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It is assumed that we observe one realization of an r dimensional counting 
process with intensities that are products of predictable and observable weight 
processes, a common function of time, and predictable functions that depend on an 
unknown parameter 19. Given that the realization brings increasing information on 
6 as the observed time grows asymptotic results are proved for the distributions of 
parameter estimates, certain test statistics for parametric hypothesis, and goodness- 
of-tit tests. 0 1990 Academic Press. Inc. 

1. INTROI~JCTI~N 

Let N(t) = (N,(t), . . . . N,(t)) be a r-dimensional (r > 2) counting process 
defined on the probability space (Q, d, P) and adapted to the filtration dt, 
t E [0, co[. This implies that the components, Ni, are increasing integer 
valued and right continuous functions with jumps of size 1 only, starting 
with Ni(0) = 0. Furthermore, two component processes cannot jump at the 
same time. 

We will consider models where the counting process is assumed to have 
a predictable intensity A( 8, t) = (A, (0, t), . . . . 1, (0, t)) of the form 

1,(8, t) = eh@, “Y,(f) cc(t) (1.1) 

for i = 1, . . . . r. Here Yi is an observable and predictable (weight) process, o! 
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is an unknown nonnegative (nuisance) parameter function, 6 = (0,, . . . . O,,,) 
is a m-dimensional parameter taking an unknown value in some open 
subset r of R”, and hi(B, .) are for any 0 E I- predictable processes. All 
measurability assumptions are to be understood relative to the filtration 
&(. It is in the following assumed that J; Ai(8, t) dr < co for all i= 1, . . . . r 
and u< cc. 

There is some arbitrariness in the formulation of the model. The model 
given by (1.1) can also be obtained with li(8, t)=h,(& r)-ai(6(0, f), 
p,(t) = Y;(t) e”““, and Z(t) = a(t) eh@. I). This reformulation will not 
influence the estimates of 0. We will in the following use the normalization 
h,(B, t) = 0. This can always can be obtained by choosing h(8, t) = h,(8, t). 

We will study inference about the parameter 8 using one realization of 
the process during a finite time interval [0, u). We will derive asymptotic 
results as the observation time u + co. The special case hi(B, t) = 8, has 
been studied in [ 111. The present generalization is made in order to 
motivate tests of parametrical hypothesis and goodness-of-tit. 

A model given by (1.1) is of semi-parametrical type. It has the same 
structure as a Cox regression model commonly used in survival analysis. 
There is a large literature on inference in such models in the asymptotic 
case where an increasing number of independent copies of the process are 
observed during a finite time interval (cf. [2]). The observation plan that 
is studied here, where the observation time increases, is different and has to 
be treated by other methods. We will, however, use the partial likelihood, 
introduced in [4], as a basis for the inference. 

2. ASSUMPTIONS AND NOTATIONS 

We will assume that we have observed the counting process N and the 
weight process Y during the finite time interval [O, u]. Our concern is to 
estimate the structural parameter 8. The presence of the nuisance 
parameter function c1 complicates matters since it describes an underlying 
and unknown jump intensity that is common for the r component process. 
The information about the parameter 8 will have to be derived from obser- 
vations not on when a jump occurs but of which of the r processes jumps 
when a jump occurs. We will base the inference on the partial likelihood: 

lye, u) = n n (eh,'6.f'Yi(t))dNi(" 
i r<u i ( ,vu :, 

eh~“-“Yi(t) . 
> 

,Y:,,ww 
(2.1) 

We will use the normalization h,(B, t) = 0. 
As in ordinary likelihood estimation we will maximize (2.1) by differen- 
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tiating the logarithm of the partial likelihood. The estimate, e(u) will then 
solve the equation 

WY, u) = j” ~G(Y, t)  WY, t)  = 0, 

0 
(2.2) 

where (~‘=r-- 1) 

H(y, t)= [dh;(y, t)/ayj]~~:;~ = [hg(y, ?)I:~:~~, 

pi(y, t) = eh”Y,“Yi(t) i 
i 

eh’(y*‘) Yj( t), 
j= 1 

and 

WY, 1) = (dG, (Y, t), . . . . dG,,(y, 1)). 

(Here fl(t)=C;=, Ni(t).) 
Observe that G( 0, . ) is a martingale relative the filtration dt, t E [0, co [. 

We will assume that 

(Al) h( 8, t) = (hi (6, t), . . . . h,. (0, t)) is differentiable in 8 and 
S;flh,(e,t)13X(e,t)dt<oo for all i=l,..., r’, j=l,..., m, and u<co, with 
qe, t) = xi= 1 ii(8, t). 

If this assumption is satisfied then M(0, .) is a martingale relative the 
filtration &(, t E [0, co[. This fact will be essential for the results that 
follow. 

Before proceeding we will introduce some further notations: 

n(Y, l)= CGfPi(Y, r)-Pi(Y, t)Pj(Y, r)ljZi:::9 

WY, u) = \’ H’(Y, t)  WY, t)  WY, t)  A(Y, f)  df, 

0 

T(Y, u) = j- H’(Y, t) WY, t) NY, t) dA%), 
0 

and 

Here W(0, u) is the predictable quadratic variation (M(B, . ) )(u) of the 
martingale M(B, u). The matrix T does not depend on the nuisance 
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parameter IX and will be shown to approximate W asymptotically. This is 
also the case for the matrix U. Observe that U(0, U) equals the optional 
quadratic variation [M(8, .)1(u). H ere we have chosen to work with the 
matrix T instead of with U even if similar results can be proved for both 
matrices. 

Since we rely on only one realization of the process to do inference about 
8 it is important that this realization carry sufhcent information about the 
parameter in order that the estimate behave asymptotically regularly. This 
may very well be the case for some realizations whereas for other realiza- 
tions the accumulation of information will be too small or irregular. It is 
of interest not only to prove the asymptotic consistency of an estimator but 
also of finding its asymptotic distribution and asymptotic properties of 
different kind of test statistics. We will be able to prove consistency, 
asymptotic mixed normal distribution for the maximum partial likelihood 
estimate, and asymptotic x2 distribution of different test statistics at least 
for some realizations. The more complicated the result the more is 
demanded of the structure of the information contained in the realization. 
We will define subsets of the sample space for whose realizations we can 
prove asymptotic results of different kinds. 

We will denote the smallest eigenvalue of a matrix A with A, and the 
largest eigenvalue with A. Let FE E ~4 be a subset of Q such that: 

(i) W(0, U) + co and W(0, u)/w(e, U) is bounded away from 0 as 
u+co, 

(ii) for all E > 0 there exists an u0 < co such that 

(a) J;; dG(& t)(H(y, t) - H(8, t)) WP1(8, u)I <&pa and 

(b) Ij;t (dG(y, t) -dG(R t)) NY, t) W-‘(6 u) - (Y - @I B @’ if 
ly-01 <p and u>uO. 

The specification of the sets Ft are given in a technical form that is suited 
to the proofs given below. It is, of course, possible to make more explicit 
assumptions in special cases. Observe that the larger the value of a, the 
stricter the assumption for the set Fz. 

3. CONSISTENCY 

The theory developed below will rely on strong results on convergence 
of martingales. In Section 7 we state a number of such results in a form 
convenient for the purposes of this paper. 

THEOREM 3.1. If (Al) holds then d(u) + 8 a.s. on FE. 
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Proof. We will use the equality: 

~G(Y, f) WY, t) = dG(@ t) We, t) + We, f)(H(y, 1) - We, 11) 

+ (WY, t) - dG(e, t)) WY, r). (3.1) 

According to Theorem 7.1 and condition (i), 

~(e, ~4) w-‘(e, u) = S” dc(e, t) zqe, t) w-1(8, t) + 0 
0 

as u+ cc on Ft. 
Looking trajectorywise we find that for realizations in F,” we can for any 

E>O find a u, such that 

mm 4 w-Ye, 41 6 s/4 

if u > ul. According to (ii), we can, when Iy - 81 < E, find a u. such that 

/J 
u dqe, t)(~(y, t) - z-qe, t)) w-‘(e, U) G s/4 
0 

and 

u wm, d - dw, 0) H(Y, t) w-ye, U) + (Y - 8) G s/4. 

If u > max(u,, ui) then 

I u dw, t) H(Y, 0 w-l(e, U)(Y -e) < 0 0 

when Iy - 8(= a. This implies that there is a solution of 
M(y, U) W-*(8, u)=O and thus of (2.2) such that I&U)-Sl 6s (cf. cl]). 
This proves the theorem. 1 

4. ASYMPTOTIC DISTRIBUTION 

When deriving the asymptotic distribution of the estimate, 8(u), we have 
to strengthen the conditions. First we will make a general assumption 

(A2) There exists a non-random sequence b(u) and an d-measurable 
m x m-matrix q such that W(e, u)/b(u) + q in probability as u 4 co. 

THEOREM 4.1. Zf (Alk(A2) are sarisfied then (d(u)-0) W”*(& U) is 
asymptotically N(0, I,,,) distributed conditionally on FL n {q > O}. 
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Proof Using the equality (3.1) with y = 8(u), we find that 

0 = M(& u) W-‘/*(8, u) + s” dG(e, r)(H(&u), 1) - H(e, t)) W-““(8, u) 
0 

+ 
( 

/; (dG(&u), t) - dG(0, t)) H@(u), t) W-‘(e, u) - (&u) - e) 
> 

x wll*(e , #) - (&u)- e) wqe ,u. ) 

Looking at the second term of the right-hand side of this equation we find 
that on Fl for any E > 0 and u sufficiently large, 

’ dG(e, t)(H(&u), t) - fqe, t)) w-l/2(8, 24) 

d Ij * dc(e, t)(~(&~), t)- fqe, t)) w-1(8, u) Wqe, u) 
0 

G ~1(8(~) -e) wl/*(e, U)I (Rye, u)/w(e, u))? 

This implies that the second term is asymptotically dominated by 
(e(u) - 0) Wli2(e, u) on FL. By a similar argument this also holds for the 
third term of (4.1). Thus M(0, U) W-‘/*(8, U) and (B(U)-0) W’/*(e, U) 
are asymptotically equivalent on Fl. From Theorem 7.2 it follows that 
the first of these variables is asymptotically N(0, Z,) distributed on 
F!hbP-O~~ I 

The practical use of Theorem 4.1 is impeded by the fact that the norma- 
tion W(e, u) does depend on unknown parameters. We may substitute 0 
with e(u) but W(&u), u) still depends on ~1. We will here prefer not to 
estimate the nuisance function cx directly but instead use the approximation 
T(&u), u). To prove that this is permissible we need another lemma and 
one further assumption. 

LEMMA 4.2. T(f3, u) W-‘(0, u)+ Z, (the m x m unit matrix) as. on 

w-o> as u-co. 

Proof: Let Hi be the ith column of the matrix ZZ. Then the (ij)th 
element of the matrix T(B, u) - W(d, u) equals 

Q,(u) = j+; fqe, t) n(e, 1) zqe, t)(dR(t) -A(t) dz). 
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This is a martingale with predictable quadratic variation: 

(Q,(u)> = 1: (Hito, t) n(e, t) ffi(e, t))’ Ate, ‘1 dt 

G ’ w,(e, t) me, t) ~74 4 ~,te, t) me, t) q(e, 0) W, 1) dt 

Thus on (4 >O>, (Q,)(u)lb( u is asymptotically bounded by aj. If 1 
(Q,)(co) = co then, according to Theorem 7.1, Q,(u)/(Q,>(u) --) 0 a.s. 
which implies that also Qe(u)/b(u) +O a.s. as u + a. If (Q,)(NJ)< CC 
then Q,(U) has a finite bound a.s. and Q,(u)/b(u) + 0 a.s., since b(u) + co. 
Thus (T(e,u)-W(B,u))/b(u)-rO a.s. on {q>O} as u-c/3. 1 

With the assumption 

(A3) For any sequence e(u)+0 as u-00 SU~,,~~,~~(~) lT(y,u)- 
w, 41ibw 4, 

it follows, with the use of Lemma 4.2, that if y(u) --t 8 then 
T(y(u), u)Y’(~, U) -+ I,. a.s. on {II >O} as u--t co. We thus have the 
following corollary: 

COROLLARY 4.3. Zf (Al t(A3) are satisfied then (6(u) - 0) T’12(&u), u) 
is asymptoticaEy N(0, I,) distributed conditionally on Fi n (q > 0). 

5. TESTS OF PARAMETRICAL HYPOTHESES 

We will be interested in testing if the model (1.1) can be simplified in 
such a way that 0 can be assumed to vary in a space of lower dimension 
than m. We will specify this hypothesis as 

e=gs, (5.1) 

where j? = (/Ii, . . . . 8,) is a s-dimensional parameter and S is a s x m matrix. 
This hypothesis has an alternative formulation in the form of linear restric- 
tions on 8. Let R be a m x (m - s) matrix whose rows are orthogonal to the 
columns of S. We can restate the hypothesis (5.1) as 

8R=O. (5.2) 

All expressions will be greatly simplified if the matrix R is rotated so that 
R’R = I,,-,. We will in the following assume that this is the case. There is, 
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of course, no loss of generality. If the hypothesis is true we can estimate fi 
as a solution, a(u) of 

44(&S, u)S’ = j” dG(GS, t) H(6S, t) S’ = 0. (5.3) 
0 

From the previous sections it follows that the estimate b(u) is a consistent 
estimate conditionally on Fz and that both (b(u) - /I)(SW(/?S, u)S’)“’ and 
(J?(u) - J?)(ST(fi(u)S, ,)S’)“’ are asymptotically N(0, Z,,) distributed condi- 
tionally on Fi if (Al )-(A3) are satisfied. 

There are several general methods available to test hypotheses of type 
(5.1) or (5.2). We can consider the ratio test based on the partial 
likelihoods and reject the hypothesis if 

QR(u) = 2 In (U&u), u)/UiQu)X u)) 

is too large. The score test is based on the deviance of M(l(u)S, u)R from 
0. A third test, of Wald type, may be based on the deviance of 8(u)R from 
0. In addition to the likelihood ratio test we thus define the two test 
statistics: 

and 

es(u) = M(&u)S, u) RR’T-‘(j?(u),% u) RR’M’ (&u)S, u) 

Qw(u) = t?(u) RR’T(fi(u)S, u) RR’&(u). 

THEOREM 5.1. es(u) and Q,+,(u) are asymptotica& equivalent and x2 
distributed with m - s d$ conditionally on Fl C-I {q > 0). 

Proof: The parameter 8 can be written in the form 0 = flS + ER’, where 
fl E R” and E E R’+“. Due to condition (ii) we can find a function K(u) --t 0 
as U+ cc and 

Iumu), u) - MbmS, u)) w-78, u) + (O(u) - lj(u)S)I 

<K(u) l&u) - B(u)SI. 

Since W-1’2(8, u)RR’= RR’W-“‘(8, u), it follows that 

j(M(&u), u) - M(&+S, u)) RR’W-“2(8, u) 

+ (d(u) - &)S) W”2(8, u)RR’) 

= I-M($(u)S, u) RR’W-“‘(8, u)+ e(u) W”2(8, U) RR’) 

<K(u) I(&u)-/?(u)S) wlqe, u)l (r(e, u)/W(& u))“2 IRR’J. 
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Using Lemma 4.2 and assumptions (A2) and (A3) we see that Q,(u) and 
Q W(u) are asymptotically equivalent on FA. 

It remains to find the asymptotic distribution of the two test statistics. 
According to Corollary 4.3, M@(u) S, u) RR’T- ‘j2(8( u), u) is asymptoti- 
cally N(0, RR’) distributed conditionally on Fi. Thus (denoting a 
generalized inverse of the matrix A with A-) 

M(&u)S, u) RR’T-“2(8(u), u)(RR’RR’)- TP”2(&u), u) RR’M(fl(u)S, u) 

(5.4) 

is asymptotically x2 distributed with rank( RR’) = m - s degrees of freedom. 
(Observe that the expression (5.4) is invariant of rotations of the matrix R). 
Since we have assumed that R’R = I,,- s the (m - s)-dimensional unit 
matrix is a generalized inverse of RR’. This implies that Q.&(u) is 
asymptotically x2 distributed with m -s degrees of freedom conditionally 
on Fin (q>O}. 1 

THEOREM 5.2. Q,(u), es(u), and Q W (u) are asymptotically equivalent 
and x2 distributed with m -s d.J conditionally on Fi n {q > 0) for a > 1. 

Proof. First consider 

ln(L(&u), u)/L(e, u)) = 1’ (e(u) - 0) M’(0 + b(&u) - 19), u) db. 
0 

It is easy to see that on Fi this variable is asymptotically equivalent to 
(B(U) - 8) M’(8, U) - (e(u) - 0) lV(e, u)(&u) - 0)‘/2 and (using a result in 
the proof of Theorem 4.1) to M(8, U) W-‘(8, U) M’(B, u)/2. 

In the same way ln(L(fl(u)s, u)/L(8, u)) and M(0, U) S’(SW(8, u)S’)-’ 
SM’(0, u)/2 are asymptotically equivalent on Ft. 

On F;, qe, ~)(l, + sysqe, +sysw(e, u)) w-l/2(8, U) and 
M(@(u)S, u) W-“2 (0, u) are asymptotically equivalent. Combining these 
three results it follows that QR(u) is asymptotically equivalent to 

M(&+s, g(w-ye, +s’(sw(e, U) sys) bf(jT(~)s, u). (5.5) 

Using the fact that R’R = Z, --s, it follows with elementary matrix algebra 
that (5.5) equals M@(u)& u) RR’W-‘(8, u) RR’M’@(u)S, u), which is 
asymptotically equivalent to es(u). This completes the proof. 1 
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6. GOODNESS-OF-FIT TESTS 

6.1. General Case 

We shall consider a general method of constructing goodness-of-fit tests 
for a model given by (1.1). Let K(8, t) be a predictable r’ x k matrices. 
Under some restrictions on K, 

Q(e, u) = j" dG(0, t) K(6,t) (6.1) 
0 

is a k-dimensional square integrable martingale with expectation 0. It 
seems natural to base a goodness-of-fit test on this martingale property and 
reject the model if Q(0, u) is too far away from 0. Since 0 is unknown, it 
has to be estimated from the realization. We will therefore base the test on 
the observed balue of Q(&u), u). 

It is convenient to regard a goodness-of-lit test as a test of a parametrical 
hypothesis in an extended model. Let B = (0,) . . . . 8,, 8,+ I, . . . . Bmtk) and 
define the functions 

Sit09 f)=hi(e, I)+ i ej+,Kij(e, t)> (6.2) 
/=I 

i= 1, . . . . Y’ and g,(B, t) = 0. If we assume that the counting process N has 
intensities of the form 

&lk f) = exp( gi(& f)} Y,(t) 4th (6.31 

i = 1, . . . . Y, then a test of the parametrical hypothesis B,, , = . . = 13~ +k = 0 
is a test of the original model when gi(f?, t) = h,(B, t) holds. This parametri- 
cal hypothesis can be expressed in the form BR = 0, where R’R = I,. Of the 
three test statistics discussed in the previous section, the score statistic 
seems to be the most appropriate for a goodness-of& test, since it only 
depends on the estimate of 8 derived under the null hypothesis. We need, 
however, an expression for the matrix T(8, u) in the extended model. If the 
hypothesis holds (i.e., B= (8,, . . . . 6,, 0, . . . . 0) then 

T(& u) = 
Re, u) C(& u) 
c’(0,u) > V(0,U) ’ 

(6.4) 

where F((e, u)=J;H’(B, t)n(e, t)H(0, t)&(t), C(6, u)=J;H’(~, t)n(e, t) 
K(B, t) dH(t), and V(0, u) = S; K’(0, t) Z7(13, t) K(B, t) dR(t). Theorem 5.1 
implies 
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THEOREM 6.1. rf the extended model (6.3) satisfies (Al)-(A3)) then 

Q@(u), UN W$), u) - C’(&u), u) ~-‘(&4, u) C(&4, u)l~ ‘Q’@(u), ~1 
(6.5) 

is asymptotically x2 distributed with k d.J if the model is true conditionally 
on Fin {y1>0}. 

Proof: Let S be the mx (m-t k) matrix of the form (I,, 0) (where 
0 is a matrix with only zeros). Then we can identify Q(&u), U) 
with M(&u)S, U) used in the score test statistic. The matrix 
RR’T-‘(&u)S, u) R’R is the lower right k x k submatrix of T-‘(8(u), u). 
This matrix equals by elementary matrix algebra the inverse of 
V(B(u), 24) -C@(u), u) T-‘(B(u), 24) q&4), u). [ 

6.2. A Speciaf Test 

We will in this section consider a particular goodness-of-tit test based on 
the statistic 

(j(O, u) = 1” dG(8, t) &I, t) (6.6) 
0 

where &0, t) = (k, (0, t), . . . . k,,(0, t)) and 

(WYj(t)lYr(t)) + k(R 1) if Y,(t) Y,(t) #O 

k,(8, t) = 
ln( Yi(t)) + hito, t) 
-MY,(t)) + AiCe, t) 

(hito, t) 

if 0= Y,(t)# Yi(t) 

if 0 = Yi(t) # Y,(t) 
if Yi(t)= Y,(t)=O. 

In the previous section we saw that this goodness-of-tit test can be 
considered as a test of the parametrical hypothesis v = 1 in the model 

li(8, t) = e”h”“,“Yy(t) E(t). (6.7) 

The alternatives can perhaps be considered as a kind of Lehmann alter- 
natives on the intensity level. 

The goodness-of-fit test based on (6.6) is of interest for several reasons. 
First, it can be seen as an analogue of the conditional exact test derived for 
multiplicative Poisson models in [lo]. Second, it can be derived by an 
argument that in essence is similar to one used in [3]. The logarithm of the 
partial likelihood equals 

i:c, (ln(Yi(tJ)+hi(fi, t))dN,(t)-Jiln( i e%‘8.“YJ(t))dN(t). 
i=l 
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This is a jump process with the compensator 

Taking the difference between these two expressions and substituting the 
unknown 8 with its estimate d(u) and integrating with dE(t) instead of 
X(&u), t) dt, we obtain &&u), u). 

The asymptotic properties of the test statistic can be derived from 
Theorem 6.1. In this special case we have 

-1 H;,(o, t)~i(e, t)CPj(e, t) ki(e, t) d’(t), 
i i > 

i= 1, . . . . m, and 

d&(t). 

7. Two THEOREMS ON THE CONVERGENCE OF MARTINGALES 

In this section we will state some results for convergence of martingales 
that are used in the previous sections. No proofs are given here. Proofs for 
more general settings can be found in, e.g., [6 or 91. The versions quoted 
here can also be found in [ 123. 

In this section N is an r dimensional counting process defined on 
(Q d, P) and adapted to the filtration s;l’,, te [0, co[. Let SS& = lJt,o 4. 
The elements of N have continuous intensities A,(t), i = 1, . . . . r. We will give 
some results on the asymptotic behaviour of the m-dimensional martingale 

G(u) = j” [dN(t) - A(t) dt] i(t) 
0 

as u + co, where i(t) is an r x m matrix whose elements are predictable 
functions. The predictable quadratic variation of G is 

i j” ii,(t) irk(f) A(f) dt I 
k=l,m 

. 
i=l O ,= I.,,, 
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We will assume that W(U)/@(U) is bounded away from 0, and that 
jg \[i(t)l x(t)< CC for all i and j and U-C co. 

THEOREM 7.1. G(U) W-‘(u)-+0 a.s. on the set {W(a)= a}. 

Proof. In case m = 1, G will be a scalar martingale. For this case the 
theorem follows from a result in [8]. For the general case it will, by the 
same argument, hold that Gi(u)/ W,j(u) -+ 0 a.s. as u + co on the set 
{ Wii(co)= a}. Now 

P(u) W-‘WI G c Gi(uW’;i(~) @‘(u)/W(u) I 
and the theorem follows immediately. 1 

THEOREM 7.2. Zf there is a sequence b(u) -+ 00, and 

WuM(u) -+? 

in probability as u -+ co, where q is a ~4% measurable random matrix, then 

G(u) W-“*(u) --t U* 

da-mixing conditionally on any dm-measurable subset of {v > O>, where U* 
is N(0, Z,) distributed. 

Proof: This is a straightforward application of Theorem 5.2 in [ 123. 
(Observe that with (T, =inf(t; IV(t) > m}, W(o,)/b(u) -+ 0 as u -+ m). 
Similar convergence theorems can also be found in [S, 6,7, or 91. 1 

8. THREE EXAMPLES 

The aim of the following three examples is to illustrate how estimates 
and tests look in some simple cases. It would be possible to give exact con- 
ditions when the assumptions (Al)-((A3) are satisfied. Since this would be 
a very technical, and not very informative, exercise we have chosen only to 
indicate what is needed. 

8.1. A Model for Time-Inhomogeneous Poisson Processes 

Assume that we, according to some model, are to observe r independent 
Poisson processes with intensities, 

1,(6, t) = e”’ Y,(t) R(t), 

i=l , . . . . r. Here the non-random functions Yi and u describe time- 
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inhomogenity of the processes. The weight-functions Y,‘s are observable 
and a, that is common for all processes, is not. The partial ML estimate of 
0 will then solve the equations, 

NAu) = i‘” P;(Y, t) d&t), 
0 

i= 1, . . . . r. If the Y:s and c1 behave “reasonably” it follows from the theory 
developed above that the estimate is consistent and that it, after a random 
normation, is asymptotically normally distributed. Such a behaviour could, 
e.g., be that all weight-functions and a are uniformly bounded away from 
0 and co. In such cases (‘I > 0} and Ft equal the entire sample space with 
the possible exclusion of a null set. There will also be needed some 
asymptotic regularity in order that assumption (A3) shall be satisfied. 

We can apply the special goodness-of-lit test suggested in Section 6.2. 
According to this test we shall reject the model if the observed value of 

Q(u)= i ~“In(Yi(l))(dN,(r)-pi(8(u), t) dfl(t)) 

j=, 0 

is not sufficiently close to zero. Denote by 

D(u)=/" ( Pi(e(u), f)(W~i(t)))*- i Pj(8(u)5 f)(ln(Yj(t)))* dR(t) 
0 j= 1 

ln( Y,(t))- i pj(8(u), t) Y,(t) 
j= 1 

N;(u). 

We shall reject the model if Q2(u)/D(u) exceeds some suitable percentile of 
the xZ distribution with one degree of freedom. This test exploits variations 
in the relative weights Yj(t)/Yi(t) i, j= 1, . . . . r. In order that the asymptotic 
results shall hold there has to be a substantial such variation. 

8.2. A Birth-and-Death Process 

Let N, (u) count the number of births and N2(u) count the number of 
deaths during [O, u] is a linear birth-and-death process. If the process 
starts with one individual at time U= 0 then there will be F(u) = 
1 + N, (u) - N,(U) individuals at time U. Assume that the intensities can be 
written as 

Ai(t)=e”lF(t-)a(t), i= 1, 2, 



INFERENCE ON COUNTING PROCESSES 139 

with the usual normation e2 = 0. Here the unknown function CI describes a 
common time-dependent variation in the birth and death intensities and es’ 
is the ratio of the birth intensity and the death intensity. Such a process may, 
with positive probability, die out in finite time. If this is the case we will, 
after some time, not observe any more births.or deaths; i.e., we will not get 
any more information usable to estimate 0,. There will thus not be any 
estimate with “good” asymptotic properties. However, if 8, > 0 and A(u) = 
j; a(t) dt + cc as u -+ cc there will, according to well-known theory, be 
realizations which live on and generate new information as the observation 
time grows. It is possible to show that IV(e, u)/A(u) -+ ye as u -+ cc, where 
q is some random variable. If we apply the results obtained above, we can 
show that for realizations in the set (y > 0) the estimate 

is consistent. With S(U) = j; (N,(t) + N*(t)) dt it also follows that 

(N,(u) + N, W,/W, (~1 Nz(u) W)(lnWl (u)/N,(u)) - 0,) 

is asymptoticallly N(0, 1) distributed conditionally on {q > O}. 

8.3. A Model for Analysing the Effect of a Traffic Safety Measure 

We will suggest (a simplistic) model for the study of certain kinds of 
road traffic safety measures. Suppose that we simultaneously observe traffic 
accidents in r road crossings. The accidents in the ith crossing will occur 
according to a counting process whose intensity depends on (a) the safety 
standard of the individual crossing (described by a parameter e,), (b) the 
amount of traffic passing through the crossing (measured by Yi(t)), and (c) 
by a time dependent parameter (a(t)) common to all crossings describing 
seasonal variations, weather conditions, etc. If an accident occurs, some 
sort of safety measure is taken in order to decrease the accident intensity. 
We will assume that the measure changes (hopefully lowers) the intensity 
by a factor e” and that it is effective for a time period of length a. Police 
supervision may be a safety measure having an effect of this kind. 

The accident intensity of the ith crossing is 

Ai( eO~+“J~cr’Yi(t) cl(t), 

where 

if Ni(t)>Ni(t-a) 
if N,(t)=N,(t-a). 

683/33/l-10 
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After renorming the model we can write 

~i(f)=e”‘+“‘J~“’ “J’“y,(t)cr(t) 

and assume that 8, = 0. 

(8.1) 

The model given by (8.1) is of the type studied in this paper. Let 

pi(B, v, t)=eH~+vJ~(‘)Yi(t) i 
:’ 

ee,+vJ/~t) y,(f), i = 1, . . . . r’. 

/=I 

Then the ML-estimates of 0 and v shall solve the equations: 

s ’ CdNiCz) - Pity, d, f ,  dN(t)) = O, i= 1, . . . . r’, 
0 

The last of these equations is trivially identical to 

To be able to use the theoretical results above we have to verify the very 
abstract assumptions (Al )-(A3). In the present example we could perhaps 
assume that Y;(t) a(t) has small variation in time and that b(u) = u would 
be a convenient norming constant. We would also expect that the set 
{q > 0} is the entire sample space. It is easily verified that all assumptions 
are satisfied in the simplest case of all, namely when Y,(t) E Yi > 0, 
cr(t)=cr>O, and v=O. 

It may in a situation of this kind be of special interest to test the 
hypothesis v =O. If this hypothesis holds then the safety measure has no 
effect on the accident process. To illustrate how such a test can look we will 
consider only the simple case where all Y,-processes are constant. In this 
case the functions p,(t), t) will not depend on time t. Under this hypothesis, 
the ML estimates of the 0 parameters will solve the simple equations: 

N,(u)=e”‘Y, 
i 

i e”JY, 
i= 1 

i= 1 , . . . . r’. In fact, 
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The score test will depend on the deviance of 

from 0. Here S,(u) is the number of accidents in the ith road crossing when 
the safety measure is in force (i.e., when an accident has occured less 
than a time units before) and s,(u) is the total number of accidents in all 
crossing during this time. All counts are made up till time U. This seems a 
very natural test statistic. In order to calculated the score test, e.g., one now 
has to find the lower right element of the inverse of the Y x r matrix 
7(8(u), t). Trivial but long calculations yield that this element can be 
written as 

D(u)= i Nj(U) Si(U)/R(U)- i i Nj(U) Nj(U) Sg(U)/W2(U) 

i= 1 i=l j=l 

wig, (Ni(u) Si(“)lN(u)-Nj(u) i N,(u) S,(“)/m2(u))2/Ni(U), 
j=l 

where S,(U) is the total number of accidents in all crossings during times 
when both the i th and the jth crossing are subject to the safety measure. 
(Of course, Sii(U)= S,(U)). 

In this case the score test rejects the hypothesis of no effect of the 
measure if the test statistic 

( i (Si(u)-Ni(u) si(“)/m(U)) * D(U) 

i=l )i 

is larger than some suitable percentile in the x2 distribution with one 
degree of freedom. 
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