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Abstract

We obtain eigenvalue perturbation results for a factorised Hermitian mdtexGJG*
whereJ2 = I andG has full row rank and is perturbed in®+ §G, whered G is small with
respect toG. This complements the earlier results on the easier ca&wath full column
rank. Applied to square factofS our results help to identify the so-called quasidefinite ma-
trices as a natural class on which the relative perturbation theory for the eigensolution can
be formulated in a way completely analogous to the one already known for positive definite
matrices. © 2000 Elsevier Science Inc. All rights reserved.
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Consider a Hermitian matrix in the factorised form
H=GJG* J=diag+1l), (1)

which we assume as non-singular (this implies tiathas full column rank). The
matrix H is perturbed as

H+8H=(G+8G)J(G +8G)* (2)
with the elementwise estimate
0G| <elGl. (3

The (equally ordered) eigenvaluestdf H + §H are denoted by;, A; + 8A;, re-
spectively. In this paper we will derive relative eigenvalue perturbation bounds, i.e.
bounds folBA; /A;.
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Keeping a matrix in the factorised form may have advantages because the con-
dition of the factor is often just the square root of the condition of the product thus
alleviating error troubles. This is known to be the case for the standard singular value
problemwithJ = I. A similar result holds with generd] if G*G is positive definite
(this meanss with full column rank) as was shown by Vesetind Slaprdar [16]. In
this case the relative bound (3) implies

8Gx| < v|Gx]| forallx 4)
with
A*l
b= SUmax(|G 71|) (5)
omin(GA4™7)
for any diagonal positive definitd. The bound (4), in turn, implies
Ai + OA;
1-v2+v) < + < 1+v@2+v). (6)

L
A related eigenvector perturbation bound was given in [13]. The quotient on the
right-hand side of (5) is called the right scaled condition numb&. dfs appearence
is typical whenever relative bounds are sought.
The main technique of [16] is to convert the eigenvalue problentifarto the
one for the matrix

T = JG*G, )
or, equivalently, for the Hermitian matrix pair
G*G,J.

It is remarkable that even in the indefinite case the condition number of the — not
necessarily orthogonal — eigenvectorgafoes not enter the eigenvalue bound (6).

In this paper we study the harder, complementary case@dth positive definite
(i.e. G* has full column rank). Again, the link to the matrixwill be used; this
time the condition number of the eigenvectorslofill be a substantial part of the
obtained bounds. Moreover, it turns out that the mere requiremenGthdte of
full column rank does not suffice to obtain reasonable results. We must ask that
H = GJG* is non-singular. This can be understood from examples where a full
column-rankG* and an indefinite yield evenH = 0. The latter effect disappears if
J =1 orif Gis square.

Examples of such problems are the ones in which a Hermitian matrix is given as
a difference of two positive definites, which are given by their factors [9]:

H=MM*"—-NN*=GJG*
with

G=[M N]. J:[é _?]

This is a common way to express downdating problems. The problem of determin-
ing the eigenvalues directly froid, J is often called the hyperbolic singular value
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problem; the values; = sign(1;)./[A;| are then called hyperbolic singular values of
the pairG, J.1 In this case (3) implies

18G*x|| < v||G*x]|| forallx (8)
with
G*A71
_ gUmax(| 1|) (9)
omin(G*477)

for any diagonal positive definitd. The new estimate reads — in the simplest case
of G square

Ai + A

i

L—v@+WIFIIFI< < 1+v@+WIFIIF, (10)
whereF is the eigenvector matrix fof. The difference between the two cases is
nicely characterised by the two types of perturbations (4) and (8) which give different
results even in the case whéris square. The same elementwise estimate (3) uses the
right scaled conditiorof G in (5) and thdeft scaled conditiof G in (9). The new
eigenvalue bound (10) is weaker in the sense that it contains an additional condition
number, namely the condition of the eigenvectors of the matrabove. But, of
course, the new bound is independent of the old one and it may well happen that
(10) gives sharper estimates than (6) under the same elementwise bound (3). This
asymetry is typical for the true hyperbolic singular value problem, and it disappears,
if J = I which is the standard singular value case. We will also give some useful
estimates for this new condition number and illustrate our theory by some examples.

Another aspect of our results is that they apply to the case of a triangular @&ctor
thus allowing new eigenvalue bounds under elementwise perturbation of the matrix
H itself. As we know, there are classes of matrices which allow well conditioned
triangular decomposition — like the scaled diagonally dominant (s.d.d.) ones (see
[1]). Another such classes are the so-called quasidefinite matrices [6,14]. As a con-
sequence of our general Theorem 7 below the quasidefinite matrices are identified
as another class, allowing a very simple measure of the ‘well-behavedness’, i.e. of
the sensitivity of the relative eigenvalue boudd/A| subjected to the elementwise
error bounds H;;/H;;|. The new bounds appear to be a natural extension of similar
bounds for the positive definite case, obtained in [3]. More interesting still, taking
a positive definite matrix and changing the sign of one of its diagonal blocks (this
makes the matrix quasidefinite) appearsdéxreasdts eigenvalue sensitivity — a
phenomenon one would not expect at the first glance. We still do not have a full
quantitative description of this phenomenon.

Theorem 1. Let H from(1) be non-singular. Then there is F such that
G*GF = JFD?J;, F*JF =i, (11)

1 written for hyperbolic singular values, the estimate (6) naturally simplifiesagd < v|o;|.
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whereJ; = diag(+1) and D have the size of H and D is diagonal positive definite.
If, in addition, (2) and (8) hold, then for any such F the eigenvalue estimate for
H, H + §H reads

A 4 O

— < 1+v@+wIFI (12)
1

1—vR2+V)|FIP<

(Herev is taken from(9).) This estimate is sharp.

(Note that for a squar& (12) just reduces to (10) since thénis square with
F*JF = J which implies|F~1|| = ||F|| and||F ||| F 1| = | F||2.)

Proof. We start with the eigendecompositiontéf

H=GJG*=UD?J1U* (13)
with U unitary, /1 = diag(+1) andD diagonal and positive definite. Set

F=JG'UD . (14)
Then

G*GF = G*GJG*UD™ )1 = JJG*UD *1D?J1 = JFD?J;.
Also
F*JF = hDU*GJJJG*UD ) = nD D%/ D 1 = /.

We now prove that the spectral absolute valHes = v H2 is equal toG F F*G*.
Indeed,

GFF*G* =GJG*UD ?U*GJG* = H|H|;'H = |H|s. (15)
Similarly
\HIsY26G* HIsY? = UD Y F*JJFD'U* = UF*FU*. (16)

Conversely, take anyF satisfying (11); by F*G*GF = D? the matrix V
= GFD~1Jy is unitary, and

HV =GJG*FD™YJ1 = GJJFD?)1D Y1) = VvD? )
and
F=JG*VD™}
S0, (16) holds foF, V as well and all suck have the same norms. Now we estimate
IX*$Hx|<|x*8GJG*x| + |x*GJ8G*| + |x*§GJ5G*x|
<218G*x||G*x|| + [8G*x |12
=2+ Vx*GG*x = 2+ vvx*|H|s VPU F*FU* | H|s Y«
<2+ | F*Fllx*[Hlsx = (24 v)v]| F|[x*|H|sx.
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Now apply Theorem 2.1 from [16] to obtain (12).
We now prove that our estimate is sharp. Té&kas a one-row matrix

G=[an - &)
Then there is only one eigenvalue= GJG*. We choose the perturbation as
5G =[8g1 - dga]
with
Vi, i < m
3gi = .
(—14+/1-2v—1dg;, i>m

for0 < v < +/2—1.Then

, |82+ @+vvgl i <m,
(gi +d8)" =1 b,
g — 2+vvgs, i>m.
Now
A+ =) (& 46207 — ) (& +8g)° = 2+ |G|

i<m i>m
On the other hand (14) gives (note that here= 1, D = |[A|Y2 = |G J G*|Y/?)
F=JG*/|GIG*)Y? and ||F|®=|G|?/|GJG*|.
Thus,

X+ S 2 G|?
+ :1+(+v)v|| I
A |G JG*|

=1+ @+ v)|F|?

and the right-hand side inequality in (12) goes over into an equality. This shows that
(12) cannot be improved in genefal. [J

Since the basis of our proof is the estimate
X" Hx| < (24 )| FI|°x* | H|sx 17

the eigenvector perturbation bound contained in [13] can be immediately taken over.
Compared with the easier ‘dual’ resultin [13] the only novelty here is the extra factor
IF12.

We now give some results for the important cgd = 1.

Theorem 2. Let H = GJG* be as in(1) with

J = [é _?} . (18)

2 In fact, the same example was produced in [16] where it was considered “incurable”. We are glad to
correct here this pessimistic statement.
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Then
TH(GG*)? = Tr(H?), (19)
TIGG* > Tr(|H|s). (20)

The following are equivalent
(i) any of the two inequalities above becomes an equality
(i) G*G and J commute
(iii) |H|s=GG*.

Proof. Using the Cauchy—Schwarz (C-S) inequality for the trace scalar product on
matrices with the nornjj - ||g we obtain
IGIG*|2=Tr(GIG*GIG¥)
=Tr(G*GJG*GJ) = (G*GJ,(G*GJ)*)
<IG*GJEIG*GI)*|e = |IG*GT |2
=THG*GIIG*G) = TI(G*G)?] = |G*G|2.
Equality in C—S means that
G*GJ =aJG*G forsomex > 0.

By taking norms we obtaior = 1. Thus,G*G and J commute. The proof of the
second inequality is similar: Decompose

H=GJG*=UDJ1DU*
with D diagonal and positive definité*U = I,_,, andJ; a diagonal matrix of signs.
Then, again by the C-S inequality
Tr(|H|9=Tr(D?) = Tr(JG*U J1)*G*U) < [|JG*U 1|l G*U e
=[G*|g = Tr(GGY).
Again, the equality holds, if and only if
JG*UJ1 =aG*U, >0
and by taking norme = 1, i.e.
JG*UJL=G*U or JG"=G*UJU*
hence
JG*G = G*UJU*G
s0,G*G andJ commute. In this case
GJIG*GJG* = GG*GG*,

which meansH |s = GG*. Conversely, the last equality implies the equality in (20)
and soG*G andJ commute. [
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In the commutativity case we can write
GiG1 GiGop * 0
x> — | Y1 1 —
GG = [G;Gl GIGz] B [0 *]’
i.e.G7G2 = 0. Now
1 0| |G*
H = GJG* =[G1G2] [0 —1] [Gﬂ = G1G; — G2G3,
where the product of the two terms vanishes:
GlGiGzG* = GzGEGlGT =0.
Thus,
G1G] = Hy “+"partofH,
G2G5=H_ “—"partof H.

In other words, the equality sign is attained, if and only ifGY G* = G1G] —
G2G5 just £ parts ofH appear.

If H is a diagonal matrix of signs then the preceding theorem is strengthened as
follows.

Theorem 3. Let F be am x m matrix with

F*JF = J1, J1 = diag£1). (21)
Then

IF*Fllg > v/m, (22)

IFllg > «/m, (23)

IF|l > 1. (24)

The following are equivalent
(i) any of the three inequalities above becomes an equality.
(i) F*F = 1.

Proof. Anything concerning (23) and (22) follows immediately from the preceding
theorem. Also, from (ii) it directly followd| F|| = 1. Conversely, let| F|| = 1 hold.
Without loss of generality we can assume that kidind.J; have the block form (18)
(possibly with different block sizes). By partitioning

F = [ +} , according to the partition af

(21) reads

X*FiFix =x"x +x"F*F_x forx = Jix,

X*F{Fix = —x"x +x*F*F_x forx = —Jux.
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Now, || F|| < 1implies|| F+|| < 1 which, together with the identities above, yields
FiF x=x, Fx=0 forx = Jx,

F*F_x=x, F;x =0 forx = —Jyx,
from which (ii) follows. O

The two theorems above will enable us to single out the case of commuting
G*G, J as the case with optimal constant in the eigenvalue estimate (12) namely
the one with| F|| = 1.

Theorem 4. Let H = GJG* be non-singular and let F be defined (). Then

*GG*x

IFI? =m0 > (25)
x*|H [sx
The foIIowmg are equivalent
(i) G*G and J commute.
(i) The inequality25) becomes an equality.
(i) F*F =1.

Proof. From (16) we obtain

F*F = U*H|IsY?uGGe* | H|ISYU. (26)
Thus, the quantity
—1/2 * *
*|H GG* H GG
IF|? = max> 15" |Hls —max>T 221 (27)
x#0 x*x x#0 x*|H |sx

is the largest eigenvalue of the generalized eigenvalue problem

GG*x = L|GJG*|sx.
So, the equality in (25) is equivalent tF|| = 1 and then (by Theorem 3) with
F*F =1 also.

By Theorem 2 it is also clear that (i) implies (ii). Conversely, the equality in (25)

implies

x*GG*x < x*|H|sx forallx
hence

Tr(G*G) < Tr(|H]|s),
which by Theorem 2 impliefH |s = GG™* and hence (ii). O

The value|| F||? can be understood as a sort of condition numbéf. i square
then |F~Y| = |[JF*J| = |F| and ||F||? coincides with the standard condition
number ofF. 3

3 For non-squaré this condition is connected with the natural biorthogonality defined. by
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The expression fof F|| in (25) can be easily rewritten into one with scaled ma-
trices, in fact, it is invariant under scaling. Setting

G =AB, |H|s=AA4
for any diagonal positive definitd gives
x*BB*x

| F||? = max————. (28)
x#£0  x*Ax

For G square Slapigar and Veseti [17] recently proved

IFI=IFTH < min (IGQ7HI2G . (29)

If His knownto be s.d.d., i.e.
H=4(J1+N)4, |[N|<1
then, according to [16, Theorem 2.29],

1 A n
—— <A Yxt S ————
x*Ax T (A - IN[Dx*x

and
n||B|?
IFI? < ———.
1INl
Thus, a low]| F|| is obtained, ifH is s.d.d. and theame scaling matrixl reduces the
norm of B = A4~1G as well. Quantitatively, this does not show the superiority of our

estimates based d@, J over those based on the Gramm maktiixself. To illustrate
properly the power of our estimates we take an example. Set

400000 0O 0 2 O I 0
G=|-400000 4 0 0 2 Of, J=[8 _1]. (31)
0 -4 4 0 0 2 3
This is a realistic example, obtained by the three-point discretization of the Sturm—
Liouville eigenvalue problem

(30)

L L vy =y YO =0, YD =0, av=0  (32)
dx dx

with strongly varyinga.
Scaling the rows o6 to the unit length give& = 4B with

1 0 0 5.10°° 0 0
B=|-1 10* 0 0 5.10° 0
0 -2/3 -2/3 0 0 13

Here||F||? ~ 16, condB ~ 10%, while the scaled condition ¢# |sis about 1&°, so
our bound is 16 - 10° which is about the full advantage of working with factors: the
half relative error.
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This very favourable state of affairs does not seem to be easy to single out under
general conditions. A bit easier is the case whtre in spite of an indefinitd — is
still positive definite. We have

Theorem 5. Let

1 0
G=AB=[G1 GZ]ZA[Bl BZ]’ J:[o _]i|’

with a squareG1 and any positive definite diagondl Set
R=B;'B,= GG,
and suppose

B=IR| <1
ThenH = GJG* is positive definite and for F from Theorehwe have
2 1487
IF|1? = .
1-8

Proof. The positive definiteness &f follows from
H = G1(I — RR*)G]. (33)
Set

F— [_;*] (I — RRH™ Y20,

whereU is unitary and such that
U*(I — RR)Y?GiG1(I — RRHY?U

is diagonal. Then one readily sees thatatisfies the conditions of Theorem 1 and
F*F = U*(I + RR*)(I — RR*)"tU

hence

1+ p?

. O
1—p2

IF*F| =

Now we can compare the two condition numbers for perturbation of the eigen-
values, the first starting from the matrik itself and the second starting from the
factorG. The first is given by (33) and [16] as

\ ~ g1 1B 1171 B 12
I1B1({ — RR™)B1|ll[|1By " (I — RR™) "By 7| < «/51_7/32 (34)
The second condition number is, by (9) and (12),
3/2
omax(| B]) <1+ﬁ2> 1
F|? < n|| BBy, 35
IFl omn(B) 142 VB By (35)

so that forg not close to one the latter is about the square root of the first.
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In the case oH positive definite the numbéfF || has an additional geometric
interpretation. According to (27) we have
T minay* x\—1/2 * x\—1/2
BGE _Ecn;gx (GG HGIG*(GG™)™H*x
and this is the cosine of the greatest principal angle between the column spaces of
G* andJG*. Indeed G*(G G*)~1/2 is an orthonormal basis in the first subspace and
JG*(GG*)~Y2in the second. FofF| = 1 these two subspaces coincide.
We now concentrate to the case of a square fa@tsuch thatd8 = D~1G is well
conditioned. This is the case in which our previous results are rather poor. On the
other hand, square factor appears in symmetric decompositions, in particular, if in

H=GJG*, J=diag+1) (36)
the factorG is lower triangular. We may always choos® with positive diagonal.

As is easily seen, bot@ (if it exists) andJ are uniquely determined k. Another
canonical decomposition &f (again, if it exists) ighe scaling

H =DAD, Ddiagonal,A;; =1 (37)
In the particular case whefd — 7| < 1 the matrixH is called s.d.d. (see [1]).
By writing

G =DB (38)
we have
A = BJB*, B lower triangular. (39)
We consider perturbations bf of the type
Hw H+68H = D(A+38A)D. (40)
Hereé H may be bounded as
[6H| < e|H|or, equivalently|5A| < ¢|A]| (41)
oras
I8H;;| < ey/|H;i||Hj;| or, equivalently |8A4;;] < e. (42)
Then
H+68H = D(BJB* +8A)D = DB(J + N)B*D (43)
with
N =B 1AB™*. (44)

We now need a lemma controlling the triangular indefinite decompositior-efv
for smallN. The following result is akin to the results of [5] far= 1.

Lemma 6. Let N be a Hermitian matrix withN|| < 1/2. Then there exists a unique
lower triangularI” such that

J+N=I+DJU+T"), (45)
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where
NZ)
ITe < T VI avie (46)
Proof. From (45) we obtain
N=JI*+rJj+1rJr (47)
or,withX =1/,
X+ X*+XJX"=N, (48)

where upper triangulaX is to be determined. This equation can be brought into a
fixed-point form as

X = M(X) = —P(XIX*) + P(N). (49)

Here# is the linear operator mapping the real space of all Hermitians into the real
space of all upper triangulars with the real diagonal, defined by
P2(X +X*) = X.
The Euclidian-generated norm &fis
P(X 1
x#0 [ Xle V2
We will treat this equation by the Banach fixed-point theorem. It is esily seenihat
maps the (Euclidean) bal (0, M) into itself for

_ V2|Nlle
1+./1-2|N|E

under our condition PN ||[g < 1. The contractivity of.# follows from

< V2|N|g,

1
4 (X) — A (Y)lle < Ellﬂ’((X +NJIX -+ X -IX+Y))e

SIZIElX + YIelX —Ye < 21ZIeMIIX —Y]e < 2IIN|elX — Y.
Thus, the upper diagonal factbr+ I'* exists and is bounded by
ITle=IXle<M<V2INle<1 O
Theorem 7. Let H = GJG*, G = DB lower triangular, D with non-increasing
diagonals. Let H be perturbed intd + § H = D(A + §A) D with
2II8A] < 1.
Then the perturbatiod; of the eigenvalug; is bounded by6) with

V2|5Ale
1+/1-2|5A)gllB~1|2

v=BlIB~Y® (50)
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Proof. From the previous lemma, (43) and (44) it follows
H+8H =DB(I +T)J+I*)B*D,
and now our perturbation problem reduces to the perturbation of the matrix pair
BD?B*, ]
into
(I + IBD?B*(1 +T*), J
or, equivalently, of
BD?B*, J
into
(I +D)BB* (1 +17), .

where
B=bDBD', I'=bDrp1
Now, by (44)

INlle < I8A[gl B~

and by the previous lemma and the fact figt< |I'| (note thatl" is lower triangular
and the diagonal dD non-increasing),

V2|5Allgl B2
1+ /1 - 2I5A gl B~1|2

ITle < Il <

Now (4) is applicable with'G = GoD, §G = I'GoD andv = ||I']| < ||I'||e. Hence
(6) implies (50). O

Note that in (50) the expressidd A ||g can be substituted k| A || for perturba-
tion (41) and byue for perturbation (42).

Let us compare the new estimate with two earlier ones. The first is the case
with J = I (H positive definite) where a very simple calculation in the spirit of
[3][13] givesv = ||8A||||A~L| such that our estimate has essentially an extra factor
I BIIIB~1|. Another related estimate is the one for s.d.d. matrices from [1]. There
perturbation (3) implies

1_ ne \)Li~|—5)ui<1_L7
1IN Ai 1IN
whereN is the off-diagonal part of . This estimate is not strictly comparable with

ours but it has about the same force: fo¥| very small this yield§sx; /1| < ne
whereas ours yields i, /A;| < +/2ne.
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On the other hand, our estimate covers much more than just s.d.d. matrices. Take
an example:

1 0 ¢
A=|0 1 z|, zreal
lz z 1
Then
M1
B = 1 . J=1
z z 1— 272

and forz < 1/+/2 A is positive definite and also s.d.d. At the boundaeg 1/+/2
all existing estimates necessarily become void.
Now changeAszinto —1. Then

1 1
B= 1 . J= 1 ,
7z 7z N1+72 -1

while here the s.d.d — based estimate stops at the singutasityt/+/2, the new
estimate (50) yields useful bounds, except wheitself is extremly large. This is
seen from
1 1
Bl= 1 1
A4+2:% Y2 |-z —z 1

It appears that taking a positive definite matrix and changing the sign of one of its
diagonal blocks makes the matrix better behaved (a full quantitative formulation of
this phenomenon is still wanted).

This suggests one to consider the class of Hermitian matrices which — up to a
simultaneous permutation of rows and columns — has the form

o[l e

., Hi1, Hoy positive definite. (51)
Hfz _HZZ]

Such matrices are callepliasidefinite The set of quasidefinites is obviously scaling
invariant. Another remarkable property of these matrices is that they always allow
decomposition (36) witlG lower triangular. Moreover, the diagonalsléf andJ
have the same signs (cf. [14,6]).

We will now derive the eigenvalue bounds for an elementwise perturbed quasi-
definite matrixH .

Theorem 8. LetH = DAD be quasidefinite and let A be partitionied according to
(51).Then the boun0) in Theorenv holds with

IBlle<v/nmax(|A11+ Ar2A3 ALl 1Az + AlpALi Arall),
1B~ e <vmmax AL 1AL -
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Proof. LetH, A, D, Bbe asin (36)-(39). Then

a=plAn O |pry p| 0 A|pr_ pips
0 —A>o A?EZ 0

with A11, A2 positive definite,B lower triangular,P a permutation and/ =
sign(diag(H11, . .., Hyn)). Then

PP = [1 0}

0 I
and
JA=T+S = LAM* (52)
with
r=p |41 O 1 pT  Lositive definite (53)
0 A2
s=p| .0 A PT, skewHermitian (54)
—AIZ 0

L, M lower triangular with unit diagonal and diagonal with positive diagonal ele-
ments, actually,

B* = AY2Mm*, B =JLJAY?

Now our considerations will closely follow the proof of the main theorem in Section
2 of [8]. In contrast to [8] our matrices may be complex, but their structure (53) and
(54) allows the basic relation (52)As in [8] we rewrite (52) as

AM*L™ = L7Ycc*L=* + L~1sL~*
with T = CC*. Hence
Aii = (AM*L™);; = (L7XCC* L™ + (L7YSL™);4. (55)

Although the skew-Hermitian matrix ~1SL* may be non-real its diagonal must
vanish (in the real case this is trivial). Indedgd,"1SL~*);; is purely imaginary,
whereas the other two terms in (55) are real.(@0,'SL~*);; = 0. We obtain

Aii = |CL *e;||?
or
ICL™* A7 2| =1

4 Matrices JA would be called non-Hermitian positive definite in the terminology of [8] which treats
real matrices.
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and

IC*L™* 47 2| = /. (56)
Similarly,

IC*M ™ A7 2| = 1
and

IC* M 472 = . (57)
We do the same fot/ A)~1:
JAT=ma L = e+ 8§t
with § = C~1SC~* skew-Hermitian and
I+HT=u-85u-5H"1
with — 52 positive definite. Thus,
AL7IM = m*c™*(1 - §57c M — m*c* S - §H e m.
Here again the rightmost term is skew-Hermitian with vanishing diagonal elements
and

1 NP
= (I — 8%)7Y2Cc"me;|?

2]

or
(1 = $3~Y2CIMAY e = 1
and hence
(1 = $3~Y2C M AY?)|g = V. (58)
Similarly,
11 = §3)~V2C™ LAY 2| = 1
and

(I = 85~ Y2C LAY ||g = /n. (59)
We need the following norms:

IBlle=LAY?|e < VnllCU — §3)Y2
=/n|T = ST71S| = V/n||C + SC™*,
1B Hlg=IL7*4Y2|e < VnlC7H.
Since the norm is permutation invariant,

|T — ST~
_ H [1411 + A12A 5y A1, 0 }
B 0 Ao+ A’{ZAIIlAlz
= max(|A11 + A12A53 A%, | A2z + AHA T Aral])
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and also
IC7Y) = max(IAZE 1AZ5 1D
This gives the assertion.(]

The foregoing result essentially enlarges our knowledge on the class of well-be-
haved indefinite Hermitian matrices. While positive definite matrices are completely
classified in this respect, the indefinite case appeared as more difficult (see [3,16]).
Moreover, our result shows that a quasidefinite matrix behaves, in a sense, better than
a positive definite one. While the latter needs a reasonable norm of the full scaled
matrix inverseA 1, the former needs the same only for the diagonal blocks -ef
the off-block diagonal ofA should just not be too large. So, the new estimates may
carry improvements even in the case of an s.d.d. matrix: not all off-diagonals are
equally dangerous. The only case, where our estimates carry no improvement at all,
are positive definite matrices.

For H tridiagonal the decompositio — A/ = GJG' with G bidiagonal has
been deeply studied in the recent paper [10] showing@raty be reliably used for
accurate eigensolution in spite of the absence of pivoting.

Finally, let us mention some open problems, connected with our present results.
A drawback of our last theorem is that it gives estimates in terms of the Euclidian
norm, whereas direct spectral norm estimates would be more desirable. They would
also allow a more qualitative comparison with the positive definite case treated in
[3]. This would urge us to improve the technique of [8] correspondingly — a task to
be made in the future. Another subject for future work is to construct an algorithm
for accurate computing of the eigensolution of such matrices. A general method was
recommended in [15,11] and analysed in [12]; it begins by the universal block indef-
inite symmetric decomposition based on [2] with complete pivoting (this algorithm
was analysed in [12]) and continues by a one-sided hyperbolic Jacobi algorithm on
the so-obtained factor. Now, our analysis suggests that for quasidefinites a simple
LDL* decomposition with previous sorting of the diagonal should be enough. The
comparison of the two is in order.
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