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ABSTRACT In this study, temperature-related structural changes were investigated in human, duck-billed platypus
(Ornithorhynchus anatinus, body temperature Tb ¼ 31–33�C), and echidna (Tachyglossus aculeatus, body temperature Tb ¼
32–33�C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (Rh)
and fractional (normalized) change in theellipticity (Fobs) at 22262nmof hemoglobinweremeasured. The temperaturewasvaried
stepwise from 25�C to 45�C. The existence of a structural transition of human hemoglobin at the critical temperature Tc between
36–37�Cwas previously shown bymicropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based
on light-scattering measurements, this study proves the onset of molecular aggregation at Tc. In two different monotremal
hemoglobins (echidna and platypus), the critical transition temperatures were found between 32–33�C, which are close to the
species’ body temperature Tb. The data suggest that the correlation of the structural transition’s critical temperature Tc and the
species’ body temperatureTb is notmere coincidencebut, instead, is amorewidespreadstructural phenomenonpossibly including
many other proteins.

INTRODUCTION

Structural transitions of the hemoglobin (Hb) molecule

induced by oxygen binding are well known and have been ex-

tensively characterized (1–4), and the thermal denaturation

of hemoglobin has recently gained great interest (5). Pre-

vious studies have shown that a number of human hemo-

globin variants denatured thermally more readily than did

human HbA (6,7). Studies on denaturation of hemoglobins

as a function of temperature, using optical rotatory disper-

sion and two-dimensional infrared correlation spectroscopy

(8–12), have revealed a two-staged thermal transition mech-

anism of denaturation. Nevertheless, these and other studies

(13) on denaturation of hemoglobins do not mention any

transition events occurring around body temperature. At the

initial structural perturbation stage (30–44�C), only the fast

red shift of the band from an a-helix has been found, indi-

cating that the native helical structures become more solvent

exposed as temperature increases.

Artmann et al. (14) reported a critical temperature of Tc ¼
36.4�C 6 0.3�C for human red blood cells (RBCs) at which

they undergo a sudden phase transition-like change in their

mechanical properties. This was observed in micropipette ex-

periments for erythrocytes changing from blocking to passing

through 1.36 0.2-mmmicropipettes, when applying 2.3-kPa

aspiration pressure (14).

Nonmonotonous slopes of the Arrhenius plots obtained

later in Hb viscosimetry studies (15) suggested that the cel-

lular phenomenon was linked to hemoglobin. An obvious

finding was the extremely high activation energy (366.6

kJ/mol) within the temperature range of 35–38�C for concen-

trated hemoglobin solutions (50 g/dL) compared to 55.1–58.1

kJ/mol found for higher and lower temperatures, respec-

tively. Such nonlinear behavior is in general believed to be

related to protein phase transitions (16). Remarkably, the

changes in viscosity appeared at the same temperature range as

a transition found later with circular dichroism (CD) spec-

troscopy using purified oxygenated and deoxygenated hemo-

globin solutions (17).

These studies provoked further methodological and the-

oretical questions about the physiological and biophysical

mechanisms involved in the hemoglobin temperature tran-

sition phenomenon. The fact that the temperature transition

of human Hbwas observed at normal body temperature could

be coincidence or, to the contrary, linked to the physiological

temperature of a particular species. Investigation of hemo-

globins from different species with different body temper-

atures could help elucidate this issue.

This study reports comparative measurements of temper-

ature-dependent changes in the hydrodynamic radius and

structure for human (Homo sapiens), monotremal echidna

(Tachyglossus aculeatus), and platypus (Ornithorhynchus
anatinus) hemoglobins—chosen for their distinctly different

body temperatures (;32–33�C for both species) compared

to humans (37�C). Two questions were posed in this study:

1), can hemoglobin temperature transitions be seen in static

and dynamic light scattering (DLS) experiments, and 2), is

there any correlation between the species’ body temperature,

Tb, and the structural transition temperature, Tc?
CD spectroscopy was used to study the overall structural

organization of hemoglobin (18–20). Although the CD signal

could show an aggregation- and size-related scattering effect,
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light scattering allows more precise detection of protein

particle size. Thus analyzing the fluctuation of scattered light

could provide valuable information on the hydrodynamic

radius (Rh), which may rapidly change at Tc. A comparison

of the hydrodynamic radii of hemoglobin molecules at dif-

ferent temperatures could provide information regarding un-

folding and hydration characteristics of the proteins.

MATERIALS AND METHODS

Blood samples

Human venous blood (2 mL) was obtained from healthy adult donors and

collected into heparinized syringes. Venous blood from free-living adult

echidnas (T. aculeatus) and platypuses (O. anatinus) were used as mono-

treme blood; ;2 mL of heparinized blood was obtained from each animal

and maintained at 2�C until analyzed.

Sample preparation

Air-oxygenated Hb was used in all experiments. Oxy-Hb samples were

prepared from erythrocyte (RBCs) suspensions obtained from whole blood

(17). RBCs were harvested by centrifugation at 20003 g for 10 min. RBCs

(0.5 mL) of the pellet were added to 9.5 mL CD buffer solution (0.1 M KCl,

61.3 mM K2HPO4, 5.33 mM KH2PO4) (21) and washed three times at 4200

3 g for 10 min. If necessary, the pH (7.4) and osmolarity (290–300 mOsm)

were adjusted with KH2PO4. RBCs (0.4 mL) were then hemolyzed in 3.6

mL distilled water, and 1 mL of this solution was added to 9 mL CD buffer,

filtered, separated by column electrophoresis, and diluted further with CD

buffer. Since absolute ellipticities in CD spectroscopy are concentration

dependent, the final Hb concentrations of 0.1–0.75mg/mLwere used for both

CD and light-scattering measurements. The hemoglobin concentration was

determined spectrophotometrically using a millimolar extinction coefficient

of 13.5 at 541 nm for oxyhemoglobin (22). Additionally, the samples were

analyzed by conventional sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) for purity.

Circular dichroism measurements

Far-ultraviolet (UV) CD spectra were measured with a Jasco J720 CD spec-

tropolarimeter (Jasco, Tokyo, Japan) equipped with a temperature Peltier

controller. Thermal unfolding of hemoglobin was studied between 25�C and

45�C in a 0.1-cm-thick quartz cuvette with a 0.1-cm optical path length

(Hellma, Jena, Germany).

Comparison of the actual temperature inside the cuvette with the tem-

perature set by the Peltier element showed a deviation,0.1�C for this temper-

ature interval. The starting temperature of the hemoglobin solution was

adjusted to 25�C and then (stepwise or gradually) increased. In the case of

stepwise temperature increments, the temperature was set manually and the

sample was allowed to equilibrate for 1 min at each temperature point. For

gradual temperature increase, a temperature ramp was set to 0.1�C min�1.

Subsequently, a complete wavelength scan (wavelength steps 1 nm,

average time¼ 4 s, time response¼ 2 s, band width¼ 1 nm) was carried out

in the far-UV region between 190 and 260 nm. This procedure was repeated

three times, with a new sample each time. Temperature scans of pure buffer

solutions were carried out at identical conditions to those used for hemo-

globin solutions. Blank spectra were subtracted from the Hb spectra at each

temperature point. From these wavelength scans, the absolute and relative

ellipticities at 222 6 2 nm were derived, representing a measure of the

a-helical content of the proteins. This wavelength was chosen since the CD

method is most sensitive at 222 nm to a-chain content in globins (23). The

fractional (normalized) change in the observed ellipticity at 2226 2 nm was

calculated according to (9)

Fobs ¼ ½EobsðTÞ � Emax�=½E25 � Emax�;
where Eobs(T) is the ellipticity at 222 nm at temperature T, Emax is the

ellipticity at the maximum temperature (�C) used, and E25 is the ellipticity

at 25�C. The same normalizing algorithm was applied for evaluations of

the light-scattering data.

Dynamic light-scattering measurements

DLS data were obtained with a temperature-controlled DAWN-EOS instru-

ment equipped with quasielastic light-scattering module (Wyatt Technology,

Santa Barbara, CA) in a temperature range of 25–45�C. The sample tem-

perature was changed (stepwise or gradually) as described above for CD

measurements. Temperature variations during a single measurement never

exceeded 60.2�C.
The instrument was used in batch (not flow-through) mode using glass

scintillation cells filled bubble-free with a 4-mL sample. Hb samples were

filtered twice through Millipore (Bedford, MA) 0.2-mm pore size filters and

degassed in vacuum, when necessary. The time-dependent autocorrelation

function (ACF) of the photon current was monitored with a software cor-

relator provided by the manufacturer. The first sampling time was 0.96 ms.

ACFs were taken and sampled every 2 s, containing 105–106 counts each.

Sets of ACFs collected at corresponding temperatures were averaged and

stored for analysis. Light-scattering data analysis was performed using a

second-order cumulant function (24):

GðtlÞ)bl 11 snjexpð�G1tl 1½G2t
2

l Þj2
� �

;

where G1 and G2 are the first and second cumulants, bl is the baseline in

arbitrary counts, and sn is a parameter related to the signal/noise ratio (i.e.,

the maximum initial value of the correlation function). The following for-

mula relates the hydrodynamic radius Rh to the first cumulant, G1:

Rh ¼ kBTq
2
=6phG1 where q2 ¼ ð4pns=l0ÞsinðQ=2Þ;

where l0 is the vacuum wavelength of incident light, ns is the index of

refraction of the solution,Q is the scattering angle, kB is the Boltzmann con-

stant, and h is the solvent viscosity at the experimental Kelvin temperature

T. The sample polydispersity was computed fromP¼G2/(G1)
2. This quantity

was used for discarding data that showed values of p . 0.05, indicating

excessive noise due to aggregates or dust. In the computation, the value of

Rh was normalized to CD buffer. Similarly, the radius was corrected for

the refractive index, assuming n ¼ 1.329 for water at 783 nm.

Statistical treatment of experimental data

For statistical analysis, all experiments were repeated multiple times.

Common statistical procedures (standard deviation, Student’s t-tests) were

applied to the data using Microsoft Excel 2003 package (Unterschleissheim,

Germany). In the case of highly scattered values, the Epanechnikov smooth-

ing kernel was applied using LabView Software (National Instruments,

(Austin, TX) as well as SPSS Software (SPSS, Munich, Germany). Unless

stated otherwise, standard deviation is shown in the figures.

RESULTS

Thermal denaturation of hemoglobins was monitored be-

tween 190 and 260 nm at stepwise, increased temperatures

between 25�C and 45�C. As expected, the far-UV CD spec-

tra of Hb purified from RBCs contained a typical a-helical
signature, with local minima at 208 and 222 nm (25). The

minimum at 222 nm was selected to monitor the tempera-

ture-dependent changes in ellipticity.
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Fig. 1 illustrates the phenomenon of nonlinearity of

thermal unfolding for monotremal and human hemoglobins

at physiological temperatures. The accelerated loss in ellip-

ticity, beginning between 33�C and 35�C, is clearly visible.

The denaturation curves are uneven and have characteristic

S-shapes for all studied hemoglobins that can be interpreted

as ‘‘slow-fast-slow rate’’ in terms of unfolding speed. Thus,

for each examined hemoglobin type, there is a temperature

interval where significant structural changes are induced by

slight temperature changes.

To determine the structural transition temperature for each

species with higher precision, the obtained S-curves were

divided into three quasilinear parts—each approximated by a

linear function. The cross sections of the best-fitting lines

were regarded as the beginning and end of the accelerated

transition temperature interval (Tc). This interval is shown in
Fig. 1 and corresponds to molecular rearrangements which

have been referred to as ‘‘structural transition’’.

The transition was always observed at the same temper-

ature for a given hemoglobin type in a given solvent. For

human hemoglobin, the transition was found to occur in the

range from 36�C to 37�C, in agreement with previous data

(17). The monotremal hemoglobins demonstrated princi-

pally a similar characteristic. However, the structural tran-

sition was observed at a lower temperature range (33–35�C
for both species).

CD is sensitive to structural changes of proteins as well as

to light scattering (26–27). Thus, the temperature transition

observed by CD spectroscopy has two possible causes: I),

partial thermal unfolding of hemoglobin a- (HBA) helices,
and II), changes in aggregation and/or in molecular size and

shape. These processes were further investigated by DLS. In

this method, the diffusion coefficient is correlated with pro-

tein size according to the Einstein-Stokes equation.

The heterogeneous particle size in Hb solutions is poten-

tially problematic as Hb dissociates in diluted solutions into

FIGURE 1 Fractional change in ellipticity at 222 6
2 nm (Fobs) with temperature for oxyhemoglobins

obtained from human blood and monotreme blood.

Data points were averaged from the original CD data

obtained from three to four samples of each type of

hemoglobin. The error bars represent standard devia-

tion of the respective fractional changes. Straight lines

show approximation of three distinctly linear parts of

the graph. Temperature intervals where the transition

occurs are marked as Tc (critical temperature) for each

species. Gray boxes show physiological temperature

range for each species.
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dimers and monomers, but not without the appearance of

large intermolecular aggregates. The resulting particles signifi-

cantly differ in size and shape; as a result, the scattering sig-

nal is noisy and must be processed further using smoothing

algorithms. Fig. 2 shows a typical original data plot of a light-

scattering experiment before and after mathematical data

processing. As seen in the CD experiments, the nonlinearity

of size change with temperature is clearly observed, with a

sharp turning point (‘‘kink’’) found for each hemoglobin type

almost exactly at the critical temperature, as seen previously.

Multiple temperature scans at identical conditions were

undertaken as countermeasures against high data dispersion.

The normalized data collected from four light-scattering ex-

periments for each animal sample are shown in Fig. 3. Unlike

the S-shaped curves with two ‘‘kinks’’ obtained in CD mea-

surements, DLS curves were found to be L-shaped. As with

the CDdata, almost linear regions can be defined on the curves,

separated by a transition point which is visible as a kink in

the curve. Comparison of the data from Figs. 1 and 3 strongly

indicates that the structural transition of hemoglobins at Tc is
always linked to body temperature, TB, of a particular species.
According to computations based on the assumption of the

quasispherical shape of hemoglobin molecules, the values of

Rh were consistent among Rh ¼ 3.15–3.20 nm (average Rh ¼
3.17 nm). These values are in accordance with those reported

previously for hemoglobin (24). The consistently increasing

radius of hemoglobins with rising temperature may be

attributed to the appearance of larger aggregates resulting

from a slightly enhanced surface hydrophobicity and most

likely not to a slight modification of the hydrodynamic shape

due to partial unfolding.

The observed differences in temperature behavior for hu-

man and monotremes were obviously linked to the protein

structure. All sequences shown in Fig. 4 were obtained from

the SwissProt protein sequence database. The HBA se-

quences (with accession number) were P69905 human,

P01979 platypus, P01977 and P01978 echidna; the hemo-

globin b (HBB) sequences were P68871 human, P02111

platypus, P02110 echidna. Amino acid sequence alignments

were determined according to themethod developed previously

by Myers and Miller (28). We also used a structure genetic

matrix based on the work of Feng et al. (29). Multiple amino

acid sequence alignments were made with the ‘‘Clustal’’

program (30–31).

Hemoglobins of the represented species were found to

retain a remarkable degree of homology, with some se-

quences almost identical in both monotremal species. Overall

comparison of the amino acid sequences of HBA and HBB

subunits of human and monotremes resulted in 68.08% and

74.6% identities and 17.7% and 11.6% similarities (replace-

ments with physicochemically similar amino acids), respec-

tively. Owing to this remarkable evolutionary conservation

of hemoglobin sequences, only 13–14% of the amino acid

residues (19–20 amino acid residues per HBA or HBB chain)

differ in their physicochemical properties.

Nevertheless, the comparative amino acid compositions of

these hemoglobins show characteristic differences. Most no-

tably, the number of nonpolar (hydrophobic) (Leu, Gly, Pro,

FIGURE 2 Original DLS data obtained for hu-

man hemoglobin (dots) and the resulting smooth-

ing curve calculated by Epanechnikov kernel (line).

A distinct kink is visible at;36�C, representing the
onset of accelerated particle size increase.
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Ala) amino acid residues is much higher in human Hb, ac-

companied by cluster-like substitutions between polar and

charged amino acids in the middle of both a- and b-chains.

DISCUSSION

Protein thermal unfolding with subsequent aggregation plays

a crucial role in protein science and medical engineering.

Despite its biological importance, little is known about the

mechanisms and potential pathways involved in the forma-

tion of molecular aggregates (12). Thermal aggregation of

proteins is usually characterized by an irreversible two-state

model (26,32) with the occurrence of folding/unfolding and

intermediate or uncooperative events (33–37). The change of

random coils appears at lower temperatures than those of all

other secondary structure elements. At the thermal unfolding

stage, the unfolding of solvent-exposed helical structures is

claimed to guide the structural transitions (12). The temper-

ature range 30–44�C has been generally described as an ini-

tial perturbation stage, without mentioning any peculiar

temperature transition points. However, the DLS studies pre-

sented here have provided further evidence of the presence of

a specific Hb temperature transition point first reported by

Artmann (14) as a hemoglobin unfolding/aggregation event.

As a reaction on temperature change, the tertiary structure of

the protein became abruptly looser and several protein sites

becamemore solvent exposed. The solvent-exposed structures

are expected to be responsible for the onset of aggregation.

At further thermal aggregation stages, the transition is domi-

nated by the formation of aggregates and unfolding of the

buried structures.

The important consequence of the study is that the effect is

not restricted to human beings and could be of general physio-

logical interest. A physiological meaning of the temperature

transition of monotremes and human hemoglobins may be

related to alterations in water balance. The protein hydration

issue is of special interest, because the amount of nonsolvent

water in Hb depends markedly on the temperature (38). It is

important to note that the interaction of hemoglobin with

water takes place in a ‘‘crowded’’ cytosolic environment, where

water is scarce and activity is limited (24). The crucial role of

molecular water bridges between hemoglobin molecules in

FIGURE 3 Fractional change of particle size with

temperature for oxyhemoglobin solutions derived from

DLS data. Data points were averaged from the original

data obtained from three to four solutions of each type

of hemoglobin. The error bars represent the standard

deviation of the respective fractional changes. Straight

lines show best approximation (R2/1) of two dis-

tinctly linear parts of the obtained L-shaped curves.

The transition temperature interval may be defined as

located close to the intersection point of best-approx-

imating trend lines and is marked as Tc (critical tem-

perature) for each species. Gray boxes show physiological

body temperature range for each species.
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high concentrated human hemoglobin solutions (45 g/dl)

was discussed in a previous study where we reported a sud-

den viscosity drop around human body temperature (15).

Preliminary estimations made by the same authors (15) indi-

cate that the structural transition of Hb leads to partial release

of hydration water in the range of decagrams per kilograms

of body weight. The particular mechanisms of such temper-

ature-induced dehydration are still to be revealed. The au-

thors (15) also suggested that conformational changes of Hb

molecules result in a thinning of the hydration shell. The data

obtained now in CD and DLS studies rather support another

hypothesis attributing the release of water to aggregation

events. The assumedmechanism is that slight conformational

rearrangements (CD data), when a protein undergoes a change

in topology, seemingly favor self-association (DLS data)

followed by releasing excessive water. In other words, partial

unfolding with subsequent formation of larger protein ag-

gregates could inevitably influence the protein hydration

shell and the number of particles, resulting in a release of

excess cell water into the bulk volume. This, in turn, would

change the colloid-osmotic pressure balance between cytosol

and blood plasma, potentially playing a role in homeostasis

at fever conditions and hyperthermia (39–41).

The fact that the structural transition point is related with

species’ physiological core body temperature might have

general biological relevance in respect to body temperature

sensing and management. Based on knowledge about the

pathophysiology of thermoregulation and heatstroke, one can

hypothesize that changes in protein conformation induced by

elevated temperature could play a role in triggering pathways

responsible for thermal regulation. We would like to mention

in this context a previous finding on a heat-induced micro-

tubule protein disassembly shown to be highly correlated to

species’ body temperatures in mouse, rat, calf, and chicken

(42). Interestingly the microtubule disassembly temperatures

were within the range of fever temperatures of corresponding

species.

There is also evidence of a relationship between protein

conformation, normal body temperature, and lethal temper-

ature of cells in culture. The maximum temperature of sur-

vival for chick fibroblasts (normal body temperature 42�C)
was 46.5�C and for gonadal cells from rainbow trout (normal

body temperature 12�C) was 26�C, respectively. It is thus

conceivable that protein organization could serve as thermo-

mediator(s) which modulate and/or initiate heat responses.

These results are relevant to elevated temperature effects a),

on cell shape (43); b), in reducing the ability of treated cells

to interact with other cells, or cultured substrates (44); and c),

in restricting the mobility of cell surface components (45).

These and other studies also suggest that many proteins may

play an important role in determining cellular functions in an

elevated temperature environment. Turi et al. (41) suggested

that proteins are active, functional units in the reception and

transduction of environmental stimuli via stimulus-specific

conformational changes. Thus, we hypothesize that this fea-

ture may be imprinted in the hemoglobin structure. In other

words, nature knows by protein structure where body tempera-

ture must be set. Whether there exists a structural motive and

how it makes body temperature unique must still be explored.

If this hypothesis proves to be true, further studies using

hemoglobin from animals with a variety of different body

temperatures could show a similar trend, leading to the con-

clusion that body temperature is imprinted into the structure

of some proteins.

FIGURE 4 Amino acid sequence alignments of hu-

man, platypus, and echidna (minor a-chain marked as

echidna-m) HBA and HBB sequences (28) (SwissProt

Database). Additionally, a structure genetic matrix was

used (29). Asterisks indicate identical residues, dots in-

dicate similar residues, and exclamation marks indicate

nonsimilar residues. The gray parts indicate ‘‘hot spots’’

in the Hb molecule where most substitutions take

place.
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