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ABSTRACT 
A perfect matching or a l-factor of a graph G is a spanning subgraph that is regular of degree 
one. Hence a perfect matching is a set of independent edges which matches all the nodes of G 

in pairs. Thus in a hypercube parallel processor, the number of perfect matchings evaluates the 
number of different ways that all the processors can pairwise exchange information in parallel. 
Making use of matrices and their permanents one can write a straightforward formula which‘we 
evaluate for n < 5. 

A perfect matching or a 1-factor of a graph G is a regular spanning subgraph 

of degree one. In other words a perfect matching is a set of independent edges 

in E(G) that spans V(G). Define fl( G) as the number of l-factors of G. 

The bipartite adjacency mat& (ba-mat&) B = B( G) of a bipartite graph 

G = ( V,E) where V = U u W, IV ( = m, (W ( = n, is the m Xn matrix 

that indicates the presence or absence of an edge between each (u,w) pair of 

nodes by a one or zero, respectively. The following theorem was found 

independently by both Fisher [l] and Kasteleyn [ 31. 

Theorem A. The number fl( G) of perfect matchings in an n Xn bipartite graph 

G is perB, the permanent of the ba-adjacency matrix B of graph G. 

&(G) = perB(G) (1) 

Proof. The permanent of a square binary matrix is simply the number of ways 

of choosing exactly one 1 from each row and each column. Hence, there exists 

a one-to-one correspondence between perfect matchings and the unit contribu- 

tions to this permanent. [] 

The hypercube 

Sian product: 

Q, may be recursively defined [2,p.23] in terms of carte- 

I(2 

{ 

n =l 
Q,, = Q,,-SK2 n 2 2 

Using this definition, the ba-matrix B, of a hypercube Q, may be conveniently 

written recursively, with I denoting the identity matrix of order 2’+ ‘: 
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B, = [l] , Bn+l = “; B’ [ 1 n 
(3) 

By Theorem A the value of petB, is the number of perfect matchings in Q,. 

A submat&z X of a matrix A is the matrix formed by choosing a subset of 

the rows of A and a subset of the columns of A. It is convenient to give an 

expression for counting the perfect matchings of Qn+r. 

Theorem 1. The number of perfect matchings of Qn+r is given by 

fl(Qn+l) = per&+1 = C (~erX)~- 
XCB. 

(4) 

Proof. Consider any k x k matrix X in the upper left B, in B,+r as in (1) such 

that perX # 0. The permanent of X is the number of perfect matchings in the 

subgraph of Q, induced by the nodes corresponding to the rows and columns 

of X. Call this induced subgraph Gx. Now match all nodes of V( Q,) - V( Gx) 

with their neighbors in the other copy of Qn. Clearly, the unmatched nodes in 

the second copy of Q, induce a graph isomorphic to Gx and its permanent is 

perX. Thus, for each square submatrix X in B, there are (perX)2 perfect 

matchings in B,+r. [] 

r or example B2 = [:: 1 -I so DY\l), B 

1110 

[ 1 1101 and 
1011 
0111 

jl( Q3) = perB3 = l2 + 4per[ 112 + per : t [ I 

2 
= 9 

Note that the empty matrix with unit permanent is an admissible submatrix of 

B, and contributes 1 to the above sum in the l2 term. 

It is convenient to introduce some additional notation. For any square 

matrix A, let 

A 
[ 1 k (5) 

where the summation is over all k xk submatrices X of A. Thus (1) may be 

rewritten 

2”-’ 

1 1 
Bn fl(Qn+1) = ~crB,+r = C k 

k=O 

(6) 

Obviously, [?I = 1 and [zrr] = (perBn)2 = j12(Qn). The number of 
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ones in B, is 

[ 1 4 which is the number of edges in Q,, so 

i 1 

Bn 
1 1 = f&p-‘. 

To derive a closed form for 
1 1 
Bn 2 it is convenient, to identify all dissimilar 

pairs of columns of B,. These correspond to all dissimilar pairs of nodes in Q,. 

Any pair of nodes may be completely specified by their distance because of 

symmetry, and the number of pairs at, distance 2k is 

$y](2$ = 2”-2gJ 

When k = 1 any two nodes at distance 2 axe mutually adjacent to exactly 

two nodes and are each individually adjacent, to n- 1 other nodes. Therefore, 

any pair of columns in B, corresponding to nodes at, distance 2 consist of two 

rows of the form 1 1 and n- 1 rows of the form 1 0 and n- 1 rows of the form 

0 1 and the other 2”-‘- 2n rows 0 0. 

Thus, the sum of the squares of all permanents formed by selecting two 

nodes at distance 2 is 

11 2 
per [ 1 1 1 + 2( n- 2)per [i A]’ + 2+2)per[A :I’ + (n-2)2per[A ;I2 = ,2 

Any two nodes at distance greater than two obviously have disjoint neighbor- 

hoods and their corresponding pair of columns in B, contain n copies of 1 0 

and of 0 1 in their rows, the other rows consisting of 0 0 entries. Thus the per- 

manents of the 2x2 matrices formed in these columns contribute a factor of 

n2, giving 

[ Bn 2 1 - _ n22n-2 0 2 n -I- n22n-2 but 

= 2”- ‘, hence = n22n-2(2n-1- 1) 

To compute perB4 = per 

‘1110 1000 
1101 0100 
1011 0010 
0111 0001 

1000 1110 
0100 1101 
0010 1011 
,000l 0111 
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[ 1 B3 
we first evaluate 3 Since all sets of three nodes of even weight in Q3 are 

similar, any three columns of B, may be chosen. Within any three columns 

there are two dissimilar (with respect to the automorphism group of Q3) 3X3 

submatrices giving 

1 + 3.22 + 32.2(22- 1) + 124 + g2 = 272 

We conclude by only mentioning the result that 

jr( Qs) = 589,185 

which was similarly calculated by a computer program. 

An even more difficult unsolved problem in graphical enumeration is the 

exact determination of the number fr*( Q,) of equivalence classes of perfect 

matchings in hypercube Q, with respect to its automorphism group I’( Q,). It 

has been shown that I’( Q,) = [S,] “, the exponentiation group [2,p.177] of 

the two symmetric groups S, raised to the power S,. It is also known that, in 

principle, the number fr’( Q,) of these similarity classes can be calculated from 

the group of the graph Q, with respect to the group of the subgraph 2n- ‘K2 

(which is a perfect matching of Q,). But this approach has not yet proved help 

ful. Obviously fl *( Q,) = fr*( Q,) = 1, fl *( Q,) = 2 and we have also 

found that fr*( Q,) = 8. 
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