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INTRODUCTION 

An early result of Murray and von Neumann [12] states that if R is a factor on 
a Hilbert space ZY, R’ is its commutant, and R @ R’ is the algebraic tensor 
product, then the homomorphism that carries r @ Y’ onto rr’ is an isomorphism. 
Since R @ R’ may be realized as an algebra of operators on the Hilbert space 
completion of H @ H, and thus given the relative operator norm, it is only 
natural to inquire whether or not his map is isometric. Takesaki showed in [26] 
that this need not be the case (see Corollary 4.6 below for a definitive answer 
to this question). 

It follows from the above discussion that if we wish to find a C*-algebraic 
completion for the algebraic tensor product of two operator algebras, we will in 
general be faced with a multiplicity of eligible norms. In this paper we continue 
an investigation begun in [II] of those algebras for which the various C*- 
algebraic tensor products are either unique, or have other desirable properties. 
We restrict our attention to algebras that have an identity. 

Our task has been simplified through the use of a categorical approach. The 
morphisms of interest are the completely positive maps that preserve the identity. 
We have summarized their relevant properties in Section 1. 

The various norms that can be placed on the algebraic tensor product A @ B 
of two C*-algebras A and B are discussed in Section 2. Among these there is a 
smallest, denoted by I/ ljmin . This norm is well behaved in that if A, and B, are 
C*-algebras with A C A, and B C B, , then the natural map of A @B into 
A, @ B, is isometric. Using the symbol &in to indicate the C*-algebraic 
completion of the algebraic tensor product, we may write 

A &in B C AI &in BI . 

* Research supported in part by the National Science Foundation. 
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2 EFFROS AND LANCE 

At the other extreme, we have a maximal C*-algebraic norm 11 /Imax. However, 
if A is a von Neumann algebra, there is an intermediate norm, the normal 

norm II LX , which seems to be more appropriate. I/ I/min and 11 /inor serve as the 
least and greatest norms for which the states normal on A are dense among all 

the states on the C*-algebraic completion. Similarly, if A and B are both von 
Neumann algebras, there is a smaller norm, the binornal norm jl !Ihin , which 
respects the von Neumann structure of both A and B. 

None of the norms II Imax, II IIIIo~, or I/ I/bin, is well behaved in the inclusion 
sense mentioned above. Thus letting // jlr be any of these norms, and using Or 
for the corresponding completions, we are led to three questions, in which we 
restrict ourselves to von Neumann algebras when indicated: 

1. For which algebras A do we have A Or B = A @&in B for all B ? 

3 A. For which algebras A is it true that B c B, implies A @Jr B C A @Jr B, ? 

3. For which algebras A is it true that A C A, implies A Or B C A, or B 
for all B? 

In Theorem 4.1, perhaps the deepest result of the paper, we prove that each 

of these conditions for the binormal tensor product determines the same class 
of algebras, the semidiscrete von Neumann algebras. The latter are characterized 
by the fact that they have finite rank self-morphisms that converge in a suitable 
manner to the identity morphism. These algebras are introduced in Section 3, 

where it is shown that they include all type I algebras, as well as the product 
hyperfinite factors. 

Turning to the normal tensor product, we prove that the von Neumann 
algebras which satisfy the first two conditions are again those that are semi- 
discrete (Theorem 4.1). The third condition corresponds to the apparently 

larger class of absolute retract von Neumann algebras first considered by Hakeda 
and Tomiyama [lo] (Theorem 5.9). These algebras may also be characterized 
as those range von Neumann algebras for which Arveson’s morphism extension 
theorem is valid (Theorem 5.3), hence we shall also call them injectives. Evidence 
that at least the finite injectives might be semidiscrete is presented in 
Theorem 5.11, where it is shown that the regular group von Neumann algebra 
of a discrete group is semidiscrete or injective if and only if the group is amenable. 
A negative indication for the general case is that we have been unable to prove 
that all type II, or type III hyperfinite factors are semidiscrete, even though 
they are injectives. (See Note added in proof.) 

The situation for the maximal tensor product is even more complex, since the 
three conditions apparently lead to three successively larger classes of C*- 
algebras. The algebras satisfying the first condition are the nuclear C*-algebras 
of [I 11, and were initially considered by Takesaki [26]. The algebras which 
satisfy the second condition are those C*-algebras for which every representation 
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generates an injective von Neumann algebra (Theorem 6.2). These are essentially 

the type E algebras of Tomiyama [29]. The third class of C*-algebras are just 

the WEP algebras of [ill, and they are further investigated in Theorem 6.3. 
For the regular group C*-algebra of discrete groups, these three classes coincide, 
hence we conjecture that this is generally the case. (See Note added in poqf.) 

Since Onor is asymmetrically defined, we must also consider these conditions 
with the second algebra fixed. For example, the first question becomes: “For 

which C*-algebras A does one have that B Onor iz = B G&in A for all von 
Neumann algebras B ?” We find that the first two conditions determine just the 
nuclear algebras (Theorem 6.1) and those satisfying the third are the WEP 

algebras (Theorem 6.3). 
As indicated above, we consider only *-algebras with an identity. In particular, 

subalgebras will always be assumed selfadjoint and to have the same identity as 

the containing algebra. This will be an implicit assumption whenever we write 
A C B for two algebras A and B. Similarly, all homomorphisms will preserve 
both the *-operation and the identity. 

I f  E, F are linear spaces, then Y(E, F) is the space of all linear mappings from 
E to F, and Ed is the dual space Z(E, C). If  E, F are normed spaces, then &(E, F) 
is the space of all bounded mappings in Z(E, F) and E* = LiY(E, @) is the 

Banach dual. SY(E, E) is abbreviated to .93(E), and j, denotes the canonical 
mapping from E to E**. When convenient, we suppress the notation j, and 
regard E as a subspace of E * *. Given linear spaces E, F, E @F is the algebraic 
tensor product of E and F. 

We assume familiarity with the theory of C*-algebras as contained in [5] or 

[17]. In particular, we make frequent use of the theory of second duals of 
C*-algebras [5, Chap. 121. If  A is a C*-algebra, then A,, A+ denote the sets of 
selfadjoint and positive elements of A. The state space will be denoted S(A). 

IfpEA* , p > 0, then vTTI, is the representation of A on the Hilbert space H, , 
with cyclic vector [,, obtained by the Gelfand-Neumark-Segal construction. 

If  R is a von Neumann algebra, then R, denotes the predual of R, so that 
jR,(R*) is the set of all normal linear functionals on R. It will sometimes be 
convenient to refer to the relative weak* topology on this latter set as the weak* 
topology on R, . (Of course, it really corresponds under the map jR, to the weak 

topology on R.+ .) Thus if E is a Banach space and 0: E* - R* is a mapping 
which is continuous from the weak* topology on E* to the weak* topology on 
R* and whose range consists of normal functions, we simply describe 0 as being 
weak* continuous from E* to R, . However, we never use this inaccurate 
terminology when R, is known to be a dual space (for instance when R = A** 
for some C*-algebra A). Recall that the weak* topology on R is the same as the 

ultraweak topology, and coincides with the weak operator topology on the unit 
ball. 

In Section 5 we follow the terminology of Semadeni [ 181 as regards categorical 
concepts, even where this clashes with established C*-algebra usage. 
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1. MORPHISMS 

If A is a C*-algebra, let M,(A) d enote the set of all n x it matrices a = [aii] 
with entries u,~ in A. Then M,(A) is a *-algebra under the obvious matrix 
multiplication and the *-operation [aij]* = [$I. If A acts as an algebra of 
operators on the Hilbert space H then M,(A) acts as a C*-algebra of operators 
on H, = H @ .*a @ H (n copies of H), if we define 

ax = 
c 
C alpj ,..., T wj) (x = (~1 ,...y 4 E f&d. 
j 

The norm thus defined on MJA) does not depend on the particular space H 

on which A acts since an isomorphism of C*-algebras is an isometry. An element 
a in M,(A) is positive if and only if (ax, x) > 0 (x E H,), i.e., 

~(a,pi,xi) 20 (x1 ,..., x,EH). 
i.j 

The following algebraic characterization of the order on M,(A) is proved in 
[1 1, Proposition 2.11 (see also [14]): 

LEMMA 1.1. An element of M,(A) is positive if and only if it is a finite 
sum of matrices of the form [ai*aj] (a, ,..., a, E A). 

Let A, B be C*-algebras, and let @: A -+ B be a linear mapping. Define 
@,: M,(A) --j M,(B) by @,([uJ) = [Q(Q)]. We say that @ is n-positive if Qn 
is positive, and that @ is compZetely positive if @ is n-positive for all n. It is 
easy to show that for n >, 1, (n + 1)-positivity implies n-positivity, but the 
converse is false (see [2, Theorem 11). The following result of Choi (proved in 
[3]), which we shall not subsequently use, is interesting in this connection: 

PROPOSITION 1.2. If A, B are P-algebras, and di: A -+ B is a 2-positive 

linear isomorphism with @(l) = I, then @ is a *-isomorphism. 

There are several situations in which maps are automatically completely 
positive: 

LEMMA 1.3. Suppose A, B are C*-algebras and @: A -+ B is a linear map 
with @( 1) = 1. Then @ is completely positive in any one of the following situations: 

(i) @ is a homomorphism. 

(ii) @ is positive and A or B is commutative. 

(iii) B C A (recall the identity convention of the Introduction) and @ is a 
surjection satisfying Q2 = @ and 11 @ /I = 1. 

(iv) B = g(H), and A contains a subalgebra A,, such that @(A) C @(A,) 
and the restriction of @ to A,, is a homomorphism. 
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Proof. (i) is immediate. For (ii) with A commutative, see [19, Theorem 41, 
and with B commutative, see [20, Lemma 6.11. (iii) is proved in [13, Theorem 11. 
(iv) is credited to Broise and proved in [21, Theorem 3.11. 

We also need to consider dual and second dual spaces. If A is a C*-algebra 
we define M,(A*) to be the set of n x n matrices f = [fij] with entries fij in A *. 
We may identify M,(A*) with the dual M,(A)* of the C*-algebra M,(A) by 
setting 

f(a) = ~f&ii)~ 
i,i 

From Lemma 1.1 it follows that f > 0 if and only if 

In the same way, the dual of &&(A*) may be identified with M,(A**). Since 
A** is a C*-algebra, so is M,(A**), and its C*-algebra structure agrees with 
the structure which it has as the second dual of M,(A). 

If E is either a C*-algebra or the dual of a C*-algebra, and E, is a linear 
subspace of E, we write M,(EJ for the linear space of matrices e = [eii] with 
eij in E, , and we let M,(E,) have the relative order structure. If F is another 
such space and @: E, + F is linear, we define @,: M,(E,,) + M,(F) as before 
and we say that @ is completely positive if @n is positive for all n. It is easy to see 
that a composition of completely positive maps is completely positive. Further- 
more, if E, F are as above and @: E + F is bounded, then (a*)% = (@,)*, so 
that if @ is completely positive, then so is @*: F* + E*. 

We say that a bounded linear map @: A + B of C*-algebras is a morphism 
if it is completely positive and Q(1) = 1. From Lemma 1.3(ii), the states of a 
C*-algebra are morphisms. A composition of morphisms is again a morphism. 
It is a consequence of the following proposition that a morphism has norm 1. 

PROPOSITION 1.4. (Stinespring). Let A be a C*-algebra, H a Hilbert space, 
and @: A + g(H) a morphism. There is a Hilbert space K, a representation 
r of A on K, and an isometric map v: H -+ K such that Q(x) = v*z-(x)v (x E A). 
Conversely, given Hilbert spaces H, K, a representation rr: A + S?(K) and an 
isometry Vz H + K, @(a) = V*rr(a)V defines a morphism @p: A + g(H). If A is 
a von Neumann algebra and @ is normal, then rr can be chosen normal. 

Proof. The first assertion and its conversc constitute Stinespring’s theorem 
(see [l; 191). Inspection of the proof of the first assertion shows that if @ is 
normal, then so is r. 

If A is a C*-algebra, p E A*, p > 0, let [p] CA* be the complex linear span 
of the cone 
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We define a bounded linear map 0,: rr,(A)’ + [p] as follows: 

e,(r>(4 = C~,(@ f, 7 E,> (r E r&q’, a E A). 

LEMMA 1.5. The map 0 is a completely positive linear isomorphism of no(A)’ 
onto [p] and it has a completely positive inverse. 

Proof. It is evident from [5, Proposition 2.5.11 that ep maps the positive part 
of rp(A)’ onto C, , hence 8, is onto. If  0,(r) = 0, then for all a, b in A 

0 = wxb*4 = h44 5, , db) 5,h 

or since 5, is cyclic, Y = 0. Given ri ,..., r, in r,(A)’ and a, ,..., a, in A, we have 

hence, by Lemma 1.1, (B,), is positive. Conversely, given a positive element 

f = Lfd of Wd~l), let 

x = (~,h) ‘5, Y’**> ~,(%) 6) E (KJn . 

Since 8;‘(fij) commutes with r,(A), it follows that 

w3,m X) = c (43hj) rr,(4 to , d4 6,) 
i,j 

= c f&i*4 iA 
= f([ai*aj]) >, 0. 

This holds for all a, ,..., a, E A and 6, is cyclic, hence (B;;‘),(f) > 0, and so 

(qlhz 2 0. 
We note for future use that although e;i is in general not norm continuous, 

its composition with certain other maps is continuous. Specifically, if B is a 
C*-algebra and @: B + A* is a completely positive map with @(I) = p, then 
G(B) C [p] and B;;‘@: B + W,,(A)’ is a completely positive map which takes the 
identity to the identity, and therefore is a morphism. This fact is crucial in what 
follows, and will be used freely without further reference. 
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If VAEA is a family of C*-algebras (resp., von Neumann algebras), then the 
direct sum @ A, , consisting of all bounded functions a from A to (J A,, such 
that a(x) E A, , is again a C*-algebra (resp., von Neumann algebra). Given 
linear maps and C*-algebras (resp., normal linear maps and von Neumann 
algebras) @,: A, ---f B, for which /I QA /I < 1, we have a map (resp., normal map) 
@ @,: @ A, + @ B, defined in the usual way. A simple application of Proposi- 
tion 1.4 gives: 

LEMMA 1.6. Suppose that A,, , B, , (h E A) are C*-algebras (resp., von 
Neumann algebras), and that @,: A, -+ B, are morphisms (resp., normal morphisms). 
Then @ D,,: @ A,, - @ B, is a morphism (resp., normal morphism). 

2. TENSOR PRODUCTS 

Let A, B be C*-algebras and let A @ B denote their algebraic tensor product, 
so that an element of A @ B is an expression of the form x = xi ai @ bi 
(a1 ,**.> a, E A, b, ,..., b, E B). If B = iVln , the n x n matrices, then one may 
identify the involutive algebras A @ B and M,(A). We have already seen that 
the latter may be provided with a unique norm in which it is a C*-algebra. 
In the general case, one must complete A @ B with respect to some norm, and 
as we have noted in the Introduction, the latter need not be unique. A seminorm 
p on A @ B is called a C*-seminorm if p(zc*x) = p(x)” (x E A @ B), and if p is 
also a norm, then we call it a C*-norm. 

Denote by (A @ B)h th e set of selfadjoint elements of A @B, and by 
(A @B)+ C (A @B)* , the cone generated by elements of the form 
x*x (x E A @ B). The set A+ @ B+ = {a @ b: a E A+, b E B+) is contained in 
(A @ B)+ since 

a*a @ b*b = (u @ b)*(a @b), 

but (A @ B)+ usually does not coincide with the cone generated by A+ @ Bf. 

LEMMA 2.1. (i) Identifying A, @ Bh with a real subspace of A @ B, we 
haveA,@B,=(A@B),. 

(ii) Given x in (A @ B)h , there is a positive number 01 with x < cul (we 
denote by 1 the element I @ 1 of A @B). 

Proof. (i) Clearly A, @B, 5 (A @B)?‘ . If x = xj ai @ bi and x = x*, 
then 

x = 4(x + x*) 

= 4 1 {(~j + aj*) @ (bj + bj*) - i(aj - aj*) @ i(bj - bj*)}, 
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(ii) Observe first that if a E A+ and b E Bf then clearly a @ b < // a Ij Ij b jl 1. 
Next suppose that a E A, , b E B, . Let a = ui - a, with a, in A+ and 

II % II < II a II (i = 1,2), and similiarly b = 4 - b, . Then 

a @ b = (a1 - a,) @ (b, - b,) 

G a, 0 b, + a2 0 b, 

~2ll~llll~l/1. 

Finally if x E (A @ B)* , we may suppose by (i) that x = Ci ui @ b, with 
u.*=u,,b,*=b,.Thenx,<2Cj/IujIIIIbj/11. 3 

Let S(A @ B) denote the set of all linear functionals f on the vector space 
A @ B which satisfy the conditions 

f@*x) 3 0 (xEA@B), f(1) = 1. 

With each f in S(A @ B) one can associate in the usual way a Hilbert space 
Ht , a homomorphism 7rf of A @ B on Hf and a cyclic unit vector ff such that 

f(x) = (~A4 6 , 6) (x E A 0 B). 

The only point that must be checked (see [15, p. 2131) is that am, which is 
initially defined on rr,(A @ B) tr , is bounded on the pre-Hilbert space and thus 
extends to an operator on H, . Th e condition for this is that there should exist 
a positive constant 01 such that 

f(Y*x*xY) G af(r”r) (Y E A 0 B). 

It suffices to choose 01, by Lemma 2.l(ii), so that X*X < arl, since then y*x*xy < 
ay*y (the map w --f V*WW is clearly positive on A @ B). Observe that the constant 
LY thus chosen depends only on x, not on f. 

For f in S(A 0 B), define p?(x) = j/ rrf(~)iI (X E A @B). Then p, is a C*- 
seminorm on A @ B, and so is pr = sup{pf: f E r} for any subset r of S(A @ B); 
this supremum is finite since p,(x) < P, where cr is chosen as in the previous 
paragraph. If p, is a C*-norm, then we call r a separating subset of S(A @ B), 
and we write A Or B for the C*-algebra obtained by completing A @ B with 
respect to p, . We will occasionally write /I Ilr in place of pr . If p is a state on 
A Or B, its restriction to A @ B is in S(A @ B), and in this way we define a 
bijective mapping from S(A &B) onto a subset Sr(A @B) of S(A @ B). 
Clearly r C Sr(A @ B). 

Let A* @ B* denote the vector space tensor product of A* and B*, con- 
sidered as a space of linear functions on A @ B. Define 

min = (A* @B*) n S(A @B), max = S(A @ B). 

Then min and max are separating subsets of S(A @ B), and pmin and p,, are 
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respectively the least and the greatest C*-norms on A @ B (see [II] and the 
references cited tkiere for the proofs of these facts; in the literature the notations 
A 0” B and A @* B are used for A $&in B, and A 0’ B for A Bmax B). 
We call A &in B and A Bmax B the minimal and maximal tensor products of 
A and B, respectively. Since &,(A @B) = S(A @B), we may identify 
S(A Omitx B) with S(A @ B). 

Suppose A, B act on Hilbert spaces H, K and denote by H @s K the Hilbert 
space tensor product of H and K. For a in A and b in B, the operator a @ b on 
H @ K extends uniquely to a bounded operator a @ b on H @)s K. This 
defines a (faithful) representation of A @ B on H @a K, and the completion is 
naturally isomorphic to A &in B (see [26]). If A _C A, , B _C B, are C*-algebras 
with A, (resp., B,) acting on HI (resp., K,), then regarding A @B as a sub- 
algebra of A, @ B, , the norm on @(HI o2 K,) will define the minimal tensor 
norm on both A, @ B, and A @ B. It follows that the inclusion A @ B C 
A, @ B, extends to an injection 

Suppose that A, B, C are C*-algebras, and @: A --f C, #: B -+ C are homo- 
morphisms such that 

@(a) W = W4 @(a) (aEA,bEB). 

Then a @ b + @(a) yG(b) determines a homomorphism 9: A @ B -+ C which 
extends to a homomorphism 

(see [9]). In particular, if A C A, , B C B, are C*-algebras as in the preceding 
paragraph, the inclusion maps determine a homomorphism 

A Omax B - A, Omax B, 

which will generally not be an injection. 
Let V, W be complex vector spaces. Given f in (V @ W)d, defme Tf in 

=Vf’, U by 

T,W(~) = f@ 0 4. 

It is well known and easily verified that the mapf-t Tf is a linear isomorphism 
from (V @ W)d onto Z(W, Vd), 

Let A, B be C*-algebras. As indicated above, we may identify S(A mrnax B) 
and &&A @ B) = S(A @ B). Since S(A amax B) is a bounded subset of 
(A arnltx B)*, it is easy to see that the weak* topology of S(A amax B) coincides 
with the weak” topology of S(A @ B). Letting S(A @ B) have that topology, 
we have 



10 EFFROS AND LANCE 

LEMMA 2.2. Suppose that f  E (A @ B)d. Then f~ S(A @ B) if and only ;f  
Tf is a completely positive map from B to A* such that T,(l) is a state. The map 

f  - Tf is a homeomorphism from S(A @ B) to a(B, A*) when the latter is given 
the topology of simple weak * convergence. 

Proof. Iff > 0, then for a in A+, b in B+, we have 

T,(b)(a) =f(a 0 b) > 0, 

hence, T,(B+-) C (Ad)+ = (A*)+ and so T,(B) _C A*. In addition,f(l @ 1) = 1 
if and only if T,(l)(l) = 1, i.e., T,(l) is a state. The remaining assertions 
of the lemma are proved in [I 1, Lemma 3.21. 

We say that a map T from B to A* is a complete state map if it is completely 
positive and T(1) is a state. 

If R is a von Neumann algebra and B is a C*-algebra, we define nor = 
nor(R @B) by 

nor = (f~ S(R @B): T,(B) CR,}. 

This is a separating subset of S(R @ B) since if R acts (as a von Neumann 
algebra) on N and B acts (as a C*-algebra) on K then the vector state induced 
by any unit vector xi & @ rlj in H @ K is in nor. Thus we have a tensor product 
R Onor B, the normal tensor product of R and B. Observe that even for two von 
Neumann algebras R and S, the definition of R Onor S is asymmetric. There is 
apparently no reason to believe that the natural isomorphism 

$ rj 0 sj - 2 9 0 rj 
j 

from R @ S onto S @R extends to an isomorphism from R Onor S onto 
s @nor R. We turn to another tensor product which is symmetrically defined. 

Suppose that R, S are von Neumann algebras, and define bin = bin(R @ S) 

‘v 

bin = {f~ S(R @ S): (r, s) -f( r x s is separately weak* continuous () ) 

(r E R, s E S)}. 

This is separating (by an argument similar to that used for nor), and so defines 
a tensor product R @bin S, the binormal tensor product of R and S. It is imme- 
diate from the definitions that 

LEMMA 2.3. I f  f E S(R @ S), then f E bin if and only if the following condi- 
tions hold: 

(i) T,: S + R* is weak* continuous, 

(ii) T,(S) CR, . 
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If R, S are von Neumann algebras, it follows from (ii) above that bin C nor, 

and ~0 Pmin < &in < Prior ,< pmax on R 8 S. 

LEMMA 2.4. Let A, B be C*-algebras and r a separating subset of S(A @ B). 
Suppose that r is convex and that whenever f E r and y  E A @ B, 

f(y*xy) -f(Y*Y)g(x) (xEAGB) 

for some g in r. Then S,(A @ B) is the closure of r in S(A @ B), and we have 

11 x 11~ = sup{f (x*x)1+ f  E rj. 

Proof. Suppose that x is a selfadjoint element of A Or B such that f  (x) 3 0 
(fEr).ForfinrandyinA@Bwehave 

Since zr(A @) B) ts is dense in H, it follows that ?rf(x) > 0. But the direct sum 
of all the representations TAf E r) is a faithful representation of A Or B, hence 
we must have x 3 0, and by [5, Lemma 3.4.11, r is dense in S,(A @ B). The 
equality then follows from [5, Proposition 2.4.71. 

The above result applies in particular when r is equal to min, nor, or bin, since 
multiplication by a fixed element is weak* continuous on a von Neumann 
algebra. Also, if R, S are von Neumann algebras, min r\ bin is a separating 
subset of S(R @ S) (for the same reason that bin is) and therefore, min n bin is 

dense in min. 
Given C*-algebras (or von Neumann algebras where appropriate) A C A, and 

BCB,, and letting r be any of the four classes of states that we have discussed, 
the natural inclusion A @ B C A, @ B, extends to a homomorphism 

We have already seen that this is the case for min and max. If  A is a von Neumann 
algebra and r = nor, it is evident that if f  is in nor(A, @ B,), then its restriction 

f  j A @ B is in nor(A @ B). Given x in A @ B, we have from Lemma 2.4 that 

II x Ilnor(age) = sup{g(x*~)~‘~: g E nor(A 0 B)) 

> sup{ f  (x*x)lj2: f  E nor(A, @ B,)} 

= II x llnorLl,7g+ 

and our assertion follows. A similar argument applies to bin. 
I f  R and S are von Neumann algebras, we denote by R @ S the von Neumann 

algebra tensor product of R and S. R @ S is defined to be the weak closure of the 
natural representation of R @ S on H 0% K, where R, S act on H, K, respec- 
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tively. Of course, R @ S is not generally a C*-algebra tensor product of R and S. 
R @,,i, S may be identified with the uniform closure of R @ S in R @ S. 

LEMMA 2.5. (i) If A,, A,, B, , B, are C*-algebras and ~3,: A, + B, 
@,: A, -+ B, are morph&s, then there is a unique morphism 

such that 

@(al 0 4 = @&J 0 %z(d (al E 4 , a2 E 4. 

(ii) If R, , R, , S, , S, are von Neumann algebras and 4: R, -+ S, , 
a,: R, -+ S, are normal morphisms, then there is a unique normal morphism 
@: R, @ R, -+ S, 8 S, such that @(rl @ r2) = Dj,(r,) @ $(r,) (rl E R,, r2 E R,). 

Proof. (i) The uniqueness is obvious. For i = 1,2, suppose B, acts on Hi . 
By Proposition 1.4, there exists for each i a Hilbert space Ki , a representation 
~~ of Ai on Ki , and an isometry a,: Hi + Ki such that @*(a<) = v,*7ri(ai) vi . 
By [9, Theorem 21 there is a representation rri &tn rre of A, amin A, on 
KI @a K2 such that 

Also, vi @eta extends to an isometry vi @ va: HI a2 H, + KI & K2 . We define 

@tx) = tvl 0 %>* 9 &in v2(x) a1 0 % (X E Al &in Ad 

(ii) The proof is the same as that of(i), except that the last part of Proposi- 
tion 1.4 is used to ensure that 7ri is normal, and the representation rri &in ~a 
is replaced by the normal representation GT~ @ nz of R, @ R, (see [4, Section 1.4, 
Proposition 21). 

We write @, &tn Qz and @i @ @a , respectively, for the morphisms con- 
structed in the above lemma. 

3. SEMIDISCRETE VON NEUMANN ALGEBRAS 

Let R be a von Neumann algebra. We say that R is semidiscrete if the identity 
map on R can be approximated in the topology of simple weak* convergence by 
normal morphisms of finite rank. It is evident that if R is algebraically iso- 
morphic to a semidiscrete von Neumann algebra, then R is itself semidiscrete. 

If @ is a normal morphism of R and f E R, , then @*f E R, , so the restriction 
ap, of @* to R, is a completely positive map from R, to itself which takes normal 
states to normal states (we call such a mapping a morphism of R,), and @* has 
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finite rank if @ does. Conversely, if + is a morphism of R, , then #* is a normal 
morphism of R. If R is semidiscrete, it follows that the identity map on R, can 
be approximated in the topology of simple weak convergence by morphisms of 
R, with fmite rank. Since the set of all such morphisms of R, is convex, it 
follows from [6, Corollary VI.1.51 that the identity can be approximated in the 
topology of simple norm convergence by morphisms of R, with finite rank. 

PROPOSITION 3.1. 1j (R,},,, is any family of von Neumann algebras, then the 
direct sum @ R, is semidiscrete if and only if each R, is semidiscrete. 

Proof. Let A, be any finite subset of A and suppose that for each A in A,, 
@,, is a normal morphism from R, to itself. Denote by 1 A the identity element of 
R, , and let p be any normal state of @ R, . Define @: @ R, + @ R, by 

@ = ((0 @A) 00) @(hOfh 
alO 

where 8: @,,EA R, + @nGn, R, is the projection morphism, and h: @ + @ntAO R, 
is defined by h(u) = oil. F rom Lemma 1.6, @ is a normal morphism, and it is 
evident that @ has finite rank if and only if each @,(A E A,) has finite rank. It is 
a routine matter to verify that if the identity map on each R, can be approximated 
in the topology of simple weak* convergence by morphisms QA , then the identity 
morphism on @ R, can be approximated by morphisms of the form @. 

Conversely, given a morphism @: @ R, + @ R, and an index ha, define 
@a: Rho --f RAO to be the composition of morphisms 

where S, = Rho for all A, and 8,: S, -+ R, is defined by 

e,(a) = a, h = A,, 

= f(41, h # AJ , 

with p as above, and A and 0 are the diagon,! and projection morphisms, respec- 
tively. If morphisms of the form @ approximate the identity map, and are of 
finite rank, the same is true for the corresponding morphisms @,, . 

COROLLARY 3.2. If R and S are von Neumann algebras, and @5: R + S is a 
normal surjective homomorphism, then R is semidiscrete if and only if S and ker Q, 
are semidiscrete. 

Proof. We have an isomorphism R E ker 4p @ S. 

COROLLARY 3.3. If R is a von Neumann algebra, and {TQ},,,~ is a separating 
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family of normal representations of R, then R is semidiscrete if and only if each of 
the algebras T,,(R) is semidiscrete. 

Proof. Let {eJolsA be a maximal family of orthogonal central projections such 
that for each CL E A, there is a X(a) for which mAcab restricts to an isomorphism 
on Re, . Then S, = rA(,)(Re,) is a direct summand of Taco), and R g @ S, . 

If each TT~(R) is semidiscrete, the same is true for each S, , and thus for R. The 
converse follows from Corollary 3.2. 

PROPOSITION 3.4. If  R, S are van Neumann algebras, then R @ S is semi- 
discrete if and only if R and S are semidiscrete. 

Proof. Let @, 4 be normal morphisms with finite rank of R, S respectively. 
From Lemma 2.5, @ @ Z,!J is a normal morphism with finite rank of R @ S. Let 
fER.+,gES*.then 

for x in R @ S. We wish to show that given x1 ,..., x, in R @ S, h, ,..., h, 

in (R @ S), and E > 0, we can choose Cp and 4 so that 

I @ @ KM4 - x,@i)l < E (1 <j<n, 1 <i< m). 

Since R, @ S, is norm dense in (R a S), (see [17, p. 66]), it suffices to consider 
the case where hi = fi @ gi ( fi E R, , gi E S,). Thus we require 

From the remarks before Lemma 3.1, we can choose @and I/ so that @*fi - fi 
and #*gi - gi are small in norm, and the result easily follows. 

Conversely, let I: R + R be the identity map, and let p: S--f @ be a normal 
state. From Lemma 2.5(ii), I @ p: R @S+R @C extends to a normal morphism. 
On the other hand, the inclusion map J: R @ C ---f R @ S is a normal iso- 
morphism. Identifying R @ @ with R, we see that each morphism @: 
R @ S + R @ S will determine a morphism 

(I @ p) 0 CD 0 J: R + R. 

From this, it is evident that if R @ S is semidiscrete, the same is true for R. 
The following result is similar to Lemma 3.7 of [l 11, except that the mappings 

considered there do not necessarily preserve the identity, and so may not be 
morphisms. 

PROPOSITION 3.5. A type I von Neumann algebra is semidiscrete. 

Proof. In view of Propositions 3.1 and 3.4, it follows from the structure 
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theorem for type I von Neumann algebras [17, Theorems 2.3.2, 2.3.31 that it 
suffices to prove the result for the cases (i) the algebra is commutative, (ii) the 
algebra is 99(H) for some Hilbert space H. Case (i) is dealt with in the proof of 
[ll; Lemma 3.71. For case (ii), let {e,}A,A denote the directed net of all projections 
in .54?(H) with finite rank, and let p be a normal state on g(H). For X in A define 
a normal morphism aA of B(H) by 

%(t) = e,& + f(tN - 4 (t E I’)* 

Then it is easy to see that DA is a finite rank morphism, and that Qh tends to the 
identity in the appropriate topology. 

PROPOSITION 3.6. Let R be a semidiscrete van Neumann algebra, and e be a 

projection in R. Then eRe is semidiscrete. 

Proof. Let p be a normal state of eRe and @ be a normal morphism of R with 
finite rank. Define 4: eRe + eRe by 

#(ere) = e@(ere + p(ere)(l - e))e (r E R); 

then # is a well-defined normal morphism of eRe, and by choosing @ close 
enough to the identity on R we can make $ close to the identity on eRe. 

PROPOSITION 3.7. The cornmutant of a semidiscrete von Neumann algebra is 
semidiscrete. 

Proof. Let R be a von Neumann algebra acting on H. Suppose first that R 
is standard, so there is an involution j: H + H (i.e., j is a conjugate linear 
isometry with jz = I) for which r - jrj maps R onto R’. If @ is a normal mor- 
phism of R, then s -+ j@($-j)j (s E R’) defines a normal linear map # of R’ into 
itself. To see that 4 is a morphism, let T be a representation of R on a Hilbert 
space K and V: H -+ K an isometry with Q, = V*nV. j induces an involution 
on V(H), which may be extended to an involution J of K. We have that Vj = JV, 

hence 
#(s) = V*Misj) IV (s E R’). 

Since s + Jr(ji)J is a representation of R’, we have from Lemma 1.4 that II, is 
a morphism. It is evident that # has finite rank and that it is close to the identity 
morphism if that is the case for @. 

In the general case, the theory of modular Hilbert algebras [27] ensures that 
there is an isomorphism @ from R to a standard algebra a(R). By the structure 
theorem for isomorphisms of von Neumann algebras [4, Section 1.4, Theorem 31 
there is a Hilbert space K and a projection e’ in Q(R) @a(K) such 
that R is spatially isomorphic to e’(@(R) @ l), hence R’ is isomorphic to 

607/25/1-z 
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e’(@(R)’ @ g(K)) e’. If R is semidiscrete, then by the first part of the proof, so is 
Q(R)‘, hence by Propositions 3.4 and 3.6, so is R’. 

PROPOSITION 3.8. I f  R is a semidiscrete von Neumann algebra, and @ is a 
normal morphism of R onto a von Neumann subalgebra S, then S is semidiscrete. 

Proof. One need only examine the compositions @ 0 II, for approximating 
finite rank morphisms $: R + R. 

COROLLARY 3.9. I f  R is a finite semidiscrete factor, then any von Neumann 
subalgebra of R must be semidiscrete. 

Proof. If S is a von Neumann subalgebra of R, we have from [32] and 
Lemma 1.3 that there exists a normal morphism @ of R onto S. 

We have been unabIe to determine whether or not an inductive limit of 
semidiscrete von Neumann algebras must be semidiscrete. In particular, we do 
not know what the situation is for general hyperfinite type II and type III 
factors. We conclude this section by showing that a large subclass of the hyper- 
finite factors consists of semidiscrete factors. This result was obtained for the 
II, factor by one of the authors, and then for the general case by A. Connes and 
M. Takesaki, and independently by the other author. Connes also informs us 
that there exists a hyperfinite semidiscrete algebra which does not lie in this class. 

By a matrix algebra we shall mean a C*-algebra isomorphic to the n x n 
matrices M, for some n. A factor R is hyperjinite if there is an ascending sequence 

of matrix subalgebras Mnck) with R = VIM,(,) (weak* closure). If B is a sub- 
algebra of a C*-algebra A, we let Bc denote the relative commutant of B in A. 
The following result is well known. It is apparent from the proof that it may be 
generalized to a purely algebraic context. 

LEMMA 3.10. I f  A is u C*-algebra, and M is a matrix subalgebra, then A is 
isomorphic to M @ MC. 

Proof. Let eij be matrix units for M. Then for each a E R, 

Bij(a) = C ekiaejk 
k 

is an element of MC since it commutes with the matrix units: 

B,j(a) em, = em&jn = C&$~j(U). 

We have that a = xii Bid(a) eij , and it is a simple matter to verify that 
a -+ Cij egj @ Bij(a) provides the desired isomorphism. 

Let us suppose that M s M, is a matrix subalgebra of a C*-algebra A. 
From Lemma 3.10 and the discussion at the beginning of Section 2, we may 
identify A with M @ MC g M,(MC), the n x n matrices with entries in MC. 
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If p is a state on A, we define the dzizgonalized state, d(p) = AM(p), by d(p) = 

PIMOPIMC* 
If p is a normal state on a von Neumann algebra R, p is an asymptoticuk’y 

product state if for each E > 0 and matrix subalgebra M, there exists a matrix 
subalgebra N containing M such that 11 p - ON(p)11 < E. The following result is 
due to Stormer [22]. 

THEOREM 3.11. If R is a hyperjinite factor, then the following properties are 
equivalent: 

(i) R has a normal asymptotically product state. 

(ii) Every normal state on R is asymptotically product. 

(iii) R arises from a tensor product state on an injnite product of matrix 
algebras. 

A product factor is a factor for which every normal state is asymptotically 
product. Stormer has shown that the countably generated product factors are 
hyperfinite [23, 241. 

THEOREM 3.12. If R is a countably decomposable product factor, then it is 
semidiscrete. 

Proof. Given p E R, and a matrix subalgebra M of R, we may define a 
morphism @ = DMP of R = M @ MC onto M = M @ @ by letting 
@ = I @(p j MC). Then we have d(p) = (p / M) 0 @. Given any state (T on R, 
we define a pre-Hilbert norm on R by I/ Y  /I0 = u(Y*Y)~/~. @ is then norm-de- 
creasing in the following sense: 

II W)ll~ = Pw)* WN 

G P w*y)) 

= 4f)(y*r) 

= II y llh * 

In this calculation we used the “Schwarz inequality” 

G(Y)* CD(Y) < @(Y*Y), 

the validity of which is immediate from Proposition 1.4. We note that if Y  E M, 
then CD(Y) = Y, i.e., @ is a projection. 

By using a suitable normal representation of R, we may assume that R has a 
separating unit vector 6 (see [4, Chap. III, 1.5, Lemma 5]), and we let p be the 
corresponding normal state on R, i.e., p(r) = (YE, Q. It will suffice to prove that 
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given rr ,..., Y, in R and E > 0, there exists a matrix algebra N in R such that 
if Q, = QNP, then 

II @(Yi) - yi //I) = IlWi) - Yi)5 II < E (i = I,..., ?z). 

To see that this is the case, we observe that for I’ E R’, 

ll(@(ri) - Ti) y’it II < II y’ II wwi) - yx II (i = l,..., n), 

hence the finite rank morphisms Q, will converge to I on a dense set of vectors. 
Since 11 @(YJI < 11 yi I/, we will have weak* convergence. 

By the Kaplansky Density Theorem, if E’ > 0, we may select a matrix algebra 
M in R and elements a, ,.,., a, in M with /j ai /I = I/ yi //, and 

II ai - yi Ilo = llh - YiK II < 6’ (i = I,..., n). 

Let N be a matrix algebra containing M for which I/ p - d(p)\\ < E’, and let 
@ = QjNp. Then 

II @(Yi) - ai IIf = II @Pi - a: 

G II yi - ui IltiM 

hence 

< II yi - ai II: + NP - ~PWi - 4*cyi - 4)l 

< 6’2 + E’ * 4 /I ri 112 (i = I,..., n), 

11 a+,) - Yi Ilo < II @(ri) - ui II0 + II ai - yi l/P 

< (E’2 + 4E’ /I ri (12)1~2 + E’ (i = l,..., n). 

Making a suitable choice for E’, we obtain the desired inequality. 

4. TENSORPRODUCT CHARACTERIZATIONSFOR SEMIDISCRETE ALGEBRAS 

The main result of this section is: 

THEOREM 4.1. Suppose that R is a von Neumann algebra. Then the following 
are equivalent: 

(9 R is semidiscrete. 

(ii) For any von Neumann algebra S, 

R @bin S = R &in S. 
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(ii’) For any won Neumann algebras S, S, with S C S,, 

R @bin S C R @bin S, . 

(ii”) For any won Neumann algebras R, , S with R C R, , 

R @bin S C RI @bin 5’. 

(iii) For any C*-algebra B, 

R Onor B=R@,i,B. 

(iii’) For any won Neumann algebra R, with R C R, , and C*-algebra B, 

R @nor B C R, @nor B. 

Remark. To be more precise, by an equality of tensor products we mean that 
the corresponding C*-norms on the algebraic tensor product coincide. Thus 
instead of (iii), we could write 

prior =pmin on ROB. 

Similarly, an inclusion signifies that the natural inclusion of algebraic tensor 
products is isometric with respect to the indicated norms. (iii’) thus has the 
interpretation 

(R 0 B, p,,,) -+ (R, 0 B, pn,,) is isometric. 

Proof. (i) * (iii). To prove that p nor = pmin on R @ B, it suffices to show 
that regarding nor and min as subsets of S(R @ B), nor is contained in the weak” 
closure of min (see Lemma 2.4 and the subsequent discussion). Given p E nor, 
let 8: B + R, be the corresponding complete state map. If R is semidiscrete, 
we have finite rank morphisms a,: R, + R, for which I] @,(a) - u // + 0 
for all u E R, . The net QV o 6’ consists of finite rank complete state maps 
converging to 0 in the simple weak* topology, hence from Lemma 2.2, p is a 
weakd limit of states in min. 

(iii) * (iii’). We have a commutative diagram of natural maps: 

R @nor B m l R, @nor B 

From (iii), # is isometric, and from Section 2, y’ is isometric. Thus #’ o v, and 
in particular v, must be isometric. 
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(iii’) => (iii). Say R is a von Neumann algebra on a Hilbert space H. If 
R, = 9(H) in (iii’), we have the commutative diagram 

R @nor B C g(H) @nor B 

1 1 
R @Anin B C 9(H) &in B. 

Since g(H) is semidiscrete (Proposition 3.9, we have from (i) =+ (iii) that the 
right and thus the left arrows may be replaced by equalities. 

(iii) =- (ii) is evident from the inequality of norms on R @ S 

(ii) o (ii”) is analogous to (iii) o (iii’). (For (ii”) * (ii) let R, = 39(H) for 
a suitable H in (ii”), and then use (i) 5 (ii). 

(ii) * (ii’) is trivial. 

(ii’) => (ii). Let S be a von Neumann algebra on a Hilbert space H. Letting 
S, = &9(H) in (ii’), we have the commutative diagram 

R @bin S Z R @bin L@(H) 

1 /I 
R &in 5’ C R Omin a(H), 

where we have again used the fact that a!(H) is semidiscrete, and the implication 
(i) => (ii) (note that bin is symmetrically defined). 

(ii) 3 (i). Suppose until further notice that R, S are von Neumann algebras 
such that &in = p,r, on R @ S. From Lemma 2.4 and the following remarks, 
bin n min is weakd dense in bin. Thus from Lemma 2.2, any weak* continuous 
complete state map 8: S--f R, may be approximated in the simple weak* 
topology by finite rank weak* continuous complete state maps @: S--f R, . 
These maps have range in R, , hence we have simple weak convergence. Since 
the set 9 of all weak* continuous complete state maps from S to R, with finite 
rank is convex, it follows from [6, Corollary VI.1.51 that 0 can be approximated 
in the topology of simple norm convergence by maps in 9. We state these results 
as a lemma. 

LEMMA 4.2. With R, S, 9 as above, let 6 be a weak* continuous complete state 
map from S to R, . Given s1 ,..., s, in S and l > 0, there is a @ in 9 such that 

II %> - @(st)II < E (1 < i < n). 
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Now let p = 0(l), u = @(I). Without loss of generality we may take sr = 1 
in the above lemma, so that I] p - u ]I < E. We wish to modify the choice of Cp 
so as to ensure that u = p; this is done in two steps: first we “increase” @ 
slightly to make D > p, then we “shrink” it to get equality. 

LEMMA 4.3. Suppose R, S, 0 are as in Lemma 4.2, s1 ,..., s, E S, and E > 0. 
There is a weak* continuous completely positive mapping W: S + R, with jinite 
rank such that (1 CD’ Ij < 1 + E, Q’(1) > e(l) and 

II %) - @‘(%)I1 < E (1 < i <n). 

Proof. Let sr = 1, and suppose without loss of generality that I/ si II < 1 
(1 < i < n). By Lemma 4.2 we may choose Q, in 9 with 

I/ fw - @‘(%)ll < 42 (1 < i <n). 

With p = e(l) and (3 = Q(1) we have 1) u - p I/ < e/2. Letf+,f- be the positive 
and negative parts of u - p, so that f+,f- E R, , Iif+ Ij + Ilf- jl < e/2 and 
O-p=ff- f-. Let T be any normal state of S and define 4: S + R, by 
#(s)(r) =f-(r) T(S). Let @’ = @ + Z/J. Since 4 has rank one, @’ has finite rank. 
Also 

@v)=off-=p+j+>p, 

and since /I # II < c/2, the other assertions of the lemma follow easily. 

LEMMA 4.4. In Lemma 4.2, @ can be chosen so that D(1) = e(l). 

Proof. We still assume that II si 11 < 1 and sr = 1. Let E > 0, and choose 
6 > 0 so that 6 + P( 1 + (1 + 8)112) < c. Choose @’ as in Lemma 4.3 so that 

II 0’ II < 1 + 6, 

II e(s,) - w)ii < 8 (1 < i < n), 

and f 3 p, where f = D’(l), p = e(1). By [17, Theorem 1.24.31 there is an 
element t of R with 0 < t < 1 such that p(r) = f (trt) (r E R). 

Let 7 = rf(t) tr E Hf . Then p(r) = (rrf(r)q, 7) (r E R). Also since t2 < t, 

(77, 5f> = <.rrf(t) Er 9 5s) 
2 (nf(t2) Er ! &> 
= II rAf(t) 6 /I2 
= II 7 II2 = P(l) = 1, 
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and it follows that 

II & - rl II2 = (6 - 71, & - 77) 

= II Ef II2 + II ?I /I2 - x77, 5f> 
<f(l) + 1 - 2 
<1+6--l=s. 

Define @: S + R, by 

@(S)(T) = sP’(s)(trt) (s E S, r E R). 

Clearly @ has finite rank and @(l) = p. If @’ = T, for some positive linear 
functional g on R @bin S then @ = Th where h is the state of R @bin S defined 

by 

44 = g((t 0 1)x@ 0 1)) (x E R @bin S). 

This shows that @E 9. For 1 < i < n, let si’ = B;‘@‘(s~) E rf(R)‘, then 
11 si’ II < 1. For I in R with I/ r II < 1, we have 

G I(si’~Arh rl - &>I + l(%“rr,(r)bI - &I, &;>I 
< II rl - 5, II (1 + II 5, II) 
< W2(1 + (1 + 8)“s) < E - 6. 

Hence 11 @(si) - @‘(sJl < E - 6 and so I/ O(Q) - @(sJl < E. 
We can now complete the proof of (ii) => (i). Suppose that R satisfies (ii), p is 

a normal state on R, and S = rp(R)‘. Applying Lemma4.4 to the map 0, : S -+ R, , 
there is a net of normal finite rank morphisms a,: S --f R, with @,( 1) = p which 
converges in the simple weak topology to 0,, . From Lemma 1.5, & = c’ o QV 
is a net of finite rank morphism from S to S. To prove Theorem 4.1, it suffices 
to show that each 4” is normal, and that the net zJy converges in the simple weak* 
topology to 0;%, = I, since then r,(R) will be semidiscrete for each normal 
state p (Proposition 3.7), hence the same will be true for R (Corollary 3.3). 

Given an index Y, let s, be a net in S such that jl s,, II < 1 and s, -+ 0 in the 
weak* topology. Given rl , Y, E R, we have 

converges to 0. Since 6, is cyclic and I/ tjly(sY)jl < 1 (& is a morphism), I$~(s,,) 
converges in the weak* topology to 0. Given s E S, and rl , r2 E R, we have that 

wv(s) - 4 45) 6, ) 77p(~2) 5,) = m(s) - 4w2*d 
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converges to 0. Since 6, is cyclic and (1 &(s) - s 11 < 2, it follows that &(s) 
converges weak* to s. 

If R is a von Neumann algebra on a Hilbert space H, we have a homomorphism 
7: R @ R’ -+ B(H) defined by T(Y @ Y’) = YT’ (Y E R, Y’ E R’). If [ is a unit 
vector in H and wd is the corresponding normal state on B(H), it is evident that 
uE o q E bin, hence if x is in R @ R’, 

I/ 7(X)11 = sUP{(Wt o 7)(X*X)‘: 11 f II = 1) < I/ X /Ibin - 

Thus 71 extends to a homomorphism +j: R @bin R’ -+ g(H). 

PROPOSITION 4.5. I f  R is a van Neumann algebra on a Hilbert space H, then 
the homomorphism 7 extends to R &in R’ if and only if R is semidiscrete. 

Proof. If R is semidiscrete, we have II q(x)11 < II x I/bin = II x llmin (x E R @ S), 
hence we will have the desired extension. 

Conversely, suppose that q extends. Then for each unit vector 4‘ in H, 
W< o v E Smin(R @ R’) n bin. Fixing 5, let T: R’ -+ R, be the corresponding 
complete state map, and let p = T(l), i.e., 

p(r) = WE 0 77(y 0 1) = (d,f>. 

Letting e’ E R’ be the projection with range @, we may spatially identify 
r,(R) with Re’. Th us from Lemma 1.5, we have a morphism 

6’ 0 T: R’ -+ e’R’e’. 

Given Y’ E R’, s’ = Ql(T(r’)) is that unique operator in e’R’e’ for which 

T(Y’)(Y) = (rs’& [) (Y E R). 

But we have that 

T(Y’)(Y) = (YY’[, 6) = (ye’y’e’t, [), 

hence 

B;lT(r’) = e’r’e’. 

Since min n bin is weakd dense in Smin(R @ R’), T is the limit in the simple 
weak* topology of a net of finite rank weak* continuous complete state maps 
T,: R’ --+ R, . Since we also have T(R’) C R, , we have convergence in the 
simple weak topology. Following the arguments of Theorem 4.1, we may assume 
that T,(l) = p, and again we will have that the finite rank morphisms 
CITY: R’ ---f e’R’e’ approximate B;;lT in the simple weak* topology. Letting u 
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be a normal state on e’R’e’, we may define a net of normal morphisms 
3: e’R’e’ + e’R’e’ by 

COY(s) = e;‘T,(s + o(s)(l - e’)). 

These are of finite rank, and converge to the identity map on e’R’e’ in the simple 
weak* topology. From Proposition 3.7, Re’ is semidiscrete, and from 
Corollary 3.3, the same is true for R. 

COROLLARY 4.6. If  R is a factor, then 7 is isometric with respect to pmin if and 
only if R is semidiscrete. 

Proof. Since r] is an isomorphism (see the Introduction), it induces a norm 
p on R @ R’ with p > pmin (the latter is the minimal C*-norm on R @ R’). 

71 will extend to R &in R’ if and only if p < pmin , hence Corollary 4.6 follows 
from Proposition 4.5. 

5. INJECTIVE OPERATOR ALGEBRAS AND THEIR TENSOR PRODUCTS 

Suppose that A is a C*-subalgebra of a C*-algebra B. We say that a morphism 
CD: B -+ A is a retraction if it is a left inverse for the inclusion morphism A + B. 
If  such a map exists, we say that A is a retract of B. A is an absolute retract if 

there is a retraction from B onto A whenever B is a C*-algebra containing A. 
This is almost identical to a notion of Hakeda and Tomiyama [lo] which they 
call the “extension property.” They did not require that their mappings preserve 
identities, but all of their arguments apply to the situation considered here. In 
particular: 

THEOREM 5.1 [IO, 291. Suppose R is a von Neumann algebra acting on H. 

Then the following are equivalent: 

(i) R is an absolute retract. 

(ii) There is a retraction from g(H) onto R. 

(iii) R’ is an absolute retract. 

Let A be a C*-algebra. We say that A is injective if given any C*-algebras 
B and B, with B C B, and any morphism 8: B + A, there is a morphism 
7: B, -+ A which extends 0. The following is due to Arveson, who proved a 
somewhat more general result [l, Theorem 1.2.31. 

THEOREM 5.2. If  H is a Hilbert space, then g’(H) is injective. 

It is a simple matter to relate these two classes of algebras: 



OPERATOR ALGEBRAS 25 

THEOREM 5.3. For any C*-algebra A the following are equivalent: 

(i) A is an absolute retract. 

(ii) A is injective. 

(iii) Given C*-algebras A, , B with A C A, and a morphism 8: A -+ B, 
there is a morphism 7: A, - B which extends 0. 

Proof. (i) 3 (ii). Let us suppose that A is defined on a Hilbert space H. 
Then given C*-algebras B and B, with B C B, , consider the diagram 

where 0 is a retraction. Since we may regard @ as a morphism from B into 33(H), 

Theorem 5.2 provides us with an extension 4: B, +9(H). 6’ 0 # is then the 
desired extension for @i: B ---f A. 

(ii) * (i). I f  A C A, , then the identity mapping on A extends by (ii) to a 
morphism @: A, + A, which is the desired retraction. 

(i) => (iii). Let @ be a retraction from A, to A and set 7 = 0 0 @. 

(iii) 3 (i). Take B, = A and let 8 be the identity mapping on A. 

The following results are essentially due to Tomiyama (see [28-311). 

PROPOSITION 5.4. I f  {A,},,, is a family of C*-algebras, then @ A, is injective 
if and only if each A, is injective. 

Proof. I f  A = @ A, , A, acts on HA , and @,: SY(H,J - A,, is a retraction, 
let H = @ HA and let j, be the injection of HA into H. Define @: 9l(H) + A by 

W = (W~*tjJ> (t E I’). 

Then @ is a retraction, and A is injective. Conversely, if A is injective, let en be 
the projection j A j A*, and let p,, be a normal state on g(Hn). I f  @: G?(H) - A is a 
retraction, then 

@,dt) =jA*@(jAtiA* + PA(W - eJ).L (t E awAN 

is a retraction of .%3(HA) onto A, (see Lemma 1.3(iii)). 

COROLLARY 5.5, If R is a von Neumann algebra, and {T~}~,* is a separating 

family of normal representations of R, then R is injective if and only if each of the 
algebras T,(R) is injective. 

Proof. See the proof of Corollary 3.3. 



26 EFFROS AND LANCE 

PROPOSITION 5.6. If R and S are von Neumann algebras, then R @ S is 
injective if and only if R and S are injective. 

Proof. This is proved in [31]. Th e ar g ument involves an unexpected subtlety, 
since one must extend a tensor product of nonnormal morphisms to the von 
Neumann algebra tensor product. This is done by means of Banach limits. 

PROPOSITION 5.7. Suppose that R is a von Neumann algebra and that (R,}A,A 
are von Neumann subalgebras which are directed by inclusion, such that R = uRA 
(weak* closure). If each R is injective, the same is true for R. 

Proof. See [29, Proposition 1.31. 

COROLLARY 5.8. If R is a hyperflnite factor, then it is injective. 

We next characterize injective von Neumann algebras by their tensor product 
properties. 

THEOREM 5.9. Suppose that R is a von Neumann algebra. Then the following 
are equivalent: 

(i) R is injective. 

(ii) For any C*-algebras B and B, with B C B, , 

R Onor B C R Onor B, . 

Proof. We recall from the remark following the statement of Theorem 4.1, 
that by the inclusion in (ii) we mean that the inclusion map 

(R 0 4 P,,,) - (R 0 B, , P,,,) 

is isometric. We claim that this is the case if and only if the restriction map 
nor(R @ B,) -+ nor(R @ B) is surjective. 

If the restriction is surjective, we have from Lemma 2.4 that the same is true 
for the restriction map S,,(R @ B,) --+ Snor(R @ B), hence for x E R @ B we 
have 

II x II RO,,,B = su~(p(x*x)~‘~: p E S&R @ B)} 

= SU~{~(X*X)~~~: p E S&R 0 B,)) 

= 11 x I~RC&& * 

Conversely, given an isometry of one C*-algebra into another (preserving the 
identity), the adjoint (i.e., the restriction map) is surjective. Thus from (ii) we 
have that the restriction map S&R @ B,) + S&R @ B) must be surjective. 
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If p e nor(R @J B,), it is evident that p / R @ B E nor(R @ B). On the other 
hand suppose that p E S,,,(R OR,) . 1s such that p / R @B E nor(R @B). 
Letting T,: B, + R* be the corresponding complete state map, T,,(l) E R, . 
Given b E B, with 0 < b < 1, we have that u = T,(b) is an element of R* with 
0 < u < T( 1). Since T,( 1) is normal, the same is true for u (this is clear from the 
monotonicity characterization for normal states). Thus T,(B,) C R, , and 
p E nor(R @ B,). 

We conclude that (ii) is the case if and only if each complete state map 
0: B + R, extends to a complete state map 7: B, ---f R,.. Letting p = 0(l), we 
have from Lemma 1.5 that each morphism @: B -+ V,(R) extends to a morphism 
9: B, + r,,(R)‘, hence that the rr,(R)’ are injective. Equivalently, one has (ii) 
if and only if the algebras r,(R) (p E R,) are injective, i.e., from Corollary 5.5, 
R is injective. 

COROLLARY 5.10. I f  R is a semidiscrete van Neumann algebra, then it is 
injective. 

Proof. We have that (iii) of Theorem 4.1 implies (ii) of Theorem 5.9. 
Given a discrete group G, the regular group van Neumann algebra R(G) of G 

is the von Neumann algebra generated by X(G), w h ere h is the unitary represen- 
tation of G on P(G) defined by 

(A(s)f)(t) = f  (sslt) (f E d2(G), s, t E G). 

The equivalence (ii) -S (iii) in the following theorem is due to Tomiyama [30]. 

THEOREM 5.11. Suppose that G is a discrete group and that R(G) is its regular 
group von Neumann algebra. Then the following are equivalent: 

(i) R(G) is semidiscrete. 

(ii) R(G) is injective. 

(iii) G is amenable. 

Proof. Eymard [7] has shown that R(G), may be identified with the functions 
on G of the form 

f(s) = Q(s)59 7) (5, rl E d2(G)). 

Given such a function f ,  the action off is defined first on r E R(G) of the form 
r = Cr=, or&), by 

(f, r> = C aif (4, 

and then it is shown that this function has a unique extension to an element of 
R(G), . R(G), is a commutative Banach algebra under pointwise multiplication 
on G. 
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If G is amenable, there exists a net of functions 6, on G vanishing off finite 
subsets of G such that Ij &11s = 1 and p”(s) = (h(s) 5, , 6,) converges to 1 for 
each s E G (see [8, Theorem 3.5.2; 5, Proposition 18.3.61). A simple calculation 
shows that the pV correspond to states in R(G), (i.e., they are positive definite 
on G). GivenfE R(G),, we have for each t E G, 

(P”f - f? w = P”WfW - f(t) 

converges to 0, hence pVf -f converges weakly to 0. Thus the multiplication 
operators M(p,)f = p$(f E R(g),) converge weakly to the identity operator. 
As in the proof of [I 1, Proposition 4. l] these operators are morphisms. They 
are of finite rank since if [, vanishes off {ti ,..., t,}, then pV vanishes off 
{titj: i, j = I,..., n}. Thus R(G) is semidiscrete. 

(i) 3 (ii) follows from Corollary 5.10. 

(ii) * (iii) is a consequence of the proof of [l 1, Theorem 4.21. 

6. TENSOR PRODUCTS OF C*-ALGEBRAS 

If A and B are C*-algebras, we have one-to-one correspondences between the 
following sets: 

(i) &f&B 0 A), 
(ii) the complete state maps @: A --f B*, 

(iii) nor(B** @ A). 

It should be emphasized that the correspondence between (i) and (iii) is not a 
homeomorphism (the latter is not generally weakd compact). Nonetheless we 
may exploit this information in the proof of 

THEOREM 6.1. Suppose that A is a C*-algebra. Then the following are 
equivalent: 

(i) For any C*-algebra B, 

B Omax A=B&i,A. 

(ii) For any won Neumann algebra R, 

R Onor A = R &in A. 

(iii) If R and R, are won Neumann algebras with R c R, , 

R Onor A C R, @nor A. 
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Proof. (i) 5 (ii). Applying (i) to B = R, we have 

fhin < $nor < jhnax < fhnin 

onR@A. 

(ii) 3 (i). Let H and K be Hilbert spaces on which A and B** act as a 
C*-algebra and a von Neumann algebra, respectively. Suppose that p is a state 
in S,a,(B @ A) = nor(B** @A). F rom (ii) there is a net of states py which 
converges on each element of B** @ A to p, and each py is a finite convex 
combination of states of the form (. [, f>, [ a unit vector in K @ H. Since py 
and p are weak* continuous in their first variables, the corresponding complete 
state maps DV and @ map A into B*. Given a E A, the net @“(a) converges to 
@(a) on elements of B**, i.e., @“(a) converges weakly, and a fortiori, weakly* 
to @(a). Since the Qp, are of finite rank, we conclude that p is in S,in(B @ A), 
i.e., S,,,(B @ A) = S,i,(B @ A). 

(ii) 0 (iii). Th is ar g ument is virtually the same as that for (ii) o (ii’) in 
Theorem 4.1, since we may let R be a von Neumann algebra on K and 
R, = g(K). 

A C*-algebra which satisfies condition (i) of the above theorem is said to be 
nuclear (see [l I]; the condition was first studied by Take&i [23], who called it 
Property T). 

It is evident from (i) of Theorem 6.1 that if A is nuclear, then given C*- 
algebras B and B, with B C B, , we have 

A C&ax BCA@msxB1. 

We have been unable to establish a converse. The algebras A for which this 
inclusion always holds are characterized by: 

THEOREM 6.2. Suppose that A is a C*-algebra. Then the following are 
equivalent: 

(i) A** is injective. 

(i’) If n is a representation of A, then W(A) is injective. 

(ii) If B and B, are C*-algebras with B C B, , then 

A &ax BCA&a,B,. 

Proof. (i) 9 (i’) is immediate from Corollary 5.5. 

(i) 0 (ii). We will have (ii) if and only if the restriction map &‘,,(A @ B,)+ 
&,,(A @ B) is surjective (see the proof of Theorem 5.9), i.e., if and only if the 
restriction map 

nor(A** @ Bl) -+ nor[A** @B) 
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is surjective. From the proof of Theorem 5.9, this is equivalent to the inclusion 

A**&,,,BCA**@,,,B,, 

and thus from that theorem to the injectivity of A**. 
The algebras satisfying (i) of Theorem 6.2 have been studied by Tomiyama 

[29]. We turn next to what is apparently a still more general class of C*-algebras 
introduced in [l 11. 

Let A, B be C*-algebras with A C B and denote the inclusion mapping by 
i: A + B, so that i*: B* + A* is the restriction mapping. We say that a linear 
mapping d: A* -+ B* is a dilation if it is a morphism (see the beginning of 
Section 3) such that i*d is the identity on A*. 

THEOREM 6.3. Suppose that A is a C*-algebra. Then the following are 
equivalent: 

(i) For any C*-algebra A, with A S A,, there is a dilation d: A* + A,*. 

(ii) For any (Y-algebras A, , B with A _C A, , 

A Omax B C A, &ax B. 

(iii) For any C*-algebra A, with A C A, and von Neumann algebra R, 

R Onor A _C R @nor A, . 

(iv) Given a C*-algebra A, with A _C A, , a von Neumann algebra R, and a 
morphism 0: A -+ R, there is a morphism 7: A, -+ R which extends 8. 

(v) If A** acts as a van Neumann algebra on H, there is a morphism 
@: L%(H) + A** such that @jA(a) = j,(a) (a E A) (see the introduction for this 
notation). 

(v’) If m is a faithful representation of A on a Hilbert space H, there is a 
morphism @: 9(H) -+ v(A) such that @(r(a)) = r(a) (a E A). 

Proof. (i) 3 (ii). Condition (ii) holds if and only if each complete state 
map 0: B -+ A* lifts to a complete state map 7: B + A,*. If d: A* --f A,* is a 
dilation, it suffices to take 71 = d 0 8. 

(ii) a (v’). This is just Theorem 3.3 of [ll]. 

(v’) => (v) is trivial, 

(v) 3 (iv). Suppose that (v) holds, and let A, A, , R, B be as in (iv). Let 
i: A -+ A, be the inclusion mapping. Suppose that A,** acts as a von Neumann 
algebra on H, and let j: AC* + Z@(H) be the inclusion mapping. Since i** is a 
normal isomorphism of A** onto the weak* closure ofjA,(A), we may regard 
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A* * as a von Neumann algebra on H. We select a morphism @: 9(H) + A* * so 

that (v) holds. Let 9 = (js,)*: R** + R. # is a left inverse for jR . The diagram 

WH) 
Y\ 

A** < 1 i** A** 0** R** 

t 

jAl /iA -ht/ti 

AI < i A--ii-+R 

is commutative except in two respects. First, at the right-hand edge, ja 0 Z/ is 
not the identity on R **. Second, in the upper triangle, @ji** is not the identity 
on A**. However, its retriction to j,(A) is the identity, and this is enough to 
ensure that 7 = t,M**@jjAl is the resuired extension of 8. 

(iv) * (v’). Let R = r(A), A, = g(H), and 0 = rr in (iv). 

(v’) 2 (i). Suppose that A C A, , and that A$* acts as a von Neumann 
algebra on H. Choose a morphism from a(H) to A** as in (v), and let @ denote 
its restriction to Al. Thend = @*j,, is easily seen to be a dilation from A* to A,*. 

Summarizing the relations between the various classes of C*-algebras con- 
sidered in [ll] and this section, we have: 

THEOREM 6.4. Let A be a C*-a&ebra, and consider the following properties 

for A: 

(9 A ** is semidiscrete. 

(ii) The identity mapping on A* can be approximated in the topology of 
simple norm convergence by morphisms of A* with finite rank. 

(iii) The identity mapping on A* can be approximated in the topology of 
simple weak* convergence by murphisms of A* with Jinite rank (this is the “com- 

pletely positive approximation property” of [l 11). 

(iv) For any V-algebra B, A amax B = A @*in B (i.e., A is nuclear). 

(v) A** is injective. 

(vi) A satisjies any one (hence all) of the conditions of Theorem 6.3 (these 

are the “ WEP” algebras of [ll]). 

Then we have 

(i) 0 (ii) => (iii) 3 (iv) 3 (v) 3 (vi). 

607/25/1-3 
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Proof. (i) 0 (ii). See the remarks at the beginning of Section 3. 

(ii) s (iii) is obvious. 

(iii) * (iv) is Theorem 3.6 of [II]. 

(iv) * (v). See the remarks preceding Theorem 6.2. 

(v) * (vi). It is evident that (v) implies (v) of Theorem 6.3, since we can 
choose @: g(H) + A** to be a retraction. 

It seems to be quite possible that all of the conditions of Theorem 6.4 are 
equivalent. If A is the regular group C*-algebra of a discrete group G, (iii)-(vi) 
are each equivalent to the amenability of G (see [ll, Proposition 4.1, Theo- 
rem 4.21). Tomiyama has observed that if (iv) and (v) are equivalent, then the 
quotient of a nuclear C*-algebra is again nuclear. The latter assertion is still 
unproved. In any event, the implications 

A * * semidiscrete * A nuclear + A * * injective 

have led us to conjecture that the question of whether or not A is nuclear 
depends only on the structure of the von Neumann algebra A**. 

Note added in proof Remarkable progress has been made since this paper was sub- 

mitted for publication. In the intervening period of more than three years, the following 
results have been proved. In many cases, the arguments use theorems from [ll] and 

this paper. 

1. If R is a von Neumann algebra on a separable Hilbert space, then R is injective if 

and only if it is semidiscrete. If R is a factor, it is equivalent to assume that it is hyper- 
finite [38], [35]. 

2. Properties (i)-(v) of Theorem 6.4 are equivalent [36]. 

3. g(H) satisfies (vi) but not (v) of Theorem 6.4 (H a separable Hilbert space) [41]. 

4. The Brown-Douglas-Fillmore Theorem stating that Ext is a group is valid for all 
separable nuclear C*-algebras [33, 371. 

5. R. I. Loebl has independently observed the relationship between the Arveson-Hahn- 
Banach Theorem and the Hakeda-Tomiyama “extension property” [40]. 
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