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Abstract

We obtain eigenvalue perturbation results for a factorised Hermitian matrixH = GJG∗
whereJ2 = I andG has full row rank and is perturbed intoG + δG, whereδG is small with
respect toG. This complements the earlier results on the easier case ofG with full column
rank. Applied to square factorsG our results help to identify the so-called quasidefinite ma-
trices as a natural class on which the relative perturbation theory for the eigensolution can
be formulated in a way completely analogous to the one already known for positive definite
matrices. © 2000 Elsevier Science Inc. All rights reserved.
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Consider a Hermitian matrix in the factorised form

H =GJG∗, J = diag(±1), (1)

which we assume as non-singular (this implies thatG∗ has full column rank). The
matrixH is perturbed as

H + δH =(G + δG)J (G + δG)∗ (2)

with the elementwise estimate

|δG|6ε|G|. (3)

The (equally ordered) eigenvalues ofH, H + δH are denoted byλi , λi + δλi , re-
spectively. In this paper we will derive relative eigenvalue perturbation bounds, i.e.
bounds forδλi/λi .
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Keeping a matrix in the factorised form may have advantages because the con-
dition of the factor is often just the square root of the condition of the product thus
alleviating error troubles. This is known to be the case for the standard singular value
problem withJ = I . A similar result holds with generalJ, if G∗G is positive definite
(this meansG with full column rank) as was shown by Veselić and Slapnǐcar [16]. In
this case the relative bound (3) implies

‖δGx‖ 6 ν‖Gx‖ for all x (4)

with

ν = ε
σmax(|GD−1|)
σmin(GD−1)

(5)

for any diagonal positive definiteD. The bound (4), in turn, implies

1 − ν(2 + ν) 6 λi + δλi

λi

6 1 + ν(2 + ν). (6)

A related eigenvector perturbation bound was given in [13]. The quotient on the
right-hand side of (5) is called the right scaled condition number ofG. Its appearence
is typical whenever relative bounds are sought.

The main technique of [16] is to convert the eigenvalue problem forH into the
one for the matrix

T = JG∗G, (7)

or, equivalently, for the Hermitian matrix pair

G∗G ,J.

It is remarkable that even in the indefinite case the condition number of the – not
necessarily orthogonal – eigenvectors ofT does not enter the eigenvalue bound (6).

In this paper we study the harder, complementary case withGG∗ positive definite
(i.e. G∗ has full column rank). Again, the link to the matrixT will be used; this
time the condition number of the eigenvectors ofT will be a substantial part of the
obtained bounds. Moreover, it turns out that the mere requirement thatG∗ be of
full column rank does not suffice to obtain reasonable results. We must ask that
H = GJG∗ is non-singular. This can be understood from examples where a full
column-rankG∗ and an indefiniteJ yield evenH = 0. The latter effect disappears if
J = I or if G is square.

Examples of such problems are the ones in which a Hermitian matrix is given as
a difference of two positive definites, which are given by their factors [9]:

H = MM∗ − NN∗ = GJG∗

with

G = [
M N

]
, J =

[
I 0
0 −I

]
.

This is a common way to express downdating problems. The problem of determin-
ing the eigenvalues directly fromG,J is often called the hyperbolic singular value
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problem; the valuesσi = sign(λi)
√|λi | are then called hyperbolic singular values of

the pairG, J.1 In this case (3) implies

‖δG∗x‖ 6 ν‖G∗x‖ for all x (8)

with

ν = ε
σmax(|G∗D−1|)
σmin(G∗D−1)

(9)

for any diagonal positive definiteD. The new estimate reads – in the simplest case
of G square

1 − ν(2 + ν)‖F‖‖F−1‖6 λi + δλi

λi

6 1 + ν(2 + ν)‖F‖‖F−1‖, (10)

whereF is the eigenvector matrix forT. The difference between the two cases is
nicely characterised by the two types of perturbations (4) and (8) which give different
results even in the case whenG is square. The same elementwise estimate (3) uses the
right scaled conditionof G in (5) and theleft scaled conditionof G in (9). The new
eigenvalue bound (10) is weaker in the sense that it contains an additional condition
number, namely the condition of the eigenvectors of the matrixT above. But, of
course, the new bound is independent of the old one and it may well happen that
(10) gives sharper estimates than (6) under the same elementwise bound (3). This
asymetry is typical for the true hyperbolic singular value problem, and it disappears,
if J = I which is the standard singular value case. We will also give some useful
estimates for this new condition number and illustrate our theory by some examples.

Another aspect of our results is that they apply to the case of a triangular factorG
thus allowing new eigenvalue bounds under elementwise perturbation of the matrix
H itself. As we know, there are classes of matrices which allow well conditioned
triangular decomposition – like the scaled diagonally dominant (s.d.d.) ones (see
[1]). Another such classes are the so-called quasidefinite matrices [6,14]. As a con-
sequence of our general Theorem 7 below the quasidefinite matrices are identified
as another class, allowing a very simple measure of the ‘well-behavedness’, i.e. of
the sensitivity of the relative eigenvalue bound|δλ/λ| subjected to the elementwise
error bound|δHij /Hij |. The new bounds appear to be a natural extension of similar
bounds for the positive definite case, obtained in [3]. More interesting still, taking
a positive definite matrix and changing the sign of one of its diagonal blocks (this
makes the matrix quasidefinite) appears todecreaseits eigenvalue sensitivity – a
phenomenon one would not expect at the first glance. We still do not have a full
quantitative description of this phenomenon.

Theorem 1. Let H from(1) be non-singular. Then there is F such that

G∗GF = JFD2J1, F ∗JF = J1, (11)

1 Written for hyperbolic singular values, the estimate (6) naturally simplifies to|δσi | 6 ν|σi |.
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whereJ1 = diag(±1) and D have the size of H and D is diagonal positive definite.
If, in addition, (2) and (8) hold, then for any such F the eigenvalue estimate for
H,H + δH reads

1 − ν(2 + ν)‖F‖26 λi + δλi

λi

6 1 + ν(2 + ν)‖F‖2. (12)

(Hereν is taken from(9).) This estimate is sharp.

(Note that for a squareG (12) just reduces to (10) since thenF is square with
F ∗JF = J which implies‖F−1‖ = ‖F‖ and‖F‖‖F−1‖ = ‖F‖2.)

Proof. We start with the eigendecomposition ofH

H = GJG∗ = UD2J1U
∗ (13)

with U unitary,J1 = diag(±1) andD diagonal and positive definite. Set

F = JG∗UD−1J1. (14)

Then

G∗GF = G∗GJG∗UD−1J1 = JJG∗UD−1J1D
2J1 = JFD2J1.

Also

F ∗JF = J1D
−1U∗GJJJG∗UD−1J1 = J1D

−1D2J1D
−1J1 = J1.

We now prove that the spectral absolute value|H |s = √
H 2 is equal toGFF ∗G∗.

Indeed,

GFF ∗G∗ = GJG∗UD−2U∗GJG∗ = H |H |−1
s H = |H |s. (15)

Similarly

|H |−1/2
s GG∗|H |−1/2

s = UD−1F ∗JJFD−1U∗ = UF ∗FU∗. (16)

Conversely, take anyF satisfying (11); byF ∗G∗GF = D2 the matrix V

= GFD−1J1 is unitary, and

HV = GJG∗FD−1J1 = GJJFD2J1D
−1J1 = V D2J1

and

F = JG∗V D−1,

so, (16) holds forF, V as well and all suchF have the same norms. Now we estimate

|x∗δHx|6 |x∗δGJG∗x| + |x∗GJδG∗| + |x∗δGJδG∗x|
62‖δG∗x‖‖G∗x‖ + ‖δG∗x‖2

=(2 + ν)νx∗GG∗x = (2 + ν)νx∗|H |−1/2
s UF ∗FU∗|H |−1/2

s x

6(2 + ν)ν‖F ∗F‖x∗|H |sx = (2 + ν)ν‖F‖2x∗|H |sx.



K. Veselić / Linear Algebra and its Applications 309 (2000) 85–102 89

Now apply Theorem 2.1 from [16] to obtain (12).
We now prove that our estimate is sharp. TakeG as a one-row matrix

G = [
g1 · · · gn

]
.

Then there is only one eigenvalueλ = GJG∗. We choose the perturbation as

δG = [
δg1 · · · δgn

]
with

δgi =
{

νgi, i 6 m

(−1 + √
1 − 2ν − ν2)gi , i > m

for 0 < ν <
√

2 − 1. Then

(gi + δgi)
2 =

{
g2

i + (2 + ν)νg2
i , i 6 m,

g2
i − (2 + ν)νg2

i , i > m.

Now

λ + δλ =
∑
i6m

(gi + δgi)
2 −

∑
i>m

(gi + δgi)
2 = (2 + ν)ν‖G‖2.

On the other hand (14) gives (note that hereU = 1, D = |λ|1/2 = |GJG∗|1/2)

F = JG∗/|GJG∗|1/2 and ‖F‖2 = ‖G‖2/|GJG∗|.
Thus,

λ + δλ

λ
= 1 + (2 + ν)ν‖G‖2

|GJG∗| = 1 + (2 + ν)ν‖F‖2

and the right-hand side inequality in (12) goes over into an equality. This shows that
(12) cannot be improved in general.2 �

Since the basis of our proof is the estimate

|x∗δHx| 6 (2 + ν)ν‖F‖2x∗|H |sx (17)

the eigenvector perturbation bound contained in [13] can be immediately taken over.
Compared with the easier ‘dual’ result in [13] the only novelty here is the extra factor
‖F‖2.

We now give some results for the important case‖F‖ = 1.

Theorem 2. LetH = GJG∗ be as in(1) with

J =
[
I 0
0 −I

]
. (18)

2 In fact, the same example was produced in [16] where it was considered “incurable”. We are glad to
correct here this pessimistic statement.
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Then

Tr(GG∗)2 > Tr(H 2), (19)

TrGG∗ > Tr(|H |s). (20)

The following are equivalent:
(i) any of the two inequalities above becomes an equality;
(ii) G∗G and J commute;
(iii) |H |s = GG∗.

Proof. Using the Cauchy–Schwarz (C–S) inequality for the trace scalar product on
matrices with the norm‖ · ‖E we obtain

‖GJG∗‖2
E=Tr(GJG∗GJG∗)
=Tr(G∗GJG∗GJ) = 〈G∗GJ, (G∗GJ)∗〉
6‖G∗GJ‖E‖(G∗GJ)∗‖E = ‖G∗GJ‖2

E

=Tr(G∗GJJG∗G) = Tr[(G∗G)2] = ‖G∗G‖2
E.

Equality in C–S means that

G∗GJ = αJG∗G for someα > 0.

By taking norms we obtainα = 1. Thus,G∗G and J commute. The proof of the
second inequality is similar: Decompose

H = GJG∗ = UDJ1DU∗

with D diagonal and positive definiteU∗U = In−m andJ1 a diagonal matrix of signs.
Then, again by the C–S inequality

Tr(|H |s)=Tr(D2) = Tr((JG∗UJ1)
∗G∗U) 6 ‖JG∗UJ1‖E‖G∗U‖E

=‖G∗‖2
E = Tr(GG∗).

Again, the equality holds, if and only if

JG∗UJ1 = αG∗U, α > 0

and by taking normsα = 1, i.e.

JG∗UJ1 = G∗U or JG∗ = G∗UJU∗

hence

JG∗G = G∗UJU∗G
so,G∗G andJ commute. In this case

GJG∗GJG∗ = GG∗GG∗,
which means|H |s = GG∗. Conversely, the last equality implies the equality in (20)
and soG∗G andJ commute. �
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In the commutativity case we can write

G∗G =
[
G∗

1G1 G∗
1G2

G∗
2G1 G∗

1G2

]
=

[∗ 0
0 ∗

]
,

i.e.G∗
1G2 = 0. Now

H = GJG∗ = [G1G2]
[
I 0
0 −I

] [
G∗

1
G∗

2

]
= G1G

∗
1 − G2G

∗
2,

where the product of the two terms vanishes:

G1G
∗
1G2G

∗
2 = G2G

∗
2G1G

∗
1 = 0.

Thus,

G1G
∗
1 = H+ “+” part of H,

G2G
∗
2 = H− “−” part of H.

In other words, the equality sign is attained, if and only if inGJG∗ = G1G
∗
1 −

G2G
∗
2 just ± parts ofH appear.

If H is a diagonal matrix of signs then the preceding theorem is strengthened as
follows.

Theorem 3. Let F be ann × m matrix with

F ∗JF = J1, J1 = diag(±1). (21)

Then

‖F ∗F‖E >
√

m, (22)

‖F‖E >
√

m, (23)

‖F‖ > 1. (24)

The following are equivalent:
(i) any of the three inequalities above becomes an equality.
(ii) F ∗F = I .

Proof. Anything concerning (23) and (22) follows immediately from the preceding
theorem. Also, from (ii) it directly follows‖F‖ = 1. Conversely, let‖F‖ = 1 hold.
Without loss of generality we can assume that bothJ andJ1 have the block form (18)
(possibly with different block sizes). By partitioning

F =
[
F+
F−

]
, according to the partition ofJ

(21) reads

x∗F ∗+F+x = x∗x + x∗F ∗−F−x for x = J1x,

x∗F ∗+F+x = −x∗x + x∗F ∗−F−x for x = −J1x.
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Now,‖F‖ 6 1 implies‖F±‖ 6 1 which, together with the identities above, yields

F ∗+F+x = x, F−x = 0 for x = J1x,

F ∗−F−x = x, F+x = 0 for x = −J1x,

from which (ii) follows. �

The two theorems above will enable us to single out the case of commuting
G∗G,J as the case with optimal constant in the eigenvalue estimate (12) namely
the one with‖F‖ = 1.

Theorem 4. LetH = GJG∗ be non-singular and let F be defined by(14). Then

‖F‖2 = max
x /=0

x∗GG∗x
x∗|H |sx > 1. (25)

The following are equivalent:
(i) G∗G and J commute.
(ii) The inequality(25)becomes an equality.
(iii) F ∗F = I .

Proof. From (16) we obtain

F ∗F = U∗|H |−1/2
s UGG∗|H |−1/2

s U. (26)

Thus, the quantity

‖F‖2 = max
x /=0

x∗|H |−1/2
s GG∗|H |−1/2

s x

x∗x
= max

x /=0

x∗GG∗x
x∗|H |sx (27)

is the largest eigenvalue of the generalized eigenvalue problem

GG∗x = λ|GJG∗|sx.

So, the equality in (25) is equivalent to‖F‖ = 1 and then (by Theorem 3) with
F ∗F = I also.

By Theorem 2 it is also clear that (i) implies (ii). Conversely, the equality in (25)
implies

x∗GG∗x 6 x∗|H |sx for all x

hence

Tr(G∗G) 6 Tr(|H |s),
which by Theorem 2 implies|H |s = GG∗ and hence (ii). �

The value‖F‖2 can be understood as a sort of condition number. IfF is square
then ‖F−1‖ = ‖JF ∗J‖ = ‖F‖ and ‖F‖2 coincides with the standard condition
number ofF. 3

3 For non-squareF this condition is connected with the natural biorthogonality defined byJ.
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The expression for‖F‖ in (25) can be easily rewritten into one with scaled ma-
trices, in fact, it is invariant under scaling. Setting

G = DB, |H |s = DÂD

for any diagonal positive definiteD gives

‖F‖2 = max
x /=0

x∗BB∗x
x∗Âx

. (28)

ForG square Slapničar and Veselíc [17] recently proved

‖F‖ = ‖F−1‖ 6 min
XJ=JX

√
‖GX−1‖‖XG−1‖. (29)

If H is known to be s.d.d., i.e.

H = D(J1 + N)D, ‖N‖ < 1

then, according to [16, Theorem 2.29],

1

x∗Âx
6 ‖Â−1‖/x∗x 6 n

(1 − ‖N‖)x∗x
and

‖F‖2 6 n‖B‖2

1 − ‖N‖ . (30)

Thus, a low‖F‖ is obtained, ifH is s.d.d. and thesame scaling matrixD reduces the
norm ofB = D−1G as well. Quantitatively, this does not show the superiority of our
estimates based onG, J over those based on the Gramm matrixH itself. To illustrate
properly the power of our estimates we take an example. Set

G =

 400000 0 0 2 0 0

−400000 4 0 0 2 0
0 −4 4 0 0 2


 , J =

[
I3 0
0 −I3

]
. (31)

This is a realistic example, obtained by the three-point discretization of the Sturm–
Liouville eigenvalue problem

− d

dx
a(x)

d

dx
y − v(x)y = λy, y(0) = 0, y ′(1) = 0, a, v > 0 (32)

with strongly varyinga.
Scaling the rows ofG to the unit length givesG = DB with

B =

 1 0 0 5· 10−5 0 0

−1 10−4 0 0 5· 10−5 0
0 −2/3 −2/3 0 0 1/3


 .

Here‖F‖2 ≈ 16, condB ≈ 104, while the scaled condition of|H |s is about 1010, so
our bound is 1.6 · 105 which is about the full advantage of working with factors: the
half relative error.
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This very favourable state of affairs does not seem to be easy to single out under
general conditions. A bit easier is the case whereH – in spite of an indefiniteJ – is
still positive definite. We have

Theorem 5. Let

G = DB = [
G1 G2

] = D
[
B1 B2

]
, J =

[
I 0
0 −I

]
,

with a squareG1 and any positive definite diagonalD. Set

R = B−1
1 B2 = G−1

1 G2

and suppose

β = ‖R‖ < 1.

ThenH = GJG∗ is positive definite and for F from Theorem1 we have

‖F‖2 = 1 + β2

1 − β2 .

Proof. The positive definiteness ofH follows from

H = G1(I − RR∗)G∗
1. (33)

Set

F =
[

I

−R∗
]

(I − RR∗)−1/2U,

whereU is unitary and such that

U∗(I − RR∗)1/2G∗
1G1(I − RR∗)1/2U

is diagonal. Then one readily sees thatF satisfies the conditions of Theorem 1 and

F ∗F = U∗(I + RR∗)(I − RR∗)−1U

hence

‖F ∗F‖ = 1 + β2

1 − β2
. �

Now we can compare the two condition numbers for perturbation of the eigen-
values, the first starting from the matrixH itself and the second starting from the
factorG. The first is given by (33) and [16] as

‖|B1(I − RR∗)B1|‖ ‖B−∗
1 (I − RR∗)−1B−1

1 ‖ 6
√

n
‖B−1

1 ‖2‖B1‖2

1 − β2 . (34)

The second condition number is, by (9) and (12),

‖F‖2σmax(|B|)
σmin(B)

6
(

1 + β2

1 − β2

)3/2 √
n‖B−1

1 ‖‖B1‖, (35)

so that forβ not close to one the latter is about the square root of the first.
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In the case ofH positive definite the number‖F‖ has an additional geometric
interpretation. According to (27) we have

1

‖F‖2 = min
x /=0

x∗(GG∗)−1/2GJG∗(GG∗)−1/2x

and this is the cosine of the greatest principal angle between the column spaces of
G∗ andJG∗. Indeed,G∗(GG∗)−1/2 is an orthonormal basis in the first subspace and
JG∗(GG∗)−1/2 in the second. For‖F‖ = 1 these two subspaces coincide.

We now concentrate to the case of a square factorG such thatB = D−1G is well
conditioned. This is the case in which our previous results are rather poor. On the
other hand, square factor appears in symmetric decompositions, in particular, if in

H = GJG∗, J = diag(±1) (36)

the factorG is lower triangular. We may always chooseG with positive diagonal.
As is easily seen, bothG (if it exists) andJ are uniquely determined byH. Another
canonical decomposition ofH (again, if it exists) isthe scaling

H = DAD, D diagonal,Aii = 1. (37)

In the particular case when‖A − I‖ < 1 the matrixH is called s.d.d. (see [1]).
By writing

G = DB (38)

we have

A = BJB∗, B lower triangular. (39)

We consider perturbations ofH of the type

H 7→ H + δH = D(A + δA)D. (40)

HereδH may be bounded as

|δH | 6 ε|H | or, equivalently, |δA| 6 ε|A| (41)

or as

|δHij | 6 ε
√|Hii||Hjj | or, equivalently, |δAij | 6 ε. (42)

Then

H + δH = D(BJB∗ + δA)D = DB(J + N)B∗D (43)

with

N = B−1δAB−∗. (44)

We now need a lemma controlling the triangular indefinite decomposition ofJ + N

for smallN. The following result is akin to the results of [5] forJ = I .

Lemma 6. Let N be a Hermitian matrix with‖N‖ < 1/2. Then there exists a unique
lower triangularC such that

J + N = (I + C)J (I + C∗), (45)
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where

‖C‖E 6
√

2

1 + √
1 − 2‖N‖E

. (46)

Proof. From (45) we obtain

N = JC∗ + CJ + CJC (47)

or, with X = CJ ,

X + X∗ + XJX∗ = N, (48)

where upper triangularX is to be determined. This equation can be brought into a
fixed-point form as

X = M(X) = −P(XJX∗) + P(N). (49)

HereP is the linear operator mapping the real space of all Hermitians into the real
space of all upper triangulars with the real diagonal, defined by

P(X + X∗) = X.

The Euclidian-generated norm ofP is

‖P‖ = max
X /=0

‖P(X)‖E

‖X‖E
= 1√

2
.

We will treat this equation by the Banach fixed-point theorem. It is esily seen thatM
maps the (Euclidean) ballK(0,M) into itself for

M =
√

2‖N‖E

1 + √
1 − 2‖N‖E

<
√

2‖N‖E,

under our condition 2‖N‖E < 1. The contractivity ofM follows from

‖M(X) − M(Y )‖E ≤ 1

2
‖P((X + Y )J (X − Y )∗ + (X − Y )J (X + Y )∗)‖E

6 ‖P‖E‖X + Y‖E‖X − Y‖E 6 2‖P‖EM‖X − Y‖E 6 2‖N‖E‖X − Y‖E.

Thus, the upper diagonal factorI + C∗ exists and is bounded by

‖C‖E = ‖X‖E 6 M 6
√

2‖N‖E < 1. �

Theorem 7. Let H = GJG∗, G = DB lower triangular, D with non-increasing
diagonals. Let H be perturbed intoH + δH = D(A + δA)D with

2‖δA‖ < 1 .

Then the perturbationδλi of the eigenvalueλi is bounded by(6) with

ν = ‖B‖‖B−1‖3

√
2‖δA‖E

1 + √
1 − 2‖δA‖E‖B−1‖2

. (50)
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Proof. From the previous lemma, (43) and (44) it follows

H + δH = DB(I + C)J (I + C∗)B∗D,

and now our perturbation problem reduces to the perturbation of the matrix pair

BD2B∗, J

into

(I + C)BD2B∗(I + C∗), J

or, equivalently, of

B̂D2B̂∗, J

into

(I + Ĉ)B̂B̂∗(I + Ĉ
∗
), J,

where

B̂ = DBD−1, Ĉ = DCD−1.

Now, by (44)

‖N‖E 6 ‖δA‖E‖B−1‖2

and by the previous lemma and the fact that|Ĉ| 6 |C| (note thatC is lower triangular
and the diagonal ofD non-increasing),

‖Ĉ‖E 6 ‖C‖E 6
√

2‖δA‖E‖B−1‖2

1 + √
1 − 2‖δA‖E‖B−1‖2

.

Now (4) is applicable withG = Ĝ0D, δG = ĈĜ0D andν = ‖Ĉ‖ 6 ‖Ĉ‖E. Hence
(6) implies (50). �

Note that in (50) the expression‖δA‖E can be substituted byε‖A‖E for perturba-
tion (41) and bynε for perturbation (42).

Let us compare the new estimate with two earlier ones. The first is the case
with J = I (H positive definite) where a very simple calculation in the spirit of
[3] [13] givesν = ‖δA‖‖A−1‖ such that our estimate has essentially an extra factor
‖B‖‖B−1‖. Another related estimate is the one for s.d.d. matrices from [1]. There
perturbation (3) implies

1 − nε

1 − ‖N‖ 6 λi + δλi

λi

6 1 − nε

1 − ‖N‖ ,

whereN is the off-diagonal part ofA . This estimate is not strictly comparable with
ours but it has about the same force: for‖N‖ very small this yields|δλi/λi | 6 nε

whereas ours yields|δλi/λi | 6
√

2nε.
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On the other hand, our estimate covers much more than just s.d.d. matrices. Take
an example:

A =

1 0 z

0 1 z

z z 1


 , z real.

Then

B =

1

1
z z

√
1 − 2z2


 , J = I

and forz < 1/
√

2 A is positive definite and also s.d.d. At the boundaryz = 1/
√

2
all existing estimates necessarily become void.

Now changeA33 into −1. Then

B =

1

1
z z

√
1 + z2


 , J =


1

1
−1


 ,

while here the s.d.d – based estimate stops at the singularityz = 1/
√

2, the new
estimate (50) yields useful bounds, except whenz itself is extremly large. This is
seen from

B−1 =

1

1
(1 + 2z2)−1/2





 1

1
−z −z 1


 .

It appears that taking a positive definite matrix and changing the sign of one of its
diagonal blocks makes the matrix better behaved (a full quantitative formulation of
this phenomenon is still wanted).

This suggests one to consider the class of Hermitian matrices which – up to a
simultaneous permutation of rows and columns – has the form

H =
[
Ĥ11 Ĥ12

Ĥ ∗
12 −Ĥ22

]
, Ĥ11, Ĥ22 positive definite. (51)

Such matrices are calledquasidefinite. The set of quasidefinites is obviously scaling
invariant. Another remarkable property of these matrices is that they always allow
decomposition (36) withG lower triangular. Moreover, the diagonals ofH andJ
have the same signs (cf. [14,6]).

We will now derive the eigenvalue bounds for an elementwise perturbed quasi-
definite matrixH .

Theorem 8. LetH = DAD be quasidefinite and let A be partitionied according to
(51).Then the bound(50) in Theorem7 holds with

‖B‖E6
√

n max(‖Â11 + Â12Â
−1
22 Â∗

12‖, ‖Â22 + Â∗
12Â

−1
11 Â12‖),

‖B−1‖E6
√

n max(‖Â−1
11 ‖, ‖Â−1

22 ‖) .
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Proof. Let H, A, D, B be as in (36)– (39). Then

A = P

[
Â11 0
0 −Â22

]
P T + P

[
0 Â12

Â∗
12 0

]
P T = BJB∗

with Â11, Â22 positive definite,B lower triangular,P a permutation andJ =
sign(diag(H11, . . . , Hnn)). Then

P TJP =
[
I 0
0 −I

]
and

JA = T + S = LDM∗ (52)

with

T = P

[
Â11 0
0 Â22

]
P T, positive definite, (53)

S = P

[
0 Â12

−Â∗
12 0

]
P T, skew-Hermitian, (54)

L, M lower triangular with unit diagonal andD diagonal with positive diagonal ele-
ments, actually,

B∗ = D1/2M∗, B = JLJD1/2.

Now our considerations will closely follow the proof of the main theorem in Section
2 of [8]. In contrast to [8] our matrices may be complex, but their structure (53) and
(54) allows the basic relation (52).4 As in [8] we rewrite (52) as

DM∗L−∗ = L−1CC∗L−∗ + L−1SL−∗

with T = CC∗. Hence

Dii = (DM∗L−∗)ii = (L−1CC∗L−∗)ii + (L−1SL−∗)ii . (55)

Although the skew-Hermitian matrixL−1SL∗ may be non-real its diagonal must
vanish (in the real case this is trivial). Indeed,(L−1SL−∗)ii is purely imaginary,
whereas the other two terms in (55) are real. So,(L−1SL−∗)ii = 0. We obtain

Dii = ‖CL−∗ei‖2

or

‖CL−∗D−1/2ei‖ = 1

4 MatricesJA would be called non-Hermitian positive definite in the terminology of [8] which treats
real matrices.



100 K. Veselić / Linear Algebra and its Applications 309 (2000) 85–102

and

‖C∗L−∗D−1/2‖E = √
n. (56)

Similarly,

‖C∗M−∗D−1/2ei‖ = 1

and

‖C∗M−∗D−1/2‖E = √
n. (57)

We do the same for(JA)−1:

(JA)−1 = M−∗D−1L−1 = C−∗(I + Ŝ)−1C−1

with Ŝ = C−1SC−∗ skew-Hermitian and

(I + Ŝ)−1 = (I − Ŝ)(I − Ŝ2)−1

with −Ŝ2 positive definite. Thus,

DL−1M = M∗C−∗(I − Ŝ2)−1C−1M − M∗C−∗Ŝ(I − Ŝ2)−1C−1M.

Here again the rightmost term is skew-Hermitian with vanishing diagonal elements
and

1

Dii

= ‖(I − Ŝ2)−1/2C−1Mei‖2

or

‖(I − Ŝ2)−1/2C−1MD1/2ei‖ = 1

and hence

‖(I − Ŝ2)−1/2C−1MD1/2‖E = √
n. (58)

Similarly,

‖(I − Ŝ2)−1/2C−1LD1/2ei‖ = 1

and

‖(I − Ŝ2)−1/2C−1LD1/2‖E = √
n. (59)

We need the following norms:

‖B‖E=‖LD1/2‖E 6
√

n‖C(I − Ŝ2)1/2‖
=√

n‖T − ST −1S‖ = √
n‖C + SC−∗‖,

‖B−1‖E=‖L−∗D1/2‖E 6
√

n‖C−1‖.
Since the norm is permutation invariant,

‖T − ST −1S‖
=

∥∥∥∥
[
Â11 + Â12Â

−1
22 Â∗

12 0
0 Â22 + Â∗

12Â
−1
11 Â12

]∥∥∥∥
= max(‖Â11 + Â12Â

−1
22 Â∗

12‖, ‖Â22 + Â∗
12Â

−1
11 Â12‖)



K. Veselić / Linear Algebra and its Applications 309 (2000) 85–102 101

and also

‖C−1‖ = max(‖Â−1
11 ‖, ‖Â−1

22 ‖).
This gives the assertion.�

The foregoing result essentially enlarges our knowledge on the class of well-be-
haved indefinite Hermitian matrices. While positive definite matrices are completely
classified in this respect, the indefinite case appeared as more difficult (see [3,16]).
Moreover, our result shows that a quasidefinite matrix behaves, in a sense, better than
a positive definite one. While the latter needs a reasonable norm of the full scaled
matrix inverseA−1, the former needs the same only for the diagonal blocks ofA –
the off-block diagonal ofA should just not be too large. So, the new estimates may
carry improvements even in the case of an s.d.d. matrix: not all off-diagonals are
equally dangerous. The only case, where our estimates carry no improvement at all,
are positive definite matrices.

For H tridiagonal the decompositionH − λI = GJGT with G bidiagonal has
been deeply studied in the recent paper [10] showing thatG may be reliably used for
accurate eigensolution in spite of the absence of pivoting.

Finally, let us mention some open problems, connected with our present results.
A drawback of our last theorem is that it gives estimates in terms of the Euclidian
norm, whereas direct spectral norm estimates would be more desirable. They would
also allow a more qualitative comparison with the positive definite case treated in
[3]. This would urge us to improve the technique of [8] correspondingly – a task to
be made in the future. Another subject for future work is to construct an algorithm
for accurate computing of the eigensolution of such matrices. A general method was
recommended in [15,11] and analysed in [12]; it begins by the universal block indef-
inite symmetric decomposition based on [2] with complete pivoting (this algorithm
was analysed in [12]) and continues by a one-sided hyperbolic Jacobi algorithm on
the so-obtained factor. Now, our analysis suggests that for quasidefinites a simple
LDL∗ decomposition with previous sorting of the diagonal should be enough. The
comparison of the two is in order.
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