2τ5

∫
dtdxdρρ3

√
f D1/2, (21)

where

D = 1 + X,aX,a + 1

2

(
X,a × X,b

)
(X,a × X,b) − f

[
BaBa + (

BaX,a

)2]
, (22)

and the CS term as

SCS = 2π2τ5

∫
dtdxdρεabcAaφ,bΠ,c, (23)

where

Π(t, x,ρ) = ρ4

[ρ2 + Δ2(t, x, ρ)]2
. (24)

In (21) and (23),

τ5 = 1

(2π)5gs(α′)3
(25)

is the brane tension.

3. Identification of the momentum components

Variation of SCS with respect to Aa/2πα′ is the conserved U(1) current induced on the D5 
worldvolume:

Ka = 4π3α′τ5ε
abcφ,bΠ,c = N

2π
εabcφ,bΠ,c. (26)

The temporal component of this is the worldvolume charge density. We see that wound configu-
rations of the D5 (i.e., those for which the phase gradient φ,x is nonzero) carry a charge density 
proportional to φ,x . This motivates the identification of the total induced charge,

Ps =
∫

dxdρKt , (27)

with the momentum (in units of the Fermi momentum kF ) carried by the SC component. (The 
fact that the coefficient in the relation between Ps and the momentum is exactly unity can be 
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established by observing that a single 3/5 string carries unit charge and corresponds to a quasi-
particle that carries ±kF of momentum.)

It may be more familiar (see, for example, [19]) to have the variational derivative with respect 
to At correspond to the number density in the dual theory, and the derivative with respect to Ax

to the current density. Here, we relate δSCS/δAt to the momentum, which is more like current 
than charge. To see how this transmutation of charge into current comes about in the dual theory, 
consider the way the original electron operators are packaged into the Dirac fermions represent-
ing the ground states of the 3/5 strings. The fermions, χn, are (1 + 1)-dimensional but carry a 
Chan–Paton index n = 1, . . . , N . In the dual superconductor, n corresponds to the conductance 
channel, i.e., the transverse wavefunction, occupied by the fermion [11] (thus, a larger N means 
a thicker sample). Each χn is two-component, and the bilinear that couples to the order parame-
ter (12) is O = ∑

n χ̄n(1 + γ 5)χn. Choose the representation where the Dirac γ 0 is the Pauli σ1, 
and γ5 is σ3. Then, for the bilinear O to represent the SC pairing channel, the upper component 
of each χ (we omit the subscript n now) must be the annihilation operator of a right-moving elec-
tron, aR , and the lower component the creation operator of a left-moving one, b†

L. As a result, the 
normally ordered “charge” density χ̄γ 0χ , which couples to At , is proportional to a†

RaR − b
†
LbL, 

i.e., the momentum density (in units of kF ) in the dual theory, and the “current” density χ̄γ 1χ , 
which couples to Ax , to the number density.

A useful expression for Ps can be obtained from the Gauss law, the temporal component of 
the equation of motion for Aa . The equation reads

−εabc∂b

(
ρ3

√
f Hc

) = 2π

N
Ka, (28)

where

Hc = −∂
√

D

∂Bc
= f√

D

[
Bc + (

BbX,b

) · X,c

]
. (29)

From now on we assume that the x direction is a circle (of length L). Then, setting a = t in (28)
and integrating over x and ρ gives∫

dxdρKt = P(∞) − P(0), (30)

where

P(ρ) = N

2π

∫
dxρ3

√
f Hx. (31)

P(ρ) is the flux of the “electric” induction through a surface of constant ρ. The value P(0) is 
nonzero only if the D5 crosses the horizon, r = 0, of the geometry (9), which solutions considered 
in this paper do. One can visualize it as an effect of 3/5 strings that have fallen through the 
horizon and pulled the D5 with them. In this picture, P(0) is the total worldvolume charge 
carried by these strings.9 Alternatively, one could think of P(0) simply as an additional variable 
characterizing the boundary of the D5 at r = 0. The interpretation of it as a charge “behind the 
horizon,” however, is helpful in understanding that this variable is dynamical (as we discuss in 
more detail in Section 7): if additional quasiparticles (3/5 strings) are produced by unwinding 

9 We wish to stress here that, unlike in descriptions of supercurrent that use a bulk gauge field [12–14], in our case the 
“electric” field lives only on the D5 worldvolume.
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the supercurrent and fall through the horizon, both Ps and P(0) change; only the total, P(∞), 
is conserved. According to our interpretation of the charge as momentum, P(∞) is the total 
momentum of electrons in the wire. Comparing (30) with (27), we see that Pn = P(0) can be 
identified with the momentum of the normal component: it adds to the supercurrent momentum 
Ps for the total of P ≡ P(∞), cf. Eq. (5).

Eq. (28) has a class of solutions (first integrals) of the form

ρ3
√

f Ha = φ,a(Π − 1) + Ja, (32)

where Ja are integration constants. These solutions are not the most general, as one can always 
add a gradient to the right-hand side of (32) without affecting the curl in (28), but they will be 
sufficient for our purposes. In fact, we will restrict the class of solutions even further—to those 
for which the only nonzero constant is Jx , and we will use a special notation for it:

Jx ≡ J∞, (33)

Jt = Jρ = 0. (34)

As we will see shortly, J∞ corresponds to the total (SC plus normal) momentum density in the 
wire. One may suspect that, similarly, a nonzero Jt would describe variations in the fermion 
number density (that is, in the Fermi momentum) but, as (34) implies, that will not be pursued 
here.

Using (32), Eq. (31) can be written as

P(ρ) = N

2π

∫
dx

[
φ,x(Π − 1) + J∞

]
. (35)

For all solutions considered in this paper Π(x, ∞) = 1. This is a consequence of the boundary 
condition

Δ → 0 at ρ → ∞, (36)

which means that there is no symmetry-breaking source, i.e., the U(1) that rotates the phase of Ψ
is broken spontaneously rather than explicitly. Then, at large ρ, the integrand on right-hand side 
of (35) is simply J∞. According to our earlier interpretation of P(∞), this means that J∞ is, 
up to a factor of N/2π , the linear density of the total momentum.10 Similarly, sending ρ → 0
allows us to identify

Js(x) = φ,x(x,0)
[
1 − Π(x,0)

]
(37)

as the momentum density of the supercurrent (up to the same factor) and the difference J∞ − Js

as that of the normal component.

4. Instability of the normal state

Consider linearized theory near the trivial embedding (16), (17). To the linear order in X,

Hc = f0Bc

(1 − f0BaBa)1/2
(38)

10 This suggests a generalization (which we do not pursue here)—a J∞ depending arbitrarily on x. This does not affect 
the curl in Eq. (28), so the equation is still satisfied. An x-dependent J∞ may describe, for instance, supplying extra 
current to segments of the wire by connecting them to external leads.
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where

f0 = 1 + 1

ρ4
. (39)

To this order, subject to the conditions (34), there are no sources in (32) for Ht and Hρ , while 
for Hx the only source is J∞. As a result, Ba are unchanged from the zeroth order, namely, 
Bt = Bρ = 0 and

Bx(ρ) = −Ftρ(ρ) = J∞
C

1/2
0 (ρ)

, (40)

where

C0(ρ) = ρ6f0(ρ) + J 2∞. (41)

Upon substituting (40), the linearized equation for X, written in terms of the complexified 
coordinate (12), reads

1√
C0

∂

∂ρ

(√
C0Ψ,ρ

) + 2Ψ

C0
− f0Ψ̈ + ρ6f 2

0

C0
Ψ,xx − i

4J∞
ρ2C0

Ψ,x = 0. (42)

The general solution is a superposition of plane waves

Ψ (t, x,ρ) = Δ(ρ)e−iωt+iqx . (43)

Here q is real but ω can be complex. For q �= 0, Eq. (43) describes a D5 uniformly would about 
the D3s, the total of W = qL/2π times. As we have already noted, in our interpretation, such 
wound states describe supercurrent.

We are interested in unstable modes—those Δ(ρ) for which ω has a positive imaginary part. 
Suppose J∞ > 0. Then, at small ρ, unstable modes behave as Δ ∼ ρ exp(iω/ρ), i.e., vanish 
exponentially. They also vanish at ρ → ∞. The equation for Δ obtained by substituting (43)
in (42) has the form of a Schrödinger equation, and the boundary conditions just established 
mean that the unstable modes are its bound states. Asymptotically, at small ρ, the equation is

Δ,ρρ + ω2

ρ4
Δ + α

ρ2
Δ = 0, (44)

where

α = 4q/J∞ − (q/J∞)2. (45)

A change of the independent variable to z = 1/ρ shows that this is a “fall to the center” problem. 
It becomes supercritical for α > 1

4 , which means that for these α the full Schrödinger problem 
has an infinite number of bound states [23]. In our case, such α exist for any J∞ > 0, with the 
maximum α = 4 reached at q/J∞ = 2. We conclude that, for any J∞ > 0, the normal state is 
unstable. The instability band is at least as broad as the supercritical range

2 −
√

15

2
<

q

J∞
< 2 +

√
15

2
, (46)

but may actually be broader, since it will include also those q for which there is only a finite 
number of unstable modes.

A numerical solution to the full Eq. (42) produces the instability chart shown in Fig. 1. Note 
that, for comparatively small J∞, the instability band includes the value q = 0, even though the 
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Fig. 1. Instability chart of Eq. (42) after substitution (43). The lines are the level contours of Im ω as it is increased in 
increments of 0.1. The outermost pair of lines corresponds to Im ω = 0 and forms the boundary of the instability band.

latter is not in the supercritical range (46), but for large J∞, the instability occurs only for modes 
with q above a certain nonzero minimum: the emerging SC state necessarily has a supercurrent.11

5. Uniform mixed states

The next question is what is the final state that the instability leads to. Natural first tries are 
the simplest configurations—those that are time-independent and uniform. By the latter we mean 
that Δ is independent of x, while φ winds along x uniformly:

Δ = Δ(ρ), (47)

φ = φ(x) = qx. (48)

For such configurations, the matrix

Mcb = hcb + X,c · X,b (49)

multiplying Bb in (29) is diagonal. Expressing Ha from (32), subject to the conditions (34), and 
Ba from (29), we find

Bt = Bρ = 0 (50)

Bx(ρ) = −Ftρ(ρ) = J (ρ)

C1/2(ρ)

(
1 + Δ2

,ρ

)1/2
, (51)

where the various functions (of ρ only) are given by

J (ρ) = q
[
Π(ρ) − 1

] + J∞, (52)

C(ρ) = ρ6fΔ(ρ)
[
1 + q2Δ2(ρ)fΔ(ρ)

] + J 2(ρ), (53)

fΔ(ρ) = 1 + 1

[ρ2 + Δ2(ρ)]2
. (54)

These equations are the nonlinear counterparts to Eqs. (39), (40), (41) of the linear theory.

11 For a loop of a finite length L, the values of q are quantized, and for a short loop it is possible that, at a given J∞ , all 
the allowed values of q fall outside the instability band. In this case, there will be a curious reentrant behavior, when the 
normal state, linearly stable at that J∞ , becomes linearly unstable again at a larger one.
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The equation of motion for Δ(ρ), obtained by varying the action and substituting (50)
and (51), is

d

dρ

Δ,ρ

√
C

(1 + Δ2
,ρ)1/2

= (
1 + Δ2

,ρ

)1/2 ∂
√

C

∂Δ
. (55)

The boundary condition at infinity is (36). We now proceed to establish the condition at 
ρ → 0.

The first part of the argument is standard (for an application to a different system, see for 
example [24]). Recall from Section 3, Eq. (35), that J (ρ) represents the flux of the worldvolume 
electric field through a surface of constant ρ. If Δ(0) �= 0, the D5 closes off at a finite distance 
from the D3s. In this case, we must have J (0) = 0; otherwise, the lines of the field have nowhere 
to end. More formally, for J (0) �= 0, Eq. (51) predicts Ftρ(0) �= 0, meaning that the gauge field is 
not smooth. The only way to accommodate J (0) �= 0 therefore is to have Δ(0) = 0. Then, the D5 
crosses the horizon, and the flux at ρ = 0 can be ascribed to charges behind the horizon, as dis-
cussed in Section 3. According to the interpretation of the fluxes there, for a uniform solution, 
J (0) is the momentum density of the normal component. As we are interested here specifically 
in solutions for which that is nonzero, we postulate12

Δ(0) = 0. (56)

Eq. (56) implies that the shortest strings connecting the D5 to the D3s are of length zero, i.e., the 
superconductor is gapless, which is consistent with the presence of a normal component.

The second part of the argument seeks to establish the manner in which Δ(ρ) vanishes at 
ρ → 0. The only type of solutions we have been able to find are those for which that happens 
slower than linearly, with Δ maintaining its sign (for definiteness, positive) at small nonzero ρ:

ρ−1Δ(ρ) → ∞ at ρ → 0. (57)

The precise asymptotics is discussed in Section 6.
Under the condition (57), Π(0) in Eq. (37) is zero (and there is no longer a dependence 

on x as the solution is uniform), so according to that equation the momentum density of the 
supercurrent is

Js = q. (58)

This is the same expression as obtains for the supercurrent-only solutions, cf. Eq. (27). It is as 
if each electron in the wire contributes momentum q/2 to the superflow.13 The reason why this 
applies even in the presence of a normal component is that, under our present approximations, 
the number of “normal electrons” is much smaller than the total number: with the length scale R
restored, the former is Pn ∼ NL/R, while the latter is of order NLkF . In other words, although 
Ps and Pn may be comparable, the first of these is due to a large number of “superconducting 
electrons” each contributing the small momentum q/2, while the second is due to a small number 
of “normal electrons” each carrying the large momentum kF .

12 The supercurrent-only solutions of [11], in contrast, have J (0) = 0 and Δ(0) �= 0.
13 The total number of electrons in a wire with N channels is NkF L/π (we define channels so that each contains only 
one projection of spin). Dividing NWkF by this number gives q/2 per electron.
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6. Near-horizon limit and numerical solutions

Consider the limit of Eq. (55) at ρ → 0. Recalling the condition (57), we can expand (55) in 
ε = ρ/Δ. For a mixed-state solution, we may assume, without loss of generality, that J (0) > 0
and q �= 0. Then,

√
C = J (ρ) + O

(
ε6) = J (0) + qρ4

Δ4
+ O

(
ε6). (59)

Assuming that Δ,ρ is of order 1/ε, we find that, to the leading order in ε, the limiting form 
of (55) is

j
d

dρ

1

Δ2
,ρ

= 8ρ4Δ,ρ

Δ5
. (60)

The parameter

j ≡ J (0)/q = (J∞ − q)/q (61)

is the ratio of the momentum densities of the normal and SC components.
Eq. (60) is scale-invariant: if Δ(ρ) is a solution, then so is

Δ̃(ρ) = cΔ
(
c−1ρ

)
, (62)

where c is any positive constant. We can think of c as a shooting parameter, which we may hope 
to adjust so as to obtain a solution to the full Eq. (55) with the correct asymptotics (36) at infinity. 
Indeed, this is precisely how we are going to search for solutions to Eq. (55) numerically.

The form of (60) suggests that it is advantageous to view ρ as a function of Δ, rather than Δ
as a function of ρ. Then, (60) can be rewritten as

j
d

dΔ
ρ2

,Δ = 8
ρ4

Δ5
. (63)

We are looking at this in the limit Δ → 0, with the boundary condition ρ(0) = 0. The substitution

ρ(Δ) = g(z)Δ, (64)

where

z = ln(Δ0/Δ), (65)

brings (63) to the form

gg′ − (
g′)2 − gg′′ + g′g′′ = −4g4

j
. (66)

Δ0 in (65) is an arbitrary constant, playing the same role as c in (62). Note that a small Δ means 
a large z.

Eq. (66), at large z, is suitable for an application of the WKB approximation. That amounts 
to ordering the terms on the left-hand side according to the number of derivatives: the more 
derivatives, the smaller the term. To the leading order, only the first term matters, and we find
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Fig. 2. D5 profiles for mixed-state solutions with total momentum density J∞ = 1 and various values of the supercurrent 
momentum density q . Larger q correspond to larger peak values of Δ(ρ). The dashed line is the supercurrent-only 
solution of [11] with q = 1.

g2(z)LO = j

8(z + z0)
, (67)

where z0 is an integration constant. z0 can be absorbed by a redefinition of Δ0 and, in any 
case, is immaterial to the leading order. From (67), we conclude that a solution with the postu-
lated asymptotics exists only for j > 0. Referring now to Eq. (61), we see that j > 0 implies 
that J (0), q , and J∞ are all of the same sign—which, by the assumption we have made regard-
ing J (0), is positive. In other words, we may expect to find a solution of the requisite form only 
for

0 < q < J∞. (68)

This stands to reason: the condition (68) means that the SC and normal components flow in the 
same direction.

Numerically, given J∞ and q , we choose a small Δ and compute ρ and ρ,Δ from (64), with 
g given by (67) and Δ0 a parameter. We then use this Δ and the computed Δ,ρ = 1/ρ,Δ as 
boundary conditions for the full Eq. (55) and look for Δ0 such that the solution satisfies also the 
condition (36).

Using this algorithm, we find that the upper bound in (68) is saturated, in the sense that 
there are solutions with q very close to J∞, but the lower one in general is not: a more precise 
condition is

qmin < q < J∞, (69)

where qmin is the larger of zero and the lower instability bound of Section 4 (the lowest curve in 
Fig. 1). Numerically, qmin departs from zero at J∞ = 0.32. At the instability bound, the solution 
merges into the normal-state solution Δ ≡ 0. This is illustrated in Fig. 2. On the other hand, as q

approaches J∞, the solution matches, except at the smallest ρ, the gapped supercurrent-only so-
lution of [11]. In this way—for those J∞ for which qmin �= 0—a family of mixed-state solutions 
with different values of q can be thought to interpolate between the normal state (in which q is 
undefined) and the supercurrent-only state with q = J∞.
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Fig. 3. Free energy of a uniform mixed state as a function of q . J∞ increases bottom to top in increments of 0.25.

7. Non-convexity of the free energy

Eq. (55) is the condition of local extremum, with respect to Δ(ρ), for the functional

F =
∞∫

0

dρ
[√

C
(
1 + Δ2

,ρ

)1/2 − ρ3
√

f0
]
, (70)

where f0 is given by (39). This identifies F , up to an overall normalization, as the free energy 
density. The last term under the integral does not depend on Δ and so does not contribute to (55); 
its role is to make the integral convergent at the upper limit.

In a clean (disorder-free) conductor, a phase slip changes the momentum carried by the super-
current without changing the total momentum. In our case, the former is represented by q and 
the latter by J∞, so it makes sense to consider F as a function of q at fixed J∞. The minimum 
of this function will be a candidate ground state—not necessarily the true one, as the procedure 
applies to uniform states only.

Numerically computed F(q) curves for several values of J∞ are shown in Fig. 3. The ends 
of each curve correspond to the endpoints of the interval (69). At the right end, q → J∞, the 
free energy is the same as for the gapped solution to which the mixed-state solution converges 
pointwise (cf. Fig. 2).

We see that—among uniform states with a given J∞—the gapped, supercurrent-only state has 
the lowest free energy. Based on that, one might suppose that this is the state that the system will 
always evolve to. With the aid of Fig. 2, one could visualize such an evolution as the D5 peeling 
itself off the horizon, to form the state represented by the dashed line. From the earlier work [11]
we know, however, that above a certain value of J∞,

J∞ > J(m)∞ , (71)

the gapped state is unstable to decay by phase slips, which is accompanied by production of 
quasiparticles.14 What we learn here, then, is not that the gapped state is always stable, but rather 
that the quasiparticles that are produced by its decay cannot be described by a uniform solution.

14 For production of N well separated quasiparticles in a long wire, J (m)∞ is about 0.57 [11]. The threshold may be lower 
for production of a bound state.
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This conclusion is supported by the observation that none of the curves in Fig. 3 is convex. 
That means that, in a long wire, a uniform state with q < J∞ is unstable with respect to phase 
separation—fragmentation into regions with different winding number densities.15 Unlike the 
instability of the gapped state, this one does not rely on phase slips: it occurs even at fixed total 
winding, equal to that of the initial uniform state. The form of the free-energy curves (with 
the absolute minimum reached at q = J∞) suggests that, upon phase separation, there will be 
regions with q ≈ J∞, which are almost quasiparticle-free, while quasiparticles are concentrated 
in droplets dispersed among these regions—an “emulsion.”

We find plausible the following hypothesis about the nature of the quasiparticle-rich droplets: 
they are “baryons,” each made of N D3/D5 strings. Recall that these strings carry color with 
respect to the SU(N) gauge group that lives on the D3s’ worldvolume. The baryon is color-
less.16 The complete antisymmetry of its wavefunction with respect to color means that there is 
a quasiparticle in each of the N conductance channels of the wire.

8. Conclusion

In the present work, we have aimed to understand the nature of the mixed SC-normal state that 
forms in a strongly coupled thin superconductor at currents above a certain Im but well below the 
depairing current Idep. This has been done here in the context of the same D3/D5 system as we 
used in [11]. The momentum carried by the supercurrent is represented by the flux of the world-
volume gauge field induced on the D5, as the latter winds around the D3s, and the momentum 
of the normal component by the flux due to charges behind the horizon. Natural first guesses for 
the mixed state are uniform solutions, in which both these fluxes are uniform in x (the coordinate 
along the wire) and, in the leading large N limit, entirely classical. We have argued that such 
solutions exist but are unstable against fragmentation, leading eventually, we believe, to a non-
uniform ground state—an “emulsion” of quasiparticle-rich droplets in a nearly quasiparticle-free 
matrix.

The non-uniform mixed state hypothesized here is similar to the mixed state of type II su-
perconductors, with the droplets seen as “electric” analogs of the magnetic flux lines, and the 
winding density qm, at which production of quasiparticles becomes energetically favorable, as the 
counterpart of the lower critical field Hc1. This analogy leads us to speculate further on the prop-
erties of such a state, in particular, on the role of disorder. All quasiparticles produced by phase 
slips carry the same momentum (either kF or −kF ). One may wonder, then, if in the presence of 
disorder, when momentum is no longer conserved, the quasiparticles will not simply disappear, 
and the wire will not revert to the purely SC state. The analogy with a type II superconductor 
makes us think that this is unlikely. In that case, the presence of flux lines in the sample is not a 
result of any conservation law (they can enter and leave the sample through the boundary) but a 
consequence of the energetics: the difference H − Hc1 (in our case, q − qm) plays the role of a 
chemical potential for a flux line (in our case, a quasiparticle).

15 This instability is distinct from the ones leading to spatially modulated currents [14,18] in models using a bulk U(1) 
field. In our case, the system has fewer translational directions, and the total current remains uniform. It is the partition 
of the total into superconducting and normal components that becomes x-dependent.
16 It is similar to the baryon vertex described in [25,26], except that in our case the N strings connect the D5 to the D3s, 
rather than to the boundary of an AdS space.
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Guided by the same analogy, one may contemplate a periodic array of droplets—an analog 
of the Abrikosov flux lattice. One may wonder if there are classical solutions of dual gravity 
capable of describing such an array.
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