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a b s t r a c t

Smoking is one of the main causes of health problems and continues to be one of the
world’s most significant health challenges. In this paper, the dynamics of a giving up
smoking model containing fractional derivatives is studied numerically. The multistep
generalized differential transform method (for short MSGDTM) is employed to com-
pute accurate approximate solutions to a giving up smoking model of fractional order.
The unique positive solution for the fractional order model is presented. A compara-
tive study between the new algorithm and the classical Runge–Kutta method is pre-
sented in the case of integer-order derivatives. The solutions obtained are also presented
graphically.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tobacco smoking is the leading cause of preventable death, and is estimated to kill more than 5million peopleworldwide
each year, and this number is expected to grow. According to the World Health Organization report on the global tobacco
epidemic [1], tobacco use kills or disables many people in their most productive years, which denies families their primary
wage-earners, consumes family budgets, raises the cost of health care and hinders economic development. Smoking or
tobacco is a known or probable cause of deaths from cancers of the oral cavity, larynx, lung, oesophagus, bladder, pancreas,
renal pelvis, stomach, and cervix. Smoking is also a cause of heart disease, strokes, peripheral vascular diseases, chronic
obstructive lung diseases and other respiratory diseases, and low-birth weight babies [2].

Mathematical modelling of complex biological processes is a major challenge for contemporary scientists. In contrast to
simple classical biological systems, where the theory of integer-order differential equations is sufficient to describe their
dynamics, complex systems are characterized by the variability of structures in them, multiscale behavior and nonlinearity
in the mathematical description of the mutual relationship between parameters [3]. Fractional derivatives provide an
excellent instrument for the description of the dynamical behavior of various complex biomaterials and systems. The most
fundamental characteristic of these models is their nonlocal characteristic which does not exist in the differential operators
of integer order. This property means that the next aspect of a model relates not only to its present state but also to
all of its historical states. Magin [4] was the first to use fractional derivatives and fractional integrals in order to model
the stress–strain relationship in biomaterials. Craiem et al. [5] applied fractional calculus to model arterial viscoelasticity.
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Abdullah [6] used fractional differential equations to model the Michaelis–Menten reaction in a 2-d region containing
obstacles. For more details about using fractional calculus in modelling complex biomaterials, we refer the reader to [3]
and the references therein.

Some efforts have been made in the mathematical modeling of giving up smoking since the 2000s (see Refs. [7–11]).
In [12], the authors proposed a modified model that describes a giving up smoking model. In their paper they studied the
quality behavior and represented numerical simulation by using a numerical method. Their model is given by

dP(t)
dt

= bN(t) − β1(t)L(t)P(t) − (d1 + µ)P(t) + τQ (t),

dL(t)
dt

= β1(t)L(t)P(t) − β2(t)L(t)S(t) − (d2 + µ)L(t),

dS(t)
dt

= β2(t)L(t)S(t) − (γ + d3 + µ)S(t),

dQ (t)
dt

= γ S(t) − (τ + d4 + µ)Q (t),

dN(t)
dt

= (b − µ)N(t) − (d1P(t) + d2L(t) + d3S(t) + d4Q (t)),

(1)

under the initial conditions

P(0) = c1, L(0) = c2, S(0) = c3, Q (0) = c4, N(0) = c5, (2)

where P(t), L(t), S(t),Q (t) and N(t) denote the numbers of potential smokers, occasional smokers, smokers, quit smokers
and total smokers at time t , respectively. Here b is the birth rate, µ is the natural death rate, γ is the recovery rate from
smoking, β1(t) and β2(t) are transmission coefficients, d1, d2, d3 and d4 represent the death rates of potential smokers,
occasional smokers, smokers and quit smokers related to smoking disease, respectively. Additionally, τ represents the rate
at which a quit smoker in the population becomes a potential smoker again.

Nowwe introduce fractional order into the ordinary differential equation model by Zaman et al. [12]. The new system is
described by the following set of fractional order differential equations:

Dα
t P(t) = bN(t) − β1(t)L(t)P(t) − (d1 + µ)P(t) + τQ (t), (3)

Dα
t L(t) = β1(t)L(t)P(t) − β2(t)L(t)S(t) − (d2 + µ)L(t), (4)

Dα
t S(t) = β2(t)L(t)S(t) − (γ + d3 + µ)S(t), (5)

Dα
t Q (t) = γ S(t) − (τ + d4 + µ)Q (t), (6)

Dα
t N(t) = (b − µ)N(t) − (d1P(t) + d2L(t) + d3S(t) + d4Q (t)), (7)

where Dα
t is a fractional derivative in the Caputo sense and α is a parameter describing the order of the fractional time-

derivative with 0 < α < 1, subject to the same initial conditions given in Eq. (2). The general response expression contains
a parameter describing the order of the fractional derivatives that can be varied to obtain various responses. Obviously, the
integer-order system can be viewed as a special case of the fractional-order system by putting the time-fractional order of
the derivative equal to one. In other words, the ultimate behavior of the fractional system response must converge to the
response of the integer order version of the equation.

To the best of our knowledge, this work represents the first available numerical solution for a giving up smoking model
of fractional order. For this reason, we intend to obtain the approximate solutions of the problems (3)–(7) via the multi-
step generalized differential transform method (MSGDTM). This method is only a simple modification of the generalized
differential transformmethod (GDTM) [13–16], inwhich it is treated as an algorithm in a sequence of small intervals (i.e. time
steps) for finding accurate approximate solutions to the corresponding systems. The approximate solutions obtained by
using the GDTM are valid only for a short time. The ones obtained by using theMSGDTM [17,18] aremore valid and accurate
during a long time, and are in good agreement with the classical Runge–Kutta method numerical solution when the order
of the derivative is one.

This paper is organized as follows. In Section 2, we present some necessary definitions and notations related to fractional
calculus. In Section 3, we show the existence of the non-negative solution of the giving-up smoking model. In Section 4,
the proposedmethod is applied to the problems (3)–(7) while numerical simulations are presented graphically in Section 5.
Finally, the conclusion is given in Section 6.

2. Preliminaries

In this section, we give some basic definitions and properties of the fractional calculus theory which are used further in
this paper [19–22].
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Definition 1. A function f (x) (x > 0) is said to be in the space Cα (α ∈ R) if it can be written as f (x) = xpf1(x) for some
p > α where f1(x) is continuous in [0, ∞), and it is said to be in the space Cm

α if f (m)
∈ Cα, m ∈ N.

Definition 2. The Riemann–Liouville integral operator of order α > 0 with a ≥ 0 is defined as

( Jαa f )(x) =
1

Γ (α)

 x

a
(x − t)α−1 f (t) dt, x > a, (8)

( J0a f )(x) = f (x). (9)

Properties of the operator can be found in [19]. We only need here the following:
For f ∈ Cα, α, β > 0, a ≥ 0, c ∈ R and γ > −1, we have

( Jαa J
β
a f ) (x) = (Jβa J

α
a f ) (x) = ( Jα+β

a f ) (x), (10)

Jαa xγ
=

xγ+α

Γ (α)
B x−a

x
(α, γ + 1), (11)

where Bτ (α, γ + 1) is the incomplete beta function which is defined as

Bτ (α, γ + 1) =

 τ

0
tα−1(1 − t)γ dt, (12)

Jαa e
cx

= eac(x − a)α
∞
k=0

[c(x − a)]k

Γ (α + k + 1)
. (13)

The Riemann–Liouville derivative has certain disadvantages when trying to model real-world phenomena with fractional
differential equations. Therefore, we shall introduce a modified fractional differential operator Dα

a proposed by Caputo in
his work on the theory of viscoelasticity.

Definition 3. The Caputo fractional derivative of f (x) of order α > 0 with a ≥ 0 is defined as

(Dα
a f )(x) = ( Jm−α

a f (m)) (x) =
1

Γ (m − α)

 x

a

f (m)(t)
(x − t)α+1−m

dt, (14)

form − 1 < α ≤ m, m ∈ N, x ≥ a, f (x) ∈ Cm
−1.

The Caputo fractional derivative was investigated by many authors; for m − 1 < α ≤ m, f (x) ∈ Cm
α and α ≥ −1, we

have

( Jαa D
α
a f ) (x) = JmDmf (x) = f (x) −

m−1
k=0

f (k)(a)
(x − a)k

k !
. (15)

For mathematical properties of fractional derivatives and integrals one can consult the mentioned references.

3. Non-negative solutions

Let R5
+

= {X ∈ R5
: X ≥ 0} and X(t) = (P(t), L(t), S(t),Q (t),N(t))T . For the proof of the theorem about non-negative

solutions we shall need the following lemma [23].

Lemma 3.1 (Generalized Mean Value Theorem). Let f (x) ∈ C[a, b] and Dα f (x) ∈ C[a, b] for 0 < α ≤ 1.Then we have

f (x) = f (a) +
1

Γ (α)
Dα f (ξ)(x − a)ξ ,

with 0 ≤ ξ ≤ x, for all x ∈ (a, b].

Remark 3.2. Suppose f (x) ∈ C[0, b] and Dα f (x) ∈ C[0, b] for 0 < α ≤ 1. It is clear from Lemma 3.1 that if Dα f (x) ≥ 0
for all x ∈ (0, b), then the function f is non-decreasing, and if Dα f (x) ≤ 0 for all x ∈ (0, b), then the function f is
non-increasing.

Theorem 3.3. There is a unique solution for the initial value problem given by (3)–(7), and the solution remains in R5
+
.
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Proof. The existence and uniqueness of the solution of (3)–(7) in (0, ∞) can be obtained from [24, Theorem 3.1 and Remark
3.2]. We need to show that the domain R5

+
is positively invariant. Since

Dα
t P(t)


P=0 = bN(t) + τQ (t) ≥ 0,

Dα
t L(t)


L=0 = 0,

Dα
t S(t)


S=0 = 0,

Dα
t Q (t)


Q=0 = γ S(t) ≥ 0,

Dα
t N(t)


N=0 = −(d1P(t) + d2L(t) + d3S(t) + d4Q (t)) ≥ 0,

on each hyperplane bounding the non-negative orthant, the vector field points into R5
+
. �

4. MSGDTMmethod

Although the generalized differential transform method (GDTM) is used to provide approximate solutions for nonlinear
problems in terms of convergent series with easily computable components, it has been shown that the approximated
solutions obtained are not valid for large t for some systems [13–16]. Therefore we use the multi-step generalized
differential transform method (MSGDTM) to approximate the solutions of Eqs. (3)–(7), which offers accurate solution over
a longer time frame compared to the standard generalized differential transform method [13,16].

Taking the differential transform of Eqs. (3)–(7) with respect to time t gives

P(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


bN(k) −

k
k2=0

k2
k1=0

B1(k1)L(k2 − k1)P(k − k2) − (d1 + µ)P(k) + τQ (k)


,

L(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


k

k2=0

k2
k1=0

B1(k1)L(k2 − k1)P(k − k2)

−

k
k2=0

k2
k1=0

B2(k1)L(k2 − k1)S(k − k2) − (d2 + µ)L(k)


,

S(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


k

k2=0

k2
k1=0

B2(k1)L(k2 − k1)S(k − k2) − (γ + d3 + µ)S(k)


,

Q (k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)
(γ S(k) − (τ + d4 + µ)Q (k)),

N(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)
((b − µ)N(k) − (d1P(k) + d2L(k) + d3S(k) + d4Q (k))),

(16)

where P(k), L(k), S(k), Q (k), N(k), B1(k) and B2(k) are the differential transformations of P(t), L(t), S(t), Q (t), N(t), β1(t)
and β2(t). The differential transforms of the initial conditions are given by P(0) = c1, L(0) = c2, S(0) = c3, Q (0) = c4 and
N(0) = c5. In view of the differential inverse transforms, the differential transform series solution for the systems (3)–(7)
can be obtained as

P(t) =

K
k=0

P(k)tαk,

L(t) =

K
k=0

L(k)tαk,

S(t) =

K
k=0

S(k)tαk,

Q (t) =

K
k=0

Q (k)tαk,

N(t) =

K
k=0

N(k)tαk.

(17)
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Now, according to the multi-step generalized differential transform method, the series solution for the systems (3)–(7) is
suggested by

P(t) =



K
k=0

P1(k)tαk, t ∈ [0, t1]

K
k=0

P2(k)(t − t1)αk, t ∈ [t1, t2]

...

K
k=0

PM(k)(t − tM−1)
αk, t ∈ [tM−1, tM ],

(18)

L(t) =



K
k=0

L1(k)tαk, t ∈ [0, t1]

K
k=0

L2(k)(t − t1)αk, t ∈ [t1, t2]

...

K
k=0

LM(k)(t − tM−1)
αk, t ∈ [tM−1, tM ],

(19)

S(t) =



K
k=0

S1(k)tαk, t ∈ [0, t1]

K
k=0

S2(k)(t − t1)αk, t ∈ [t1, t2]

...

K
k=0

SM(k)(t − tM−1)
αk, t ∈ [tM−1, tM ],

(20)

Q (t) =



K
k=0

Q1(k)tαk, t ∈ [0, t1]

K
k=0

Q2(k)(t − t1)αk, t ∈ [t1, t2]

...

K
k=0

QM(k)(t − tM−1)
αk, t ∈ [tM−1, tM ],

(21)

N(t) =



K
k=0

N1(k)tαk, t ∈ [0, t1]

K
k=0

N2(k)(t − t1)αk, t ∈ [t1, t2]

...

K
k=0

NM(k)(t − tM−1)
αk, t ∈ [tM−1, tM ],

(22)
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Fig. 1. P(t) versus t: solid line, MSGDTM; dotted line, Runge–Kutta method.

where Pi(k), Li(k), Si(k),Qi(k) and Ni(k) for i = 1, 2, . . . ,M satisfy the following recurrence relations:

Pi(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


bNi(k) −

k
k2=0

k2
k1=0

B1(k1)Li(k2 − k1)Pi(k − k2) − (d1 + µ)Pi(k) + τQi(k)


,

Li(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


k

k2=0

k2
k1=0

B1(k1)Li(k2 − k1)Pi(k − k2)

−

k
k2=0

k2
k1=0

B2(k1)Li(k2 − k1)Si(k − k2) − (d2 + µ)Li(k)


,

Si(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


k

k2=0

k2
k1=0

B2(k1)Li(k2 − k1)Si(k − k2) − (γ + d3 + µ)Si(k)


,

Qi(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)
(γ Si(k) − (τ + d4 + µ)Qi(k)),

Ni(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)
((b − µ)Ni(k) − (d1Pi(k) + d2Li(k) + d3Si(k) + d4Qi(k))),

(23)

such that

Pi(ti−1) = Pi−1(ti−1), Li(ti−1) = Li−1(ti−1), Si(ti−1) = Si−1(ti−1), Qi(ti−1) = Qi−1(ti−1)

and

Ni(ti−1) = Ni−1(ti−1), i = 2, 3, . . . ,M.

Finally, we start with P0(0) = c1, L0(0) = c2, S0(0) = c3,Q0(0) = c4 and N0(0) = c5, and, using the recurrence
relation given in the system (23), then we can obtain the multi-step generalized differential transform solution given in
Eqs. (18)–(22).

5. Numerical results

Eqs. (3)–(7) with transformed initial conditions were solved analytically using the MSGDTM and numerically using the
classical Runge–Kutta method in the case of integer-order derivative. To demonstrate the effectiveness of the proposed
algorithm as an approximate tool for solving the nonlinear system of fractional differential equations (3)–(7) for larger t , we
apply the proposed algorithm on the interval [0, 30]. It is to be noted that the multi-step generalized differential transform
method results are obtained when K = 10 and M = 3000. All the results are calculated by using the computer algebra
package Mathematica.

We assume the following parameters of system (3)–(7): b = 0.0045, β1(t) = 0.014, β2(t) = 0.014, γ = 0.0165, µ =

0.0021, τ = 0, d1 = 0.034, d2 = 0.045, d3 = 0.054, d4 = 0.061 and initial conditions c1 = 153, c2 = 55, c3 = 79, c4 =

68, c5 = 355.
Figs. 1–5 show the approximate solutions obtained using the MSGDTM and the classical Runge–Kutta method of

P(t), L(t), S(t),Q (t) and N(t) when α is one. From the graphical results in Figs. 1–5, it can be seen that the results obtained
using the multi-step generalized differential transformmethod match the results of the classical Runge–Kutta method very
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Fig. 2. L(t) versus t: solid line, MSGDTM; dotted line, Runge–Kutta method.

Fig. 3. S(t) versus t: solid line, MSGDTM; dotted line, Runge–Kutta method.

Fig. 4. Q (t) versus t: solid line, MSGDTM; dotted line, Runge–Kutta method.

well, which implies that the presented method can predict the behavior of these variables accurately for the region under
consideration.

Figs. 6–10 show the approximate solutions for P(t), L(t), S(t),Q (t) and N(t) obtained for different values of α using
the multi-step generalized differential transform method. From the numerical results in Figs. 6–10, it is clear that the
approximate solutions depend continuously on the time-fractional derivative α. It is evident that the efficiency of this
approach can be dramatically enhanced by decreasing the step size and computing further terms or further components
of P(t), L(t), S(t),Q (t) and N(t).
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Fig. 5. N(t) versus t: solid line, MSGDTM; dotted line, Runge–Kutta method.

Fig. 6. P(t) versus t: solid line, α = 1.0; dashed line, α = 0.95; dot-dashed line, α = 0.85.

Fig. 7. L(t) versus t: solid line, α = 1.0; dashed line, α = 0.95; dot-dashed line, α = 0.85.

6. Conclusion

In this paper, a fractional order differential system formodeling giving up smoking is studied and its approximate solution
is presented using a multi-step generalized differential transform method (MSGDTM). The approximate solutions obtained
by the MSGDTM are highly accurate and valid for a long time in the integer case. The reliability of the method and the
reduction in the size of the computational domain give this method a wider applicability. Finally, the recent appearance
of nonlinear fractional differential equations as models in science and engineering makes it necessary to investigate the
method of solution for such equations. Consequently, the present success of the proposedmethod for the considered model
verifes that it is a useful tool for these kinds of models in science and engineering.
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Fig. 8. S(t) versus t: solid line, α = 1.0; dashed line, α = 0.95; dot-dashed line, α = 0.85.

Fig. 9. Q (t) versus t: solid line, α = 1.0; dashed line, α = 0.95; dot-dashed line, α = 0.85.

Fig. 10. N(t) versus t: solid line, α = 1.0; dashed line, α = 0.95; dot-dashed line, α = 0.85.
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