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Abstract

In the present paper, turbulent plane plume in a quiescent ambience has been numerically studied using

three different versions of the buoyancy extended k–�–t02 model. The performance of models is analysed by

means of a detailed comparison between the predictions and the experimental observations reported in the

literature. In addition, the predictions by the Reynolds stress and the heat flux transport (RSHFT) model

reported in the literature are also included in the comparison to examine the effectiveness of k–�–t02 models
relative to the higher order RSHFT model. The comparison shows that the mean flow quantities predicted

by all the models agree well with the experimental observations. However, considerable differences are

observed in the predicted turbulent quantities.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The standard k–� model [1] is widely used but is not capable of properly capturing the effect of
buoyancy in a flow and as a remedy it has been extended by Lumley [2] and Launder [3]. Hossain
and Rodi [4] reviewed these model proposals. Gibson and Launder [5] extended Launder�s model
[3] to predict horizontal surface jet and mixing layer. Chen and Rodi [6] proposed k–�–t02 model
based on Launder�s model [3] and used it to predict the far field behaviour of vertical buoyant jets.
Chen and Chen [7] used the model of Chen and Rodi [6] to predict the centreline mean and
turbulent quantities of plane and axisymmetric buoyant jets from the exit to the self-similar region
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Nomenclature

c�s model constants
Gk production of k due to buoyancy
g acceleration due to gravity
k turbulent kinetic energy
Pk production of k by shear stress
Pt production of temperature fluctuations
Prt turbulent Prandtl number
T mean temperature
DT ¼ T � T1
t02 mean square temperature fluctuations
u mean velocity along streamwise (x) direction
v mean velocity along cross-stream ( y) direction
u0v0 Reynolds shear stress
u0t0 streamwise heat flux
v0t0 cross-stream heat flux
u02 streamwise velocity fluctuations
v02 cross-stream velocity fluctuations
x streamwise coordinate
y cross-stream coordinate
b coefficient of volumetric expansion
du velocity halfwidth
dt temperature halfwidth
� rate of dissipation of k
�t rate of dissipation of temperature fluctuations
c intermittency factor
C intermittency interaction invariant
mt eddy viscosity
ru normalised centreline velocity¼ u0=B1=3

Subscripts
1 ambient temperature
m maximum value
0 centreline value
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for different values of Froude number. Malin [8] proposed another k–�–t02 model to predict plane
and axisymmetric jets and plumes. Sini and Dekeyser [9] proposed another buoyancy extended k–�
model and predicted the dynamical and thermal fields in plane turbulent jets and forced plume.
Bergstrom et al. [10] predicted plane vertical plume using k–�–t02 model where Reynolds stresses
and heat fluxes are modelled by nonequilibrium algebraic stress model. In these predictions [9,10]
governing flow equations are solved elliptically. Pantokratoras [11] numerically studied the effect
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of ambient temperature on vertical round and plane turbulent buoyant water jets using k–�–t02

model [7]. However, he used an algebraic relation to correlate water density with temperature on
the bases of the equation of state for seawater [11].

Malin and Younis [12] predicted plane and axisymmetric plumes using Reynolds stress and
turbulent heat flux transport (RSHFT) model, which is considered as a higher order model
compared to the k–� based models.

In the present paper predictions of the self-similar turbulent plane plume in a quiescent am-
bience are presented using three different versions of buoyancy extended k–� model which include
(i) k–�–t02 model proposed by Chen and Rodi [6] (denoted here as model-1), (ii) k–�–t02 model
proposed by Malin [8] (model-2) and (iii) model proposed by Kalita et al. [13] (model-3). The
predictions are compared with the experimental observations of Ramaprian and Chandrasekhara
[14,15]. In addition, the previous predictions obtained by the more complex RSHFT model [12]
are also incorporated to compare the performance of this higher order model with that of the
buoyancy extended versions of the k–�–t02 model.

The present paper has been arranged in five sections. In Section 2 the governing equations and
the features of the different versions of the k–�–t02 model under consideration are described. In
Section 3, the boundary conditions applied to the flow configuration and the numerical method
adopted for the solution of the governing equations are described. The assessment of the models is
presented in Section 4 and concluding remarks are made in Section 5.
2. Governing equations and turbulence models

2.1. Mean flow equations

The flow is assumed to be steady in mean and incompressible and the Boussinesq approxi-
mation is applied. The boundary layer forms of the Reynolds-averaged governing equations for
the mean velocity and temperature distribution for the turbulent plane plume are then given by

Continuity:
ou
ox

þ ov
oy

¼ 0: ð1Þ
Streamwise momentum:
u
ou
ox

þ v
ou
oy

¼ o

oy
ð�u0v0Þ þ gbðT � T1Þ: ð2Þ
Mean temperature distribution:
u
oT
ox

þ v
oT
oy

¼ o

oy
ð�v0t0Þ: ð3Þ
Here u is the mean velocity along the streamwise (x) direction and v is the mean velocity along the
cross-stream (y) direction. T and T1 are the mean temperature and ambient temperature, re-
spectively. The primed quantities represent fluctuations.
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2.2. Turbulence models under consideration

In all the three buoyancy extended versions of the k–�–t02 model considered for the present
predictions, the same mean flow equations (Eqs. (1)–(3)) and the modelled transport equation for
k, � and t02 are used (Eqs. (12)–(14), respectively) where k denotes turbulent kinetic energy, �
denotes rate of dissipation of turbulent kinetic energy and t02 denotes mean square temperature
fluctuations. The differences among the three models are in the modelled relations used for the
Reynolds shear stress (u0v0) and turbulent heat fluxes (v0t0 and u0t0) only, which are described here.
The main features of the these models are summarised in Table 1.

(i) Model-1 (Chen and Rodi�s model [6]): In this model the modelled relations for the Reynolds
shear stress and heat fluxes are derived by simplifying the modelled transport equations for in-
dividual stresses and heat fluxes and this is termed as algebraic stress model (ASM) [16]. The
simplified relations for the present flow configuration are given below.

Reynolds stress:
Table
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where
v02 ¼ c2k: ð5Þ

Cross-stream heat flux:
�v0t0 ¼ v02

chk
k2

�

oT
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: ð6Þ
Streamwise heat flux:
u0t0 ¼ k
ch�

�
� u0v0

oT
oy

� v0t0ð1� ch1Þ
ou
oy

þ gbð1� ch1Þt02
�
: ð7Þ
The value of the model constants are c0 ¼ 0:55, c1 ¼ 2:2, c2 ¼ 0:53, ch ¼ 3:2 and ch1 ¼ 0:5 [6,7].
(ii) Model-2 (Malin�s model [8]): Here the Reynolds stress is modelled using the ASM (Eqs. 4

and 5). The cross-stream heat flux is modelled by using the concept of eddy viscosity [1] and is
given as
1

res of the models

del considered Transport equations u0v0 modelled by v0t0 modelled by u0t0 modelled by

del-1 k, � and t02 ASM ASM ASM

del-2 k, � and t02 ASM � mt
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ffiffiffiffiffiffiffi
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v0t0 ¼ � mt
rt

oT
oy

; ð8Þ
where
mt ¼
clk2

�
; ð9Þ
Here mt is the eddy viscosity, cl (¼ 0.09) is the model constant [1] and rt (¼ 0.5) is the turbulent
Prandtl number [17]. The axial heat flux is modelled as suggested by Malin and Spalding [17] and
is given as
u0t0 ¼ kh
ffiffiffiffiffiffiffi
kt02

p
; ð10Þ
Here kh is a model constant and its value is shown in Table 2.
(iii) Model-3: In this model the Reynolds shear stress and cross-stream heat flux are modelled

using the ASM (Eqs. (4)–(6)). The axial heat flux is obtained by employing the model proposed by
Dewan et al. [18]:
u0t0 ¼ � mt
Prt

oT
ox

þ kh
ffiffiffiffiffiffiffi
kt02

p
; ð11Þ
Here Prt is the turbulent Prandtl number. For the present flow configuration the first term of the
right side is negligible. However, the term has been retained for the mathematical consistency of
the model.

2.2.1. Transport equations for turbulent quantities

(i) Turbulent kinetic energy (k): The modelled transport equation for turbulent kinetic energy is
given as [7]
u
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ck
v02k
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" #
þ Pk þ Gk � �; ð12Þ
Here Pk ¼ �u0v0 ou
oy and Gk ¼ gbu0t0 are the shear production and buoyancy production of turbulent

kinetic energy, respectively.
(ii) Rate of turbulent kinetic energy dissipation (�): The modelled transport equation for � is

given as [7]
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2

s of model constants used in the models

stants ck c� c�1 c�2 cT 1 kh cT

del-1 [6] 0.225 0.15 1.43 1.92 1.79 – 0.13

del-2 [8] 0.225 0.15 1.44 1.92 1.79 0.62 0.13

del-3 0.225 0.15 1.43 1.92 1.79 0.4 0.13
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(iii) Temperature fluctuations (t02): The mean-square temperature fluctuation (t02) is computed
from the following modelled transport equation [7]
u
ot02

ox
þ v

ot02

oy
¼ o

oy
cT

k2

�

� �
ot02

oy

" #
þ Pt � �t: ð14Þ
Here Pt and �t are the production and dissipation rate of temperature fluctuations and given as

Pt ¼ �2v0t0 oT
oy , �t ¼

cT 1�t02

k .

The values adopted for all the constants of model-1 are the same as used by Chen and Rodi [6]
with the exception of cT1. Here, we have adopted cT 1 ¼ 1:79 instead of 1.25 as suggested by Chen
and Rodi [6]. It is observed from the literature that the value of cT 1 varies across the plume from
0.125 to 2.0. Bergstrom et al. [10] have used cT 1 ¼ 2:0. Many workers [12,17,18] have suggested
that the value for cT 1 ¼ 1:79 is a better choice and therefore, we have adopted this value for cT1
(¼ 1.79) in all the three models (model-1, model-2 and model-3) considered here. The main ad-
vantage of using cT1 ¼ 1:79 is that it enables a easy comparison of the three versions of the k–�–t02

model as the same transport equations (12)–(14) along with the almost same values for model
constants (ck, c�, c�1, c�2, cT and cT 1) are used for all models (Table 2). Thus the difference between
the three models is only due to the modelled relations used for Reynolds shear stress, cross-stream
heat flux, streamwise heat flux terms and the corresponding model constants only.
3. Boundary conditions and numerical method

3.1. Boundary conditions

The mean flow is assumed to be symmetric about the mid-plane of the plane plume and thus the
computations are performed over one half of the plume only and the zero flux boundary con-
ditions for all the variables are specified across the plane of symmetry. At the plume edge all the
quantities, viz. u, k, � and t02, are set to zero except the mean temperature T which is set equal to
the ambient temperature T1. At the discharge of the plume, top hat profiles for all the variables
are specified.

3.2. Numerical method and code validation

The governing equations presented in Section 2 have been solved using the finite volume
method [19]. For this purpose upwind scheme in the streamwise direction and power law scheme
[19] in the cross-stream direction are used, thus converting each governing equation into a set of
algebraic equations. The system of algebraic equations is solved using line-by line iteration
method which employs tridiagonal matrix algorithm. The governing equations are parabolic in
nature and therefore, the numerical solution is obtained by marching in the streamwise direction.
The computation is stopped when the self-similarity of the plume is achieved. The self-similarity is
assumed to be reached when the changes in the growth rates and centerline values of the mean and
turbulent quantities are within 1%.
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We have used 100 nonuniform grid-points along the cross-stream direction and a step size of
6% of the local velocity half width (du) along streamwise direction. The grids are clustered near the
discharge region of the plume. The grid sensitivity of the results is tested by varying the number of
grid-points along the normal direction from 100 to 150 while keeping a fixed step size of 6% of the
local velocity half width (du) in the streamwise direction. The sensitivity of the streamwise step size
is tested by varying the step size from 2% to 8% in an increment of 2% with fixed 100 nonuniform
grid-points in the normal direction. In these tests the variation of the mean and turbulent
quantities is found to be within 2%.

Two cases are selected to validate the code, (i) the plane jet using the k–�–c model of Cho and
Chung [20] and the plane plume using the k–�–t02 model as used by Malin [8]. Computations are
made with the discharge conditions such that the height nondimensionalised by the Morton length
scale [18] is much less than unity for the plane jet and more than 15 for the plane plume. The
comparison of the present computations with those by Cho and Chung [20] and Malin [8] enables
us to validate the present code. The mean and turbulent quantities for the two cases are found to
be within 2% of those predicted by Cho and Chung [20] and Malin [8].
4. Assessment of the models

To assess the performance of the models the predictions are compared with the measured data.
Measured data for the self-similar turbulent plumes, up to 1980, has been reviewed by Chen and
Rodi [21] and by List [22] up to 1982. Subsequently Ramaprian and Chandrasekhara [14,15,23]
carried out experiments on the turbulent plane plume. In the present work the measurements
made by Ramaprian and Chandrasekhara [14,15] have been chosen for the comparison as their
data is seems to be more reliable than those of earlier experiments.

4.1. Mean flow quantities

Growth rate: The predicted velocity growth rate (odu=ox) and temperature growth rate (odt=ox)
by the three buoyancy extended versions of the k–� model are shown in Table 3 together with the
measured data of Ramaprian and Chandrasekhara [15] and the predictions of Malin and Younis
[12] by the RSHFT model. The table shows that the velocity growth rate predicted by all the
models agrees well with the experimental observation. However, the temperature growth rate is
underpredicted by model-1 by about 9% and by model-3 and RSHFT model by about 15%.
Considering the large scatter in temperature measurement (10% as stated by Ramaprian and
Chandrasekhara [15]) the predictions are satisfactory.
Table 3

Predicted growth rates compared with measurements

Growth rate Model-1 [6] Model-2 [8] Model-3 [13] RSHFT [12] Measured data [15]

Velocity 0.119 0.115 0.111 0.105 0.11

Temperature 0.118 0.133 0.11 0.113 0.13
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Mean velocity and mean temperature profiles: The mean velocity and mean temperature profiles
predicted by the models under consideration are compared with the experimental observations
[15] and the predictions of Malin and Younis [12] by RSHFT model in Figs. 1 and 2, respectively.
Both figures show that all the predicted profiles are close to the measured profile except that by
model-2.

4.2. Turbulent transport quantities

Reynolds shear stress: Reynolds shear stress (u0v0) profiles are compared in Fig. 3, which shows
that the peak value of Reynolds shear stress predicted by model-3 is higher than the measured
value by almost 10%. Considering the experimental uncertainties of 10% [15] the predictions can



y δ

u
v

u2

u

m

Model-3
Model-2
Model-1

RSHFT  model 
Experiment

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.5 1 1.5 2 2.5 3

Fig. 3. Comparison of the predictions of the Reynolds shear stress profile by different k–� models with the experimental

observations [15] and RSHFT model [12].

A. Dewan et al. / Appl. Math. Modelling 28 (2004) 241–254 249
be considered as good. The profile shape predicted by model-3 follows the measured profile more
closely compared to that by model-1 and model-2. In the three models considered here, the
Reynolds shear stress (u0v0) is modelled by ASM and in RSHFT model a transport equation for
u0v0 is used. The differences in the predicted values of u0v0 by all the three versions of the k–� are
small (maximum deviation is less than 15% of the measured value). The reason for the differences
may be the use of different relations for modelling of the heat fluxes (u0t0 and v0t0).

Turbulent cross-stream heat flux: Predicted turbulent cross-stream heat flux profiles are shown
in Fig. 4. It is observed that of all the models, the agreement of the prediction by model-3 with the
measured data is the best.

Turbulent axial heat flux: In Fig. 5 the predicted profiles of the turbulent axial heat flux are
compared with the experimental data. The comparison shows that the agreement between the
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Fig. 4. Comparison of the predicted profiles of the turbulent cross-stream heat flux by different k–� models with the
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prediction of model-3 and measurement is satisfactory and superior to the predictions of the other
models. Model-2 overpredicts the value of u0t0 near the plane of symmetry by about 105%. This
large deviation is probably due to the nonincorporation of the buoyancy effect in computing the
cross-stream heat flux and the use of high value for kh (Malin [8] used kh ¼ 0.62) in model-2. The
profile shape predicted by model-1 also deviates from the measured profile. This shows that
modelling of u0t0 by ASM [6] and by even more complex transport equation [12] is unable to
correctly predict the profile, whereas the simple model used in the model-3 gives better predic-
tions.

Temperature fluctuations: The root mean square (rms) temperature fluctuations profiles pre-
dicted by the three different models are shown in Fig. 6. The comparison shows that the predicted
profile by model-3 agrees well with the measurement and that by other models show some de-
viation from measurement.
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4.3. Some aspects of turbulent structure

Predictions of different terms of the turbulent kinetic energy transport equation (12) are
compared with the experimental data of Ramaprian and Chandrasekhara [15] in Figs. 7–10. For
the dissipation term no experimental data is available and hence no comparison is made. Fig. 7
shows that zero advection at the axis of the plume indicates a constant value of the turbulent
kinetic energy along the axis in the self-similar region. This fact, which has been experimentally
observed [15], is correctly predicted by all the k–� based models. However, the overall agreement
of the advection profile predicted by model-3 is superior to that of other models. Experimental
investigation [15] reveals that the influence of buoyancy on diffusion term is insignificant and
model-3 is able to predict this trend (Fig. 8). The predicted profile of the production of turbulent
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kinetic energy due to shear (Pk) by the model-3 is closed to the experimental observation (Fig. 9).
The direct effect of buoyancy on turbulence is represented by the buoyancy production term Gk.
The predicted profiles of Gk are compared with the measurement in Fig. 10. The prediction by
model-3 show the best agreement with the measured data [15].
5. Conclusion

From this study it has been observed that the mean quantities of the turbulent plane plume in
the self-similar region are predicted accurately by all the models. The predictions of the turbulent
quantities, particularly the heat fluxes and temperature fluctuations by the model-3 are superior to
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the predictions by the earlier used k–�–t02 models. Thus model-3 seems to be the best for this flow
configuration. The comparison further reveals that the predictions of most quantities by model-3
and the more complex RSHFT model are almost identical with the exception of axial heat flux
and the temperature fluctuations which are better predicted by model-3.
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