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1. Introduction

Porous Media Equation (PM) in R3, t > 0 is defined as follows:

⎧⎨
⎩

∂θ

∂t
+ u · ∇θ + νΛαθ = 0; θ(x,0) = θ0(x),

u = −κ(∇p + gγ θ); div u = 0
(1)

where θ represents liquid temperature, ν > 0 the dissipative coefficient, κ the matrix medium perme-
ability divided by viscosity in different directions respectively, g the acceleration due to gravity, vector
γ the last canonical vector e3 and Λ = (−	)1/2. Moreover, p is the liquid pressure and u represents
the liquid discharge by Darcy’s law. For simplicity we set κ = g = 1.
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In this paper we study the Modified Porous Media Equation (MPM) defined as follows:

⎧⎨
⎩

∂θ

∂t
+ u · ∇θ + νΛαθ = 0; θ(x,0) = θ0(x),

u = Λα−1{−(∇p + γ θ)
}; div u = 0

(2)

in R3 with α ∈ (0,1). Our main result is below:

Theorem 1.1. Let ν > 0, 0 < α < 1 and θ0(x) ∈ Hm, m ∈ Z+ , m > 5/2. Then there exists a unique global
solution θ to the MPM (2) such that

θ ∈ C
(
R+; Hm) ∩ L2

loc

(
R+; Hm+α/2).

Moreover, for all γ ∈ R+ , we have tγ θ ∈ L∞(R+ , Hm+γα).

We note that an analogous version for Quasi-geostrophic Equation (QG), which we define be-
low (3), was done by [17]. Moreover, while we will employ the method of Modulus of Continuity
(MOC), initiated by [12] in a periodic setting, the smoothing effects stated above, i.e. the spatial decay
of the solution, allows us to circumvent the difficulty in a non-periodic setting. In this regard, we cite
[1] and [9] in which the authors proved the global well-posedness of QG with initial data belonging
to the critical space Ḃ0

∞,1 and H1 using the same technique.
A similar result to Theorem 1.1 showing global regularity of MPM (2) is also possible through the

method introduced in [5] following the work in [4,6] and [7]. A similar method following the work in
[13] is also possible.

We stress that at first sight, modifying PM (1) by having Λα−1 act on the u term and finding its
MOC based on the previous work on PM (1) in [22] seems somewhat difficult. As we will see, the
u term of PM (1) can be decomposed to a linear combination of an identity and a singular integral
operator acting on θ which we will denote by P (θ). The problematic term is the Riesz potential,
namely Λα−1θ . We obviate from this issue by making a simple observation; see Proposition 3.3.

The outline of the rest of the paper is as follows:

1. Introduction
2. Local results
3. Global results
4. Appendix A. Besov space, mollifiers
5. Appendix B. Proofs of local results and more

Let us introduce some MOC of relevance. By definition, an MOC is a continuous, increasing and
concave function ω : [0,∞) → [0,∞) with ω(0) = 0. We say some function θ : Rn → Rm has MOC ω
if |θ(x) − θ(y)| � ω(|x − y|) holds for all x, y ∈ Rn .

The idea of MOC has caught much attention since the paper [12], in which the authors proved the
global regularity of the solution to the 2-D critical QG defined as follows:

∂tθ + (u · ∇)θ = −κΛαθ (3)

where u = (u1, u2) = (−R2θ, R1θ), Ri is Riesz transform in R2, i = 1,2, and κ diffusivity constant.
The variable u represents velocity and θ potential temperature. In particular, we have the following
result from [12]:



K. Yamazaki / J. Differential Equations 250 (2011) 1909–1923 1911
Proposition 1.2. If the function θ : R2 → R has MOC ω, then u of (3) has MOC as follows:

Ω1(ξ) = A

( ξ∫
0

ω(η)

η
dη + ξ

∞∫
ξ

ω(η)

η2
dη

)
.

Their initiative motivated others to follow. Consider a pseudo-differential operator, or a modified
Riesz transform, R̃α, j defined as follows:

R̃α, j f (x) = |D|α−1 R j f (x) = cα,n

∫
Rn

y j

|y|n+α
f (x − y)dy,

1 � j � n, for f ∈ S(Rn) where R is Riesz transform, S Schwartz space, 0 < α < 1 and cα,n the
normalization constant. We have the following result due to [17]:

Proposition 1.3. If θ , as defined in Proposition 1.2, has MOC ω, then u = (−R̃α,2θ, R̃α,1θ) has the MOC of

Ω2(ξ) = Aα

( ξ∫
0

ω(η)

ηα
dη + ξ

∞∫
ξ

ω(η)

η1+α
dη

)

with some absolute constant Aα > 0 depending only on α.

Let us now derive a relation between u and θ of PM (1) following the method in [3]; for its
generalization, see Lemma A.6 in Appendix A. We have − curl(curl u)+∇ div u = 	u which is reduced
to − curl(curl u) = 	u by divergence-free property. Hence, we obtain

	u =
(

∂2θ

∂x1∂x3
,

∂2θ

∂x2∂x3
,−∂2θ

∂x2
1

− ∂2θ

∂x2
2

)
.

Taking the inverse of the Laplacian,

u = 1

4π

∫
R3

1

|x − y|
(

∂2θ

∂x1∂x3
,

∂2θ

∂x2∂x3
,−∂2θ

∂x2
1

− ∂2θ

∂x2
2

)
dy

from which standard Integration By Parts (IBP) gives

u(x, t) = −2

3

(
0,0, θ(x, t)

) + 1

4π
P V

∫
R3

K (x − y)θ(y, t)dy = Cθ + P(θ)

for x ∈ R3 where K (x) = (
3x1x3
|x|5 ,

3x2x3
|x|5 ,

2x2
3−x2

1−x2
2

|x|5 ), considered as a kernel of double Riesz transform in

[22]. For simplicity when no confusion arises, we let this constant C be one.
The scaling invariance of the PM is λα−1θ(λx, λαt) for λ > 0, same as the case of QG. This makes

α = 1 the threshold of sub- and super-criticality. Recall that the method of MOC in the first place was
introduced in order to prove the global regularity of the critical 2-D QG. Observe that if θ(x, t) solves
QG (3), then so does θ(λx, λt). The case when α < 1 was studied in [20] and global regularity result
was obtained under a certain initial condition.
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One may modify the QG (3) as below so that for any α ∈ (0,1), its scaling invariance may be
similar to that of the critical case (cf. [4]):

∂tθ + (u · ∇)θ + κΛαθ = 0

with u = Λα−1(−R2θ, R1θ). Observe that this PDE enjoys the rescaling of θ(x, t) → θ(λx, λαt). For
this reason, as we will see in (4) and (5), we will construct an MOC that is unbounded so that finding
one MOC ω which is globally preserved in time implies that all the MOC ωλ(ξ) = ω(λξ) will also be
globally preserved. It takes only a glance at MPM (2) to realize that it was defined in the same spirit.

2. Local results

The purpose of this section is to state local results. We note that double Riesz transform remains
bounded in any space in which an ordinary Riesz transform is bounded and that the results for
the latter case has been obtained by [17]. The method of proof is similar to that described in [14]
through regularizing (2) and relying on Picard’s theorem. Let us first set some notations; additional
information can be found in Appendix A.

Denote by S ′ the space of tempered distributions, S ′(Rn)/P (Rn) the quotient space of tempered
distributions modulo polynomials, F f (ξ) = f̂ (ξ) the Fourier transform, and ‖ · ‖X the norm of a
Banach space X , e.g.

Hm =
{

f ∈ L2(Rn): ‖ f ‖2
Hm =

∑
0�|β|�m

∥∥Dβ f
∥∥2

L2 < ∞
}
.

Next we take the usual dyadic unity partition of Littlewood–Paley decomposition. Let us denote
two nonnegative radial functions χ,φ ∈ C∞(Rn) supported in {ξ ∈ Rn: |ξ | � 4

3 } and {ξ ∈ Rn: 3
4 �

|ξ | � 8
3 } respectively such that

χ(ξ) +
∑
j�0

φ
(
2− jξ

) = 1, ∀ξ ∈ Rn;
∑
j∈Z

φ
(
2− jξ

) = 1, ∀ξ 
= 0,

and χ(ξ) = Φ̂(ξ), φ(ξ) = Ψ̂ (ξ). We define for all f ∈ S ′(Rn) the nonhomogeneous Littlewood–Paley
operators:

	−1 f := Φ ∗ f , 	 j f := Ψ2− j ∗ f , ∀ j ∈ Z+ ∪ {0},

where Ψ̂2− j (ξ) = φ(2− jξ) and the homogeneous defined as

	̇ j f = Ψ2− j ∗ f , ∀ j ∈ Z.

With these Littlewood–Paley operators, we define Besov spaces for p,q ∈ [1,∞], s ∈ R, the nonho-
mogeneous and homogeneous respectively:

Bs
p,r :=

{
f ∈ S ′(Rn): ‖ f ‖Bs

p,r
:= ‖	−1 f ‖L p +

(∑
j�0

2 jsr‖	 j f ‖r
L p

)1/r

< ∞
}
,

Ḃs
p,r :=

{
f ∈ S ′(Rn)/P

(
Rn): ‖ f ‖Ḃs

p,r
:=

(∑
j∈Z

2 jsr‖	̇ j f ‖r
L p

)1/r

< ∞
}
.

Now let us state the main results of this section:
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Proposition 2.1. Let ν > 0, 0 < α < 1 and θ0 ∈ Hm, m ∈ Z+ , m > 5/2. Then there exists a unique solution
θ ∈ C([0, T ], Hm)∩ L2([0, T ], Hm+ α

2 ) to the MPM (2) where T = T (α,‖θ0‖m) > 0. Moreover, we have tγ θ ∈
L∞

T Hm+γα for all γ � 1.

Proposition 2.2. Let T ∗ be the maximal local existence time of θ in C([0, T ∗), Hm) ∩ L2([0, T ∗), Hm+α/2). If

T ∗ < ∞, then we have
∫ T ∗

0 ‖∇θ(t, ·)‖L∞ dt = ∞.

The proofs are found in Appendix B.

3. Global results

We extend our results to the global case. Below we use ξ = |x − y| interchangeably and omit the
subscript α but use instead i = 1,2,3, . . . to indicate different constants; when no confusion arises.
By the blow-up criterion Proposition 2.2, we only have to show that

∫ T
0 ‖∇θ‖L∞ < ∞ for θ a local

solution of MPM (2) up to time T > 0. We utilize the following two observations made in [12]:

Proposition 3.1. If ω is an MOC for θ(x, t) : Rn → R for all t > 0, then |∇θ |(x) � ω′(0) for all x ∈ Rn.

For this reason, we shall construct an MOC ω such that ω′(0) < ∞. Next,

Proposition 3.2. Assume θ has a strict MOC satisfying

ω′′(0+) = −∞

for all t < T ; i.e. for all x, y ∈ Rn, |θ(x, t)−θ(y, t)| < ω(|x− y|), but not for t > T . Then, there exist x, y ∈ Rn,
x 
= y, such that θ(x, T ) − θ(y, T ) = ω(|x − y|).

Consequently, the only scenario in which an MOC ω is lost is if there exists a moment T > 0 such
that θ has the MOC ω for all t ∈ [0, T ] and two distinct points x and y such that θ(x, T ) − θ(y, T ) =
ω(|x − y|).

Below we rule out this possibility by showing that in such case, ∂
∂t [θ(x, t) − θ(y, t)]|t=T < 0. For

this purpose, let us write

∂

∂t

[
θ(x, T ) − θ(y, T )

] = −[
(u · ∇θ)(x, T ) − (u · ∇θ)(y, T )

] − [(
Λαθ

)
(x, T ) − (

Λαθ
)
(y, T )

]
.

We call the first bracket convection term and the second dissipation term. Our agenda now is
to first estimate the convection and dissipation terms, to be specific find upper bounds that depend
on ω. Then we will construct the MOC ω explicitly that assures us that the sum of the two terms is
negative to reach the desired result.

3.1. Estimates on the convection and dissipation terms

We propose the following estimate for our convection term:

Proposition 3.3. If ω is an MOC for θ(x, t) : R3 → R, a local solution to MPM (2) for all t � T , then

(u · ∇θ)(x, T ) − (u · ∇θ)(y, T ) � CΩ(ξ)ω′(ξ)

where Ω(ξ) is that of Proposition 1.3.
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The proof relies on the following observation due to [15] and [19]. From the expression of

−	u = (−∂x1∂x3θ,−∂x2∂x3θ, ∂2
x1

θ + ∂2
x2

θ
)

in the case of PM (1) derived in Section 1, the Fourier multiplier of such operator is clear; each
component is a linear combination of terms like

ξiξ j

|ξ |2 , i, j = 1,2,3, which belongs to C∞(R3 \ {0}) and

is homogeneous of degree zero. Hence, it is clear that for the MPM (2) we can express u as

∑
i, j

ci jΛ
α−1(−	)−1∂i∂ jθ =

∑
i, j

R̃α,i, jθ

where R̃α,i, j may be considered as a modified double Riesz transform to which the result of Propo-
sition 1.3 clearly applies. Therefore, u of MPM (2) has the same MOC of Proposition 1.3.

Remark. We note that in the case of PM (1), making use of the observation above, we see that
P (θ) has Ω1 of Proposition 1.2 as its MOC; moreover, the additional term C(θ) can be absorbed into
the first integral of Ω1. In [22], the authors considered the MOC of the convection term of PM (1)
separately; i.e. ω(ξ) for θ term and one different from Ω1 of Proposition 1.2 for the P (θ). In our case,
the same strategy would lead to having to deal with Λα−1θ term.

Now we only need to compute

u · ∇θ(x) − u · ∇θ(y) = lim
h↘0

[θ(x + hu(x)) − θ(y + hu(y))] − [θ(x) − θ(y)]
h

= lim
h↘0

[θ(x + hu(x)) − θ(y + hu(y))] − ω(ξ)

h

� lim
h↘0

ω(ξ + hΩ(ξ)) − ω(ξ)

h
= Ω(ξ)ω′(ξ).

For the estimate on dissipation term, we borrow below from [20]; note the result is general in
dimension:

C2

[ ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη +

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη

]
.

3.2. The explicit construction of the modulus of continuity

We construct a relatively simple modulus of continuity. With α ∈ (0,1), r ∈ (1,1 + α), 0 < γ <

δ(1 − rδr−1), we define

ω(ξ) = ξ − ξ r when 0 � ξ � δ, (4)

ω′(ξ) = γ

ξ
when δ < ξ. (5)

The function ω is continuous and ω(0) = 0. The first derivative of (4) is

ω′(ξ) = 1 − rξ r−1 � 0 (6)
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for δ sufficiently small and hence increasing. The unboundedness and ω′(0) < ∞ can be readily
checked. The second derivative of (4) is

ω′′(ξ) = −r(r − 1)ξ r−2 < 0. (7)

From (5) we also have ω′′(ξ) = − γ

ξ2 < 0. Moreover, notice

lim
ξ→0+ ω′′(ξ) = −∞. (8)

Finally,

ω′(δ+) = γ

δ
< 1 − rδr−1 = ω′(δ−)

. (9)

Therefore, the concavity is achieved. Now we consider two cases:

Case 0 ��� ξ ��� δ. In this case we make use of

ω(η)

η
� ω′(0) = 1 (10)

with which we immediately obtain

ξ∫
0

ω(η)

ηα
dη �

ξ∫
0

ω(η)

η
dη � ξ (11)

since η � ηα for η � δ < 1 and

δ∫
ξ

ω(η)

η1+α
dη =

δ∫
ξ

η − ηr

η1+α
dη �

δ∫
ξ

η−α dη � δ1−α

1 − α
. (12)

Moreover,

∞∫
δ

ω(η)

η1+α
dη = ω(δ)δ−α

α
+ 1

α

∞∫
δ

ω′(η)η−α dη

� δ1−α

α
+ γ

α

∞∫
δ

η−α−1 dη = δ1−α

α
+ γ δ−α

α2
�

(
1

α
+ 1

α2

)
δ1−α (13)

where the first equality is by IBP and the last inequality used that γ < δ(1 − rδr−1) < δ. Since ω′(ξ) �
ω′(0) = 1, the contribution from the positive side is limited to

C1

[
ξ + ξ

[
1

1 − α
+ 1

α
+ 1

α2

]
δ1−α

]
. (14)

The work from [20] shows that the first integrand of the dissipation term gives
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ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη � −C2ξ

r−α. (15)

Therefore, adding (14) and (15) deduces the inequality of

ξ

[
C1 + C1

[
1

1 − α
+ 1

α
+ 1

α2

]
δ1−α − C2ξ

r−α−1
]

< 0 (16)

to be achieved as δ → 0 forcing ξ → 0; note r − α − 1 < 0.

Case δ < ξ . In this case we only have

ω(η)

η
� 1 (17)

for η ∈ [0, δ]. Using ω(η) � ω(ξ) for all δ � η � ξ , we obtain

ξ∫
0

ω(η)

ηα
dη =

δ∫
0

ω(η)

ηα
dη +

ξ∫
δ

ω(η)

ηα
dη

�
δ∫

0

ω(η)

η
dη + ω(ξ)

ξ∫
δ

1

ηα
dη � δ + ω(ξ)

ξ1−α

1 − α
. (18)

Observing that

ω(ξ) � ω(δ) = δ − δr � δ

2
(19)

if δ is small enough, we deduce from (18)

ξ∫
0

ω(η)

ηα
dη � ω(ξ)

(
2 + ξ1−α

1 − α

)
. (20)

Next,

∞∫
ξ

ω(η)

η1+α
dη = ω(ξ)ξ−α

α
+ 1

α

∞∫
ξ

ω′(η)η−α dη

= ω(ξ)ξ−α

α
+ γ

α

∞∫
ξ

η−1−α dη = ω(ξ)ξ−α

α
+ γ ξ−α

α2
� ω(ξ)ξ−α

(
α + 1

α2

)
(21)

if we take γ small enough that

2 ln(2)γ <
δ � ω(ξ) (22)

2
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following (19). Therefore, the contribution from the positive side is limited to

C1Ω(ξ)ω′(ξ) � C1

[
ω(ξ)

(
2 + ξ1−α

1 − α

)
+ ω(ξ)ξ1−α

(
α + 1

α2

)]
ω′(ξ)

= C1ω(ξ)ξ−α

[
2(1 − α)γ ξα−1 + γ

(1 − α)
+ γ

(
α + 1

α2

)]

� C1ω(ξ)ξ−α

[
2(1 − α)γ α + γ

(1 − α)
+ γ

(
α + 1

α2

)]
(23)

where we made use of α ∈ (0,1) and γ < δ < ξ in this case. On the other hand, we have the following
estimate from [20]:

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη � −C2ω(ξ)ξ−α (24)

which is due to

ω(2η + ξ) − ω(2η − ξ) � ω(2ξ) = ω(ξ) + γ

2ξ∫
ξ

1

η
dη = ω(ξ) + γ ln(2) <

3

2
ω(ξ)

by concavity and (22). In sum, we obtain from (23) and (24)

ω(ξ)ξ−α

[
C1

[
2(1 − α)γ α + γ

(1 − α)
+ γ

(
α + 1

α2

)]
− C2

]
< 0 (25)

for γ sufficiently small. �
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Appendix A. Besov space and mollifiers

A.1. Besov space

We introduce the two types of coupled space–time Besov spaces. They are Lρ([0, T ], Bs
p,r), abbre-

viated by Lρ
T Bs

p,r , defined with a norm

‖ f ‖Lρ
T Bs

p,r
= ∥∥∥∥2 js‖	 j f ‖L p

∥∥
lr
∥∥

Lρ [0,T ],

and L̃ρ([0, T ], Bs
p,r), abbreviated by L̃ρ

T Bs
p,r , called the Chemin–Lerner’s space–time space, the set of

tempered distribution f satisfying the norm

‖ f ‖L̃ρ
T Bs

p,r
:= ∥∥2 js‖	 j f ‖Lρ

T L P

∥∥
lr < ∞.

We list useful results below:
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Lemma A.1 (Bernstein’s inequality). Let f ∈ L p(Rn) with 1 � p � q � ∞ and 0 < r < R. Then for all k ∈
Z+ ∪ {0}, and λ > 0 there exists a constant Ck > 0 such that

sup
|α|=k

∥∥∂α f
∥∥

Lq � Cλk+n(1/p−1/q)‖ f ‖L p if supp F f ⊂ {
ξ : |ξ | � λr

}
, (26)

C−1
k λk‖ f ‖L p � sup

|α|=k

∥∥∂α f
∥∥

L p � Ckλ
k‖ f ‖L p if supp F f ⊂ {

ξ : λr � |ξ | � λR
}
, (27)

and if we replace derivative ∂α by the fractional derivative, the inequalities remain valid only with trivial
modifications.

Lemma A.2 (Besov embedding). (Cf. [18].) Assume s ∈ R and p,q ∈ [1,∞].

(a) If 1 � q1 � q2 � ∞, then Ḃs
p,q1

(Rn) ⊂ Ḃs
p,q2

(Rn).

(b) If 1 � p1 � p2 � ∞ and s1 = s2 + n( 1
p1

− 1
p2

), then Ḃs1
p1,q(R

n) ⊂ Ḃs2
p2,q(R

n).

Lemma A.3. (Cf. [21].)

(a) For f ∈ S ′ with supp F f ⊂ {ξ : |ξ | � r}, there exists C = C(n) such that for 1 � p � q � ∞,

‖ f ‖q � Crn( 1
p − 1

q )‖ f ‖p.

(b) Analogously, if supp F f ⊂ {ξ : |ξ | � r}, then

‖ f ‖q � rn( 1
p − 1

q )‖ f ‖p.

(c) Denoting Riesz transform by R, for s > n/p, 1 < p < ∞, 1 � r � ∞,

‖R f ‖Bs
p,r

� C‖ f ‖Bs
p,r

.

(d) Analogously, for 1 � p � ∞ and 1 � r � ∞, we have

‖R f ‖Ḃs
p,r

� C‖ f ‖Ḃs
p,r

.

Next, we define the transport–diffusion equation, 0 < α < 1

(TD)α

{
∂tθ + u · ∇θ + ν|D|αθ = f ; θ |t=0 = θ0,

div u = 0.

Proposition A.4. (Cf. [16,17].) Let −1 < s < 1, 1 � ρ1 � ρ � ∞, p, r ∈ [1,∞], f ∈ L1
loc(R

+, Ḃ
s+ α

ρ1
−α

p,r ) and

u a divergence-free vector field in L1
loc(R

+; Lip(Rn)). Suppose θ is a C∞ solution of (TD)α . Then there exists
C = C(n, s,α) such that for all t ∈ R+ ,

ν
1
ρ ‖θ‖

L̃ρ
t Ḃs+α/ρ

p,r
� CeC V (t)(‖θ0‖Ḃs

p,r
+ ν

1
ρ1

−1‖ f ‖
L̃
ρ1
t Ḃ

s+ α
ρ1

−α

p,r

)
, (28)

where V (t) := ∫ t
0 ‖∇u(τ )‖L∞ dτ .
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The proof of Proposition A.4 consists of using para-differential calculus and Lagrangian coordinate
method combined with commuter estimates; we refer readers to [8,10,11] and [16].

We also have the following from [2]:

Proposition A.5. Let u be a C∞ divergence-free vector field and f a C∞ function. Assume that θ is a solution
of (TDα). Then for p ∈ [1,∞], we have

∥∥θ(t)
∥∥

L p � ‖θ0‖L p +
t∫

0

∥∥ f (τ )
∥∥

L p dτ .

We introduce a result, relevant to our estimate of the convection term:

Lemma A.6. (Cf. [19].)1 Let m ∈ C∞(Rn \ {0}) be a homogeneous function of degree 0, and Tm be the corre-

sponding multiplier operator defined by (̂Tm f ) = m f̂ , then there exist a ∈ C and Ω ∈ C∞(S n−1) with zero
average such that for any Schwartz function f ,

Tm f = af + P V
Ω(x′)
|x|n ∗ f .

A.2. Mollifier

Given an arbitrary radial function ρ(|x|) ∈ C∞
0 (R3), ρ � 0,

∫
R3 ρ dx = 1, we define the mollifier

operator Tε : L p(R3) → C∞(R3), 1 � p � ∞, ε > 0, by

(Tε f )(x) = ε−3
∫
R3

ρ

(
x − y

ε

)
f (y)dy ∀ f ∈ Lp(

R3).

Lemma A.7. Let m ∈ Z+ ∪ {0}, s ∈ R, k ∈ R+ . Then:

(a) For all f ∈ C0 , Tε f → f uniformly on a compact set U in R3; ‖Tε f ‖L∞ � ‖ f ‖L∞ .
(b) For all f ∈ Hm(R3), Dβ(Tε f ) = Tε(Dβ f ); ∀ f ∈ Hs(R3), |D|s(Tε f ) = Tε(|D|s f ).
(c) For all f ∈ Hs(R3), limε↘0 ‖Tε f − f ‖Hs = 0 and ‖Tε f − f ‖Hs−1 � cε‖ f ‖Hs .
(d) For all f ∈ Hm(R3), ‖Tε f ‖Hm+k � cε−k‖ f ‖Hm and ‖Tε Dk f ‖L∞ � cε−(1+k)‖ f ‖L2 .

Appendix B. Proofs of local results and more

In this section we sketch the proofs from Section 2 Local results. We regularize MPM (2) and study
the following approximate system (ODE):

{
θε

t + Tε

((
Tεuε

) · ∇(
Tεθ

ε
)) + νTε

(
TεΛ

αθε
) = 0; θε |t=0 = θ0(x),

uε = Λα−1(C
(
θε

) + P
(
θε

))
.

(29)

Naturally the following proposition can be proven by Picard’s theorem; we refer readers to [14]
for proof.

1 The author is grateful to Professor Liutang Xue for pointing out this fact.



1920 K. Yamazaki / J. Differential Equations 250 (2011) 1909–1923
Proposition B.1 (Global existence of regularized solutions). Let θ0 ∈ Hm, m ∈ Z+ ∪ {0}, m > 5/2. Then for all
ε > 0, there exists a unique global solution θε ∈ C1([0,∞), Hm) to the regularized MPM (29).

We may also assume the following with identical proof found in [14]:

Proposition B.2. The unique regularized solution θε ∈ C1([0,∞), Hm) to (29) satisfies below:

1

2

d

dt

∥∥θε
∥∥2

Hm + ν
∥∥TεΛ

α/2θε
∥∥2

Hm � Cm,α

(∥∥∇Tεθ
ε
∥∥

L∞ + ∥∥Tεθ
ε
∥∥

L3

)∥∥θε
∥∥2

Hm (30)

and

sup
0�t�T

∥∥θε
∥∥

L2 � ‖θ0‖L2 . (31)

Below we show that there exists a subsequence convergent to a limit function θ that solves the
MPM (2) up to some T > 0. The strategy is to first obtain the uniform bounds of Hm norm in the
interval [0, T ] independent of ε , and show that in [0, T ], these approximate solutions are contracting
in L2 norm. By applying Interpolation Inequality, we will prove convergence as ε → 0 and pass the
limit. Moreover, we outline the proof of the uniqueness and smoothing effects.

We first show below that (θε) the family of solutions is uniformly bounded in Hm . We have

d

dt

∥∥θε
∥∥

Hm � Cm,α

∥∥Tε∇θε
∥∥

L∞
∥∥θε

∥∥
Hm � Cm,α

∥∥θε
∥∥2

Hm

by (30) and Sobolev embedding as m > 5
2 . Thus, for all ε > 0, we have

sup
0�t�T

∥∥θε
∥∥

Hm � ‖θ0‖Hm

1 − cm,αT ‖θ0‖Hm
(32)

which implies that for T < 1
Cm,α‖θ0‖Hm

, (θε) is uniformly bounded in C([0, T ], Hm). Next, by (30) and
(32) after integrating in time [0, T ] we obtain

ν1/2
∥∥Λα/2θε

∥∥
L2([0,T ],Hm)

� C
(‖θ0‖Hm , T

)
(33)

so that

ν1/2
∥∥θε

∥∥
L2([0,T ],Hm+ α

2 )
� C

(‖θ0‖Hm , T
)
,

the desired uniform bound.
We now show that the solutions θε to regularized MPM (29) form a contraction in the low norm

C([0, T ], L2(R3)); i.e. for all ε, ε̃, there exists C = C(‖θ0‖Hm , T ) such that

sup
0�t�T

∥∥θε − θ ε̃
∥∥

L2 � C max{ε, ε̃}.

We take

θε
t − θ ε̃

t = −ν
(

T 2
ε Λαθε − T 2

ε̃ Λαθ ε̃
) − [

Tε

((
Tεuε

) · ∇(
Tεθ

ε
)) − Tε̃

((
Tε̃uε̃

) · ∇(
Tε̃ θ

ε̃
))]
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and multiply by θε − θ ε̃ and integrate to get

(
θε

t − θ ε̃
t , θε − θ ε̃

) = −ν
(

T 2
ε Λαθε − T 2

ε̃ Λαθ ε̃ , θε − θ ε̃
)

− ([
Tε

((
Tεuε

) · ∇(
Tεθ

ε
)) − Tε̃

((
Tε̃uε̃

) · ∇(
Tε̃ θ

ε̃
))]

, θε − θ ε̃
) = I − II.

We bound I and II separately by standard method using the fact that Riesz potentials are bounded
in L p space; for details, see [17]. Thus, we have

sup
0�t�T

∥∥θε − θ ε̃
∥∥

L2 � ec(M)T (
max{ε, ε̃} + ∥∥θε

0 − θ ε̃
0

∥∥
L2

)
� C(M, T )max{ε, ε̃} (34)

where M is an upper bound from (32). From this we deduce that {θε} is Cauchy in C([0, T ], L2(R3))

and hence converges to θ ∈ C([0, T ], L2(R3)). We apply the Interpolation Inequality to θε − θ , and
using (32) and (34) we obtain

sup
0�t�T

∥∥θε − θ
∥∥

Hs � Cs sup
0�t�T

(∥∥θε − θ
∥∥1− s

m

L2

∥∥θε − θ
∥∥ s

m
Hm

)
� C

(‖θ0‖Hm , T , s
)
ε1− s

m

which gives θ ∈ C([0, T ], Hs(R3)), 0 � s < m.
Also, from θε

t = −νT 2
ε Λαθε − Tε((Tεuε) · ∇(Tεθ

ε)), we see that θε
t converges to −νΛαθ − u · ∇θ

in C([0, T ], C(R3)). As θε → θ , the distribution limit of θε
t must be θt ; i.e. θ is a classical solution of

MPM (2). From (32) and (33) we also have θ ∈ L∞([0, T ], Hm(R3)) ∩ L2([0, T ], Hm+ α
2 (R3)).

Next, we show θ ∈ C([0, T ], Hm(R3)). Firstly, we have

∥∥θ(t) − θ
(
t′)∥∥2

Hm = C0
∥∥θ(t) − θ

(
t′)∥∥2

Bm
2,2

� C0

∑
−1� j� J

22 jm
∥∥	 jθ(t) − 	 jθ

(
t′)∥∥2

L2 + 2C0

∑
j> J

22 jm‖	 jθ‖2
L∞

T L2

and

‖∇u‖L∞ + ∥∥Λαθ
∥∥

L∞

� C
(∥∥∇Λα−1(θ + P(θ)

)∥∥
Ḃ0∞,1

+ ‖θ‖Hm
)

= C

( ∑
j�−1

∥∥	̇ j
{∇Λα−1(θ + P(θ)

)}∥∥
L∞ +

∑
j�0

∥∥	̇ j
{∇Λα−1(θ + P(θ)

)}∥∥
L∞ + ‖θ‖Hm

)

� C

( ∑
j�−1

2 jα
∥∥	̇ j

{
θ + P(θ)

}∥∥
L∞ +

∑
j�0

2 j(α−1)
∥∥	̇ j

{∇(
θ + P(θ)

)}∥∥
L∞ + ‖θ‖Hm

)

� C

( ∑
j�−1

2 j(α+ 3
2 )‖	̇ jθ‖L2 +

∑
j�0

2 j(α−1)‖	̇ j∇θ‖L∞ + ‖θ‖Hm

)
� C‖θ‖Hm .

Next, by Besov embedding and Proposition A.4, we have

‖θ‖L̃∞
T Ḃm

2,2
� Ce

cT ‖θ‖L∞
T Hm ‖θ0‖Hm < ∞. (35)

Hence, we know there exists J = J (T , δt) such that
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∑
j> J

22 jm‖	 jθ‖2
L∞

T L2 � δ2

4C0
.

We apply Mean Value Theorem to get

∑
−1� j� J

22 jm
∥∥	 jθ(t) − 	 jθ

(
t′)∥∥2

L2 �
∣∣t − t′∣∣2 ∑

−1� j� J

22 jm
∥∥	 j(∂tθ)

∥∥2
L∞

T L2

� C
∣∣t − t′∣∣2

22 J ‖∂tθ‖2
L∞

T Hm−1 .

On the last term, we have

‖∂tθ‖Hm−1 � ν
∥∥Λαθ

∥∥
Hm−1 + ‖u · ∇θ‖Hm−1

� ν‖θ‖Hm−1+α + ‖uθ‖Hm � C
(‖θ‖Hm + ‖u‖Hm‖θ‖Hm

)
� C

(‖θ‖Hm + ‖θ‖2
Hm

)
� C

(‖θ0‖Hm , T
)
,

i.e. ∂tθ ∈ L∞([0, T ], Hm−1); hence the desired continuity.
The uniqueness is proven by standard way of using the difference of two different solutions, mul-

tiplication, integration and Gronwall’s inequality (cf. [17]). For the smoothing effects, take tγ θ , γ > 0,
in (TD)α below:

∂t
(
tγ θ

) + u · ∇(
tγ θ

) + νΛα
(
tγ θ

) = γ tγ −1θ; (
tγ θ

)∣∣
t=0 = 0.

Assume T � 1 without loss of generality. We show the following:

∥∥tγ θ(t)
∥∥

L∞
T L2 + ∥∥tγ θ(t)

∥∥
L̃∞

T Ḣm+γ α � C
(
T γ +1 + e

c(γ +1)T ‖θ‖L∞
T Hm )‖θ0‖Hm

which implies

∥∥tγ θ(t)
∥∥

L∞
T Hm+γ α � C

(
T γ +1 + e

C(γ +1)T ‖θ‖L∞
T Hm )‖θ0‖Hm .

The proof is done through induction on γ and interpolation to apply for all γ ∈ R+; the readers
are referred to [17] for details.

Finally, the blow-up criterion is proven. In similar fashion to (30) we can obtain

1

2

d

dt
‖θ‖2

Hm + ν
∥∥Λ

α
2 θ

∥∥2
Hm � Cm,α

(‖∇θ‖L∞ + ‖θ‖L3

)‖θ‖2
Hm .

Gronwall’s inequality shows that if the blow-up time T ∗ < ∞, then

T ∗∫
0

‖∇θ‖L∞ dt = ∞.

This completes the proofs of both Propositions 2.1 and 2.2.
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