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Abstract 

In this paper, the Chebyshev spectral (CS) method for the approximate solution of nonlinear Volterra-Hammerstein 
integral equations 

Y(z) = F(z) + g(z,r)G(r, Y(r)) dr, z C [0, T], 

is investigated. The method is applied to approximate the solution not to the equation in its original form, but rather 
to an equivalent equation z ( t )= 9(t, y(t)), t E [-1,  1 ]. The function z is approximated by the Nth degree interpolating 
polynomial z N, with coefficients determined by discretizing 9(t,y(t)) at the Chebyshev-Gauss Lobatto nodes. We then 
define the approximation to y to be of the form 

yN(t) = f ( t )  + l~(t,s)zU(s)ds, t E [--1, 1], 
1 

and establish that, under suitable conditions, l i m u ~  yU(t) = y(t) uniformly in t. Finally, a numerical experiment 
for a nonlinear Volterra-Hammerstein integral equation is presented, which confirms the convergence, demonstrates the 
applicability and the accuracy of the Chebyshev spectral (CS) method, 

Keywords." Spectral Chebyshev projection; Volterra-Hammerstein; Chebyshev--Gauss rule 
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1. Introduction 

It is well  k n o w n  that spectral projec t ion methods  provide  h ighly-accura te  approximat ions  for  the 

solutions o f  opera tor  equat ions  in funct ion spaces,  p rov ided  that these solutions are sufficiently 
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smooth (see, [5, 16-18]). In this paper, we are concemed with the extension of the Chebyshev 
spectral (CS) method to the numerical solution of nonlinear Volterra-Hammerstein integral equations 

f0 T Y(z) = F ( r ) +  K(~,r)G(r ,Y(r))dr ,  z E [0, T], (1.1) 

where F, K and G are given continuous functions, with G(r, Y) nonlinear in Y. Throughout this 
paper, we assume that (1.1) has a unique solution Y to be determined. Appropriate smoothness 
assumptions on F, K and G, to be made later, will ensure that in a suitable Banach space, the 
right-hand side of (1.1) defines a completely continuous operator acting on Y. 

Several numerical methods for approximating the solution of Hammerstein integral equations are 
known. For Fredholm-Hammerstein integral equations, the classical method of successive approxima- 
tions was introduced in [21 ]. A variation of the Nystrom method was presented in [ 15]. A collocation- 
type method was developed in [14]. The classical method of the degenerate kernel was obtained in 
[12]. In [4], Brunner applied a collocation-type method to Eq. (1.1) and integro-differential equa- 
tions, and discussed its connection with the iterated collocation method. Guoqiang [11] introduced 
and discussed the asymptotic error expansion of a collocation-type method for Volterra-Hammerstein 
integral equations. The methods in [2, 14, 11] transform a given integral equation into a system of 
nonlinear equations, which has to be solved by some kind of iterative method. 

In [2, 11 ] the definite integrals involved in these nonlinear equations have to be evaluated at each 
time step of the iteration, while in [14], only in favorable cases these definite integrals may be 
evaluated analytically. Moreover, since approximation by piecewise-linear functions yields, at best, 
O(h 2) convergence (see [14]), a rather large system of nonlinear equations have to be solved to 
obtain reasonable accuracy. 

The major difference between the analyses in [2, 14,4] and that in the present method is the 
fact that for polynomial interpolation, uniform convergence of interpolants cannot be guaranteed 
for continuous functions, regardless of the choice of the interpolation nodes. Hence, the present 
analysis is based on a mean-convergence property of polynomial interpolation (see (2.8) below). 
The advantages of our method are: 

(1) the Chebyshev spectral approximation enjoys formal spectral accuracy, i.e., its truncation error 
decays as fast as the global smoothness of the underlying solution permits; 

(2) the definite integrals are calculated once by the Chebyshev-Gauss quadrature rule [5, 8]; 
(3) spectral convergence rate can be observed for quite low order Chebyshev spectral approxima- 

tions. 
In this paper, we apply the Chebyshev spectral method not to Eq. (1.1) in its original form, but 

rather to an equivalent equation 

z(t) = g(t,y(t)),  t E I - l ,  1]. (1.2) 

We therefore approximate z by a polynomial z N of degree N, whose coefficients determined by 
collocating 

1 
z(t) = g ( t , f ( t )  + T/4(t + 1) f k(t,s)z(s)as),  t E [-1,1], (1.3) 

1 
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at the Chebyshev nodes. We then take 

y U ( t ) = f ( t ) + T / 4 ( t + l )  k(t,s)zN(s)ds, t C [ - 1 ,  1], 

as the approximation to y, and establish that, under suitable conditions 

lira yN(t) = y(t), (1.4) 
N----> oc 

uniformly in t. We further establish a rate for the convergence of yU to y that is fast enough to 
yield spectrally accurate results. 

This paper is organized as follows: In Section 2 we describe the Chebyshev spectral (CS) method 
required for our subsequent development and discuss some convergence results. In Section 3, we in- 
troduce our method, and in Section 4 we report our numerical findings and demonstrate the efficiency 
and accuracy of  the proposed method. 

2. The interpolation operator 

Let SN denote the space of algebraic polynomials of  degree ~< N, and let (Tk(t)), k >~0, -1  ~ t  <<, 1, 
denote the orthogonal family of Chebyshev polynomials of  the first kind in this space, with respect 
to the weight function w(x) = (1 - x 2 )  -1/2. In the most common Chebyshev spectral collocation 
methods, the grids in the interval [ -1 ,  1] are chosen to be the extrema 

tj = cos(jTz/N), j = 0, 1 , . . . ,  N (2.1) 

of  the Nth-order Chebyshev polynomial TN(t) = cos(N cos -1 t). 
Next, to construct the interpolant of  F(t) at the point t, we define the following Lagrange poly- 

nomials: 

~b~(t) = (-1)k+l(1 - tZ)TN(t) -- 2 ~ Tj(tk)Tj(t) (k = O, 1 . . . .  N), (2.2) 
CkN2(t -- tk) NCk j=0 Cj ' 

with Co = CN = 2, Ck = 1 for 1 <<,k<<,N- 1. Note that the grids tk denote the zeros o f (1  - t2)T( t ) ,  
where TN(t) is the derivative of Tx(t) with respect to t E [ -1 ,  1]. It is readily verified that 

1 if l = j, 
qSz(tj) = 6tj = 0 if l 7~j. (2.3) 

Now, the Nth-degree interpolating polynomial, INF(t) to F(t) is given by 

N 

IuF(t) = ~ F(tt )~bt(t). (2.4) 
/=0  

Alternatively, IuF(t) can be expressed in terms of series expansion of  Chebyshev polynomials 

N 

IuF(t) = ~ F(tt)Tt(t), (2.4a) 
/=0  
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where 

2 1 ~ F(6)T~(tj) 
(2.4b) 

It should be noted that the Chebyshev spectral coefficients/~(tl) in (2.4b) can be evaluated using 
FFT. In fact, using Tu(t) = cos(Ncos -1 t) in (2.4b) gives 

/ 6 ( t l ) -  N (~l j=0 Cj. cos . (2.4c) 

It is well known that polynomial interpolation based on Chebyshev points tj is well behaved compared 
to that based on equally spaced points (see [8]). Clearly, IN is a linear operator on C = C [ - 1 ,  1], 
the Banach space of  continuous, real-valued functions on [ -1 ,  1], with the property I 2 = IN. This 
space is equipped with the uniform norm 

I[FI]~ = sup [F(t)l, F E C. (2.5) 
- l ~ < t ~ < l  

Since, IN is a linear operator, with I~ = IN, then IN is a projection operator, whose range is SN, the 
set of  all polynomials of degree ~<N. Furthermore, IN is a bounded operator on C with 

N 

[I/Nil = sup ~ Iq~j(t)]. (2.6) 
-- l~<t~<l j = 0  

Since, IN is the interpolatory operator defined by (2.4), it follows from [20] that 

¢ lim IINF(t) -- F(t)lP(1 - t2) -1/2 d t =  0 (2.7) 
N----~ ~ 1 

for every F E C, and for every p E (0, oc). 
Let w be the Chebyshev weight function 

w(t) = (1 - t 2 )  - 1 / 2  - 1 ~t~< 1, 

and let Lp,w(-1, l)  be the space of the measurable functions f E Lp for which the weighted Lp 
norm defined by 

[ ' f"p.w:=(f~[f( t ) 'Pw(t)dt)  lip 

is finite. In terms of this norm, (2.7) may be written as 

lim IIIuF(t) -- F(t)[lp,w = 0, (2.8) 
N---* o~z 

from which it follows that 

sup [[INXlJp,w < oc, for all X ~ C. (2.9) 
N 
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Thus, if IN is considered as a linear operator from the space C to the space Lp, w(-1, 1) then, from 
Banach-Steinhaus theorem [13, p. 203], it follows that there exists a constant k > 0, which depends 
only on p, such that 

IIINFllp,w~kllF[[~, for all F E C. (2.10) 

For any positive integer N, let IN be the orthogonal projection of L2,w onto the space spanned by 
(~b0, ~b~, . . . ,  ~bN). Then, we have the following error estimates (see [5]): 

l iE - INFII2,w <-MN-mlIFII.,<(-,.I) (2.11) 

if F E Hw ~ for some m ~> 1. In higher-order Sobolev norms, one has 

I IF - INFII<¢-,,,) <.MN 2'-m I I F I I . > - , , , )  (2.12) 

for 0 ~< l ~< m. As a consequence, we have 

I IF '  - (INF)'II2,w ~MN2-m[[FIIH,~(-,,I). (2.13) 

The same estimate holds in the discrete L2,w-norms at tj (consult [5]). Thus, if F E C °~, then the 
rate of convergence of INF to F is faster than any power of  1IN. 

The next theorem shows uniform convergence for the interpolating operator IN. 

T h e o r e m  1. I f  tj, 1 < ~ j ~ N -  1 are the zeros o f  ~'N(t) adjusted in the interval ( - 1 ,  1), i f  F(z)  has 
no singularities except a finite number o f  poles, and i f  for  some n, F(z_A ~ 0 as Izl ~ c~, then Z n 

INF(t) ~ F(t)  uniformly on [ -1 ,  1]. 

Proof. Let ~(t) = TN(t) and ~j(t) = ~(t)/(t - tj), j = 1, 2, . . . ,  N - 1. By Mittag Leffler's theorem 
[7] there exists a function ~(z, t )  which has poles at t, tj, 1 <<.j<<.N- 1, with residue F(t)  at t and 
residue -dpj(t)F(tj) at tj such that 

F(t)  - IxF( t )  = ~ O(z, t) dz. 

It can be easily seen that 

~(t)F(z)(t 2 - 1) 
= 

~(z)(z - t)(z 2 - 1 ) 

is the desired function, and hence 

1 ~ ~(t)F(z)(t 2 -  1) 
F(t)  - INF(t) = ~ i  ~ ¢ ~ Z ~ - ( z  ~ --- i )  dz, 

where the contour a has been chosen to encircle not only t and tj but also zk. If  F(z) has poles at 
zk, 1 <~k<~s within the contour a none o f  which  lie on [ - 1 ,  1], then w e  have the fo l lowing  error: 

s ~(t) ( t  2 - 1 )  = 1 f ~(t)F(z)(t 2 - 1 )  
F(t)  INF(t) + 

~_~(Rk: ~(Zk~k ~ t)~-z{ ~ 1) 2ZC~ J~ ~(z--~---- t ~  ~ ~Y)  
dz, 
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where Rk is the residue of F(z )  at the pole zk. The condition [F(z)/z"] ~ 0 ensures that the integral 
tends to zero as the contour expands to infinity, if N is sufficiently large, and we thus obtain a new 
form of  the error, 

¢(t)(t z - 1) 
F( t )  - INF(t)  = -- k l ~ Rk ~(zk ~ ~- t~z~--- 1 ). 

From the well-known properties of  Chebyshev polynomials 

ITu(t)l ~< 1 for all t E [ -1 ,  1] 

and 

(1 - t2)TN(t) = N[TN-I ( t )  - tTN(t)]. 

We may obtain the following error estimate: 

21Rkf 
IF(t) -/NF(t)l ~< ~ ]Tzv-l(Zk) - Z TN(Zk)Ilzk - t l "  

k=0 

Since, TN-I(z)--ZTN(Z) is a polynomial of  degree (N-q-l), we can easily see that I TN_I(z)--ZTN(Z)[ 
CC as N --~ oc for any z outside [ -1 ,  1]. Since, no zk lies in [ -1 ,  1] we have therefore proved that 

[ F ( t ) - - I N F ( t ) l ~ 0  a s g ~ c ~ .  

3. The Chebyshev spectral discretization 

We approximate y by a polynomial yN of  degree N with coefficients determined by discretizing 
the equation 

T f l  1 y ( t ) = f ( t ) + ~ ( t + l )  k ( t , s )9 (s ,y ( s ) )ds ,  t E [ - 1 , 1 ] ,  (3.1) 

at the Chebyshev nodes tk, k = 0, 1, . . . ,  N as follows: Define 

z(t)  = #(t, y( t ) ) ,  t C [ -1 ,  1]. (3.2) 

Using (3.1), we get 

z(t)  = 9 ( t , f ( t )  + lc(t,s)z(s)ds),  - 1  ~<t~< 1, (3.3) 
1 

where /~(t, s) = (T/4(t  + 1))k(t,s).  The Chebyshev spectral interpolant z u of z at the point t is 
defined by 

N 

zN(t)  = ~ al~,(t).  (3.4) 
/=0 
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The Chebyshev spectral coefficients zU( tk )= ak for O<.k<~N are determined by collocating (3.3) at 
the Chebyshev nodes tk: 

zN(tk) : 9(tk, f ( t k )  ÷ lc(tk, s)zN(s)ds) .  (3.5) 
1 

The required approximation to the solution y of Eq. (3.1) is 

yN(t) = f ( t )  + [~(t, s)zN(s) ds 
1 

N 1 

+ ~_, al / _  [c(t,s)~)t(s)ds, (3.6) ~ f ( t )  
l = 0  1 

The integrals in (3.5) and (3.6) can be calculated, very accurately, using Chebyshev-Gauss integra- 
tion rule, stating that there exists weights (Chebyshev weights) wj 

Tz/2N if j = 0,N, (3.7) 
wj = rc/N if I < ~ j < . N -  1, 

such that for all h C $2N-1, we have (see, eg., [5, 8]) 

1 N 

f ( 1  - = Z w j h ( t j ) .  x 2 ) - l / 2 h ( x ) d x  (3.8) 
1 j=0 

For computational reasons with zN(tk) = ak we write Eq. (3.5) as 

/1 
a~ = 9(tk, f ( t k )  + [~(tk,s)z~V(s) ds) 

1 

N 

~ 9(t~, f ( t k )  + ~--~(1 - s~) 1/z tc(tk,st) al wt), (3.9) 
/=0  

if k(t, s) is smooth enough in s. Thus, 

N 

yU(t) ~ f ( t )  + ~_~( 1 -- S~)1/2 [~(t, St) al wl, (3.10) 
/ = 0  

where st = cos(M/N) ,  l = O, 1 . . . . .  N. 
Note that at the Chebyshev nodes tk, k = 0 ,  1, . . . ,  N, Eq. (3.10) is a system of  nonlinear algebraic 

equations for the unknowns yU ( to ) , )/V ( q ), . . . , yN ( tN )" 

4. Convergence results 

The theoretical analysis of  (3.1) will be carried out in the space C = C( [ -1 ,  1]). It is also 
convenient to make the following assumptions on f ,  k and 9 in Eq. (3.1): 

A.I: f E C; 
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A.2: suP_l~t~<, f l  1 fc(t,s)[qds < (x~, and limt__,t~fll I/~(t,s)- lc([,s)lqdt = O, for t E [-1,11 and 
q > l ;  

A.3: the function g(t ,y) is defined and continuous on D = [ -1 ,  1] x R: 
A.4: the partial derivative gy(t, y)  exists and is continuous on D. 
With q as in assumption A.2, let p be the number given by 

1 1 
- - + - =  1. (4 .1)  
P q 

Note that it follows from the results of  [10], under assumption A.2, the linear integral operator/£, 
defined by 

/ (I(v)(t) = [c(t,s)v(s)ds, t E [ -1 ,  1], f E Lp 
1 

(4.2) 

is a compact operator from Lp to C, and hence it is necessarily completely continuous (see [13, 
p. 244]). Next we define a nonlinear completely continuous operator T : Lp ---+ C by 

T(v)(t) = f ( t ) + K ( v ) ( t ) ,  t E [ -1 ,  1], v E L p ,  (4.3) 

and a continuous, bounded operator G by 

G(v)(t) = 9(t, v(t)), t E [ -1 ,  1] and v E C. (4.4) 

With the above notation, Eqs. (3.1) and (3.3) can be written in operator form as 

y =  TG(y), y E C, (4.5) 

z =  Gr(z) ,  z E Lp, (4.6) 

respectively. Eqs. (4.5) and (4.6) are equivalent in the sense of one-to-one correspondence [14]. The 
approximation z u in operator form is 

z N = INGT(z N). (4.7) 

Moreover, under assumptions A. 1-A.4, the operator GT is continuously Frechet differentiable on Lp. 
Its Frechet derivative at z E Lp is completely continuous linear operator (GT)t(z) given by 

[(GT)t(z)v](t) = 9y( t , f ( t )  + (Kz)(t))(Kv)(t), t E [ -1 ,  1], (4.8) 

Below we give results analogous to those in [14]. 

Theorem 2. Let ~ be a 9eometrical isolated solution o f  (4.5), and let 2 be the correspondin9 
solution o f  (4.6). Suppose A.1-A.3 hold. 

(i) I f  f~ has a nonzero index, then there exists an No such that for  No <~N, (4.6) has a solution 
Z N E S N satisfying 

]]z-- zN[[p,w --~ O as  N --* c~. 
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(ii) Suppose A.4 holds, and that 1 is not an eigenvalue o f  the linear operator (GT)t(2). Then, 
there exists a neiqhborhood o f  2 and an N1 such that for  N >~N1 a solution z N o f  (4.7) is unique 
in that neighborhood, and 

C1112 - IN2llp,w <<. [[2 - zN[[p,w,.< c=112 - IN211p,w, 

where cl and Cz are constant independent o f  N. 

Corollary 3. Under the conditions in Theorem 2 (ii) there exists a constant c~ > 0 such that 

112--zNIIp,w<~ inf  112- q, ll~. 
q~cS~, 

Proof.  For any ~ E SN, we have 

112 - I N 2 H p , w  = 11(2 - q ' )  - I N ( 2  - -  ~ ) l l p , w  

~< It(s) - O(s)lPw(s)ds + c3112 - 011~ 

(E/1 ) 
1 w(s) as + Ca 112- 011~, 

where the second step follows from the fact that the operator IN is bounded from C to Lp. 
Note that 

inf  112 - q, ll~ --' 0 as N --~ oc 0E~ 

follows from the Weierstrass approximation theorem [8], and is bounded above by the use of  the 
Jackson theorems [6, p. 147]. 

Theorem 4. Let  p E C be 9eometrically isolated solution o f  (4.5), and let 2 be the correspondin9 
solution o f  (4.6). Suppose A.1 and A.3 hold. (i) I f  p has a nonzero index, then with z N as in 
Theorem 2 (i), and N >>-No, (3.8) defines an approximation yN E C satisfyin9 

l ip  - y ~ l l ~  ~ 0 as g - ~  ~ .  

(ii) Suppose A.4 holds, and that 1 is not an eigenvalue o f  the linear operator (GT)t(2). Then, 
for  N >>.N1, the approximation yN 9iven by (3.8), with z N as in Theorem 2 (ii), satisfies 

lip - S I I ~  ~<H inf l i t -  ~11~, ~CSN 

where [3 is a positive constant independent o f  N. 
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Proofi (i) Since T "Lp,w ~ C and yN = T(zN), it follows from that yN E C. 

1 ds  I~(t) - yN(t)l = [c(t,s)[2(S) -- zN(s)] 
1 

' ~ ( t , s )  
<" f_, w(s) II~(s)-z~(s) w(s)ds 

[S_ll ~(,,S) P Ili" [j:l, I .iq <~ ~ w ( s ) d s  × 12(s ) -  zN(s) lqw(s)ds  , 

where in the last step Holder inequality for the distribution w ( s ) d s  has been used. Now for 1 ~< p, 

s u p  [w(t)] l - p=  1. 
- l~<t~<l  

Therefore, 

and hence, 

113- yNII~ <<-~I[2-- zNII.,w ~ 0 as 

where 

f l  11/p 7 : sup fc(t,s)l'ds < ~ .  
- l~<t~<l  1 

lip 

II~- zN II.,w, 

N ---+ cx), 

(ii) This follows similarly, with the aid of  Corollary 3. Thus, yN converges uniformly to )3. 

5. An i l lustrat ive  e x a m p l e  

Consider the nonlinear Volterra integral equations 

/; Y(z) = F ( Q +  K ( z , r ) Y ( r ) 2 d r ,  z E [0, 1], (5.1) 

where F (z )  = - 1 / 4 z  5 - 2/3"c 4 - 5/6z 3 - z2 + 1 and K ( z , r )  = zr + 1. This problem h a s  a unique 
solution Y(z) = z +  1, and hence it serves as a test problems. The time transformations z = 1 /2 ( t+  1 ) 
and r = z/2(s ÷ 1) are used to transform the intervals z C [0, 1] into t C [ -1 ,  1] and r C [0, z] into 
s C [ -1 ,  1]. Thus, the integral Eq. (5.1) can be replaced by 

/: y( t )  = f ( t )  + it(t, s )y (s )  2 ds, (5.2) 
1 

where f ( t ) =  1 1 2 1 4 s 1 3 ( ½ ( t + l ) ) 2 + l  - ~ ( i ( t +  1)) s = )k(t, s). - g (g ( t+  1)) - g ( i ( t +  1)) and/~(t, s) ¼( t+ l  
The Chebyshev spectral method was applied to approximate t h e  solution of  Eq. (5.2), and the 
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Table 1 
Results for the example 

157 

Methods 112--~11~ l ip- SIIoo Exec. time (s) 

Chebyshev spectral 
N = 4 < 10 -5 < 10 -6 0.93 
N = 6 < 10 .8 < 10 -9 1.41 
N = 8 < 10 -1° < 10 -11 1.79 
N----10 < 10 -13 < 10 -14 2.00 

resulting nonlinear system of equations (3.10) was solved by More and Cosnard's Algorithm [19]. 
All computations were carried out with very high precision on a Sun-SPARCII workstation. In Table 
1, we display the Chebyshev spectral approximate solutions of many orders. The error estimates 
112--zNII  and I1 - are calculated by taking the largest of  the errors at the Chebyshev nodes 
tk, k = 0, 1 . . . .  , N. As seen from the results of  Table 1, the Chebyshev spectral approximation 
enjoys formal spectral accuracy, i.e its truncation error decays as fast as the global smoothness of 
the underlying solution permits. 

6. Conclusions 

In this paper, the Chebyshev spectral method has been used for the solution of operator equations, 
such as the nonlinear Volterra-Hammerstein integral equations. With the availability of this method- 
ology, it will now be possible to investigate the spectral solution of nonlinear physical problems, 
particularly of the nonlinear initial-value problems. 
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