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1. Introduction

In this paper we consider the Cauchy problem for the nonlinear Schrédinger equation
1
i0:u + EAU = f(u), (1.1)
u(0) = ¢, (1.2)

where u: R'*" — C is the unknown function, and f(u) = Alu/’"'u withp > 1,A e C. Introducing the propagator

U(t) = exp(itA/2) and the retarded potential Gg(t) = for U(t — t)g(t)dt, we can convert the problem (1.1)-(1.2) to the
equivalent integral equation

u(t) = U(t)ep — i (Gf () (). (1.3)

The solvability of (1.1)-(1.2) has been studied by many authors; see e.g. [1-10]. The problem (1.1)-(1.2) is said to be
locally well-posed in H? if (1.3) has a unique local (in time) solution u € C([0, T]; H®) for any ¢ € H® and the flow mapping
¢ +— u is a continuous mapping from H® to C([0, T]; H®). Here T needs to be taken uniformly in some neighborhood of
arbitrarily fixed ¢ € H*. For 0 < s < n/2, the local solvability of (1.3) has been established for po(s) < p < 1+ 4/(n — 2s),
where po(s) = 1fors <2,s—1for2 <s < 4ands — 2 fors > 4;ifs > n/2,(1.3) is locally solvable for pg(s) < p < oc.
In some cases, we need auxiliary spaces of Strichartz type (see [11]). The lower bound po(s) mentioned above is due to [8].
This result was proved for s = 1 by Ginibre and Velo [3,4], s = 0 by Tsutsumi [9], and s = 2 by Tsutsumi [10] provided
that A € R, mainly by the use of the [P-L estimate and the regularization technique. Kato [5,6] systematically used the
Strichartz estimate (see [4,12,13]) and gave an alternative proof of solvability for s = 0, 1, 2. His proof is also applicable for
the case A & R. Cazenave and Weissler [2] proved the result above for s ¢ Z under the additional assumption p > [s] + 1,
and this can be lowered to p > s by the method of Ginibre, Ozawa and Velo [ 14]. Pecher [8] used fractional regularity spaces
of Besov type for the time variable and proved the result for p > pg(s). Strictly speaking, his proof shows the existence of
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solutions in C([0, T]; H*~¢), but the ¢-loss of regularity can be recovered if we use Proposition 2.3 in [15] or Lemma 2.3(ii)
in the present paper instead of Proposition 2.7 in [8]. On the other hand, the continuity of the flow mapping in full strength
was proved for s = 1in [3], fors = 0in [9], and for s = 0, 1, 2 in [5,6]. Recently, continuity of the flow mapping fors ¢ Z
was proved for0 < s < lin[16]and for 1 < s < 2in[15].

In the preceding results referred to above, the natural upper bound p < 4/(n — 2s) comes from the scale invariance of
(1.1), whereas the lower bound p > po(s) comes from the finite (at most p times) differentiability of the nonlinear term f (u).
Indeed, Pecher [8] principally estimate the equationin H] (B} ;>~) when2 < s < 4,and in H2 (B, ,* ) whens > 4, for which
we would need p > py(s). However, this condition does not seem to be natural since pg(4 — 0) > po(4 + 0). Taking account
of the property that for the Schrédinger equation, one time derivative corresponds to two space derivatives, the optimal
lower bound for 2 < s < 4 should be p > s/2, which linearly connects pg(2) and po(4). Actually, by the systematical use of
fractional order Besov spaces for the time variable, we can obtain the following:

Theorem 1.1. Let n > 5,2 < s < min(4,n/2) ands/2 <p < 14+ 4/(n — 2s). Let
n p—1 2 n o n . In n p—1 2
<f—s>7<f:5(r)zf—f<mm - =S —— .
2 p+1 ¢ 2 2 2 p+1 p+1
Then for any ¢ € H®, there exists T = T (||¢||ns) and (1.3) has a unique solution u in

X = C([0, T]; H) N L9(0, T; B} ;) N B)/3(0, T; L").

Moreover, the flow mapping ¢ +— u is a continuous mapping from H® to X.

We remark that in the preceding we have assumed s < n/2, which requires n > 5 in our theorem, simply because we
describe the results (and the proof of the theorem) in a unified manner. If s > n/2, we can obtain similar results more easily
because H® C L*. In particular, we can prove the result analogous to our theorem under the assumptionn > 1,2 <s < 4
ands/2 <p < 1+4+4/(n—2s),.1fs > n/2, we should choose g, r such that

2 . { n p—1 2 }
0<—-—=68r)<miny= - ——; —— 1.
q 2 p+1 p+1

We conclude this section by giving the notation used in this paper. For Banach couples A = (A, A1), Ae,a and A[g 1 denote
its real and complex interpolation spaces respectively. L", H; and B} , denote the usual Lebesgue, Sobolev and Besov spaces
on R" respectively; see [17,18]. H® is an abbreviation of H3. For 1 < r < oo, we putr’ =r/(r — 1) and 8(r) = n/2 — n/r.

2. Preliminaries

We first introduce vector-valued Sobolev/Besov spaces. For the details, see [19-21]. Let A be a Banach space. Let I C R
be an openinterval. For1 < ¢ <ococandm=0,1,2,..., H[']" (I; A) denotes the space of all A-valued functions defined on I
whose distributional derivatives up to m belong to L(I; A). The norm of HZ;" (I; A) is defined by

m
lullgnga = Y I19ulliaqea). (2.1)
j=0

For1 <q,a < ooand u > 0, we define
By (1 A) = (L'(LA). HJ (1L A))

where the right-hand side is the real interpolation space, and m > pu is an integer. If « is not an integer, we have the
following equivalent representation of the norm of Bf, (I; A) by the modulus of continuity:

adT}]/a

: (2.2)

o0
ullgg . = Nl gger ) + { / (= 4+ 1) — 0% ullag, a)) (2.3)
—00

where [u] is the integer part of u and I, = {t € I;t + t € I}. By definition and the fundamental properties of real
interpolation, we have

By, (I;A) C By 5(I; A) C By ,(I; A) C L(I; A)
with continuous injectionsif« < fand0 < v < u.If1 <q <r < ooands = 1/q — 1/r, then we have the Sobolev type
inequality

lullera:a = Cliullgs ;-
On the other hand if 1 < q, ¢ < coand 1/q < 4 < 1, we have

lullree@:a) < € min(1, |1|“*1/q)||u||35a(,;A).

In what follows, Bﬁ,f «(I; A) is often abbreviated to Bﬁ,’j «(A) unless the statements do not essentially depend on the choice of I.
Similarly, we simply write LY(A) = LI(I; A), etc.
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Lemma2.1. Let A = (Ao, A;) be a compatible Banach couple and let A = /_\9,0, withd) < 6 < 1,1 < a < oo. Let
w>0,1<qo,q,B <ocand1/q= (1—-6)/qo+ 60/q:. Then forany u qutoqﬂ(Ao) N L91(Aq), we have

1-6 0
u|l .a-e) < Cllu u .
Il gy = CIE" e,

Proof. Similar to the proof of [8, Lemma 4.1]. O

Lemma22. [et 0 < p < l,andlet 1 < qj, 1,0 < cowith1/qo = 1/q1 + 1/q2 = 1/q3 + 1/qa, 1/10 = 1/11 + 1/1p =
1/r3 4+ 1/r4. Then forany u € Bff],u(L”) NLBL3)andv € [2(L2) N Bﬁfw (L™), the following inequality holds:

||UU||BgOvu(Lf0) = C”u”Bg]’w(l_"l)”v”LqZ(LrZ) + C||”||L43(L'3)||U||Bfl‘4_a(y4)-

Proof. We can easily prove the inequality by using (2.3) and the Hélder inequality. O
We next introduce Strichartz type estimates used in the proof of the theorem.
Lemma2.3. [ets > 0,0<6_ <60 <6, <landlet0 < 2/q = 5(r) < 1. Then we have the following:
() if ¢ € H', then U(-)¢ € C(H*) N LI(B; ,) N BZ@(L’) with the estimate
10O s aeary < CI s
() if f € BZ/’Z(L’,) N Ny L) (17O, then Gf € C(H?®) with the estimate
1Gf lloo 20y < C||f||32,‘2(u’) + C max IF Il @) 6ty o
where 1/q,(0) = (1 —6)/q and 1/r,(0) = (1 —6) /1" +6/2;
(iii) if f € Bg,,z(v’) Ny L3 (L+C2), then Gf € L9(BX,) N B , (L") with the estimate
||Gf||Lq(Bg§q)mB§.2(Lr) < C”f”BZ/,z(”,) + Cmfx If Il g grew),
where 1/q(0) = (1—0)/q +60/qand 1/7(0) = (1 —0)/r' +6/r.

Proof. (i) See [2, Theorem 2.2] and [8, Proposition 2.5].

(ii) This is a refinement of [8, Proposition 2.7]. For the proof, see [15, Proposition 2.3].

(iii) This is a refinement of [8, Proposition 2.6]. By the usual Strichartz estimate, G maps L9 (L") into L9(L"). On the other
hand, G maps H ;, (Lr/)ﬂL" (L") into H; (L") and alsointo L4 (Hrz) by virtue of [8, Proposition 2.3]. Therefore, by real interpolation,
G maps

i 1 g1 r _po r’ ot r
(tfa mya N ))972 = B, 0 (L)),

5 B, N (e ran) =B N1 )
N (6] N
into (Lq(Lr),HL}(Lr))@2 = BZZ(U). (See [8, Lemma 2.1].) Similarly, G maps (Lq/(LT/),H;/(Lr/)ﬂLq(Lr)) into
s ’ 6,2
(L"), L(HD)), .= LI(B2) by virtue of [18, Theorem 1.18.4]. O

To estimate the nonlinear term, we need the following lemma:

Lemma24. [et0 <s <p,1<r1g,1,p, 0 <ocandf(u) = |ulP~'uLet 1/rg = 1/r;+(p—1)/p. Thenforany u € L”ﬂBﬁw
we have

p—1
If @llgs , < Cllully, llullg, -
0 1

Proof. See [14,Lemma34]. O
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3. Proof of Theorem 1.1

In this section we arbitrarily fix the exponents q, r satisfying the assumption of Theorem 1.1. Let Xo = L*°(0, T; H*) N

L9(0, T; B ) NB}/5(0, T; ') and
= {u € Xo; llullx, <R, u(0) = ¢}.

2 is closed in Xp and complete, with metric d(u, v) = [[u — v||a¢r). We show that for suitable choices of T and R,
Q) =U()¢ —iGf (u)

is a contraction mapping on 4. Since (id; + A/2)® (u) = f(u), it suffices to estimate & (u) in L (L%) N LI(L"),
10:@(u) =U() (—(A/2)¢ + f(9)) —iG (3:f (u))

inY = L®H"2) N LB NBY; (L") and f (u) in L°(H*~2) N LI(B 2

Step 1. The usual Strlchartz estimate and the Holder inequality show that
12 Wl @2ynaqwry = Cl@llz + Clf @l

< Cllgll,z + CTKIIUIILq(Lpo)IIHIILq(Lr)-

Herex = 1— (p+ 1)/q > 0and py is determined by 1/r" = (p — 1)/po + 1/r, or equivalently 28(r) + (p — 1)8(pg) =
n(p—1)/2.1f we put oy = §(pg) — 6(r), we have (p+ 1)5(r) + (p — 1)op = n(p — 1)/2 Therefore, there exists pg satisfying
0<o0p<sif(m/2-s)(p—1)/(p+1) <8(@) <n(p—1)/2(p+ 1). Since B}, e C B 5 C L? provided that 0 < 0y < s, we
have |[ul|iaeoy < C||u||Lq(B;4q) < (R, and consequently

1@ @)l jeo 2ynaqry < CliPll2 + CT*RP.
Step 2. The estimate of 0, (u) in Y. By Lemma 2.3,

3@ Wy < Cll = (A/2)¢ + f(P)llys—2 + CIIf Wdeully, (3.1)
where

V=B 1(erm {1300 ([FO2))  [902) (02 )

and0 < 0_ <s/2—-1<6; < 1.Weputsy =s— (n/2 —s)(p — 1). By the assumption, we see that sy > s — 2. Using the
Sobolev inequality and Lemma 2.4, we can show that

If (@)llkso =< C||¢||LG/<n 25) 1@ 1115+ (3.2)

thereby obtaining that the first term in the right-hand side of (3.1) is bounded by C (1 + ||¢||f,;1> |l |lus. Applying
Lemma 2.2, we see that

I )l et < CT oy et g, + T @t o N etlisons, (3.3)
q, N

where x and pg are the same as in Step 1, and p1, p; satisfy 1/r' = 1/p; + (p — 1)/ p2, or equivalently (p + 1)§(r) + o1 +
(p — Do, = n(p — 1)/2 with o; = §(p;) — 6(r),j = 1, 2. The first term in the right-hand side is bounded by CT“RP in the
same way as in Step 1.

We estimate the second term separately in the casesp < 2andp > 2.

Ifp < 2,let wuy, pysatisfy 1 < puq < s/2,(s —2)/2(p — 1) < ua < 1with uq + (p — 1), being sufficiently close to
s/2. For such p1, o, we choose pq, pp such that 0 < oj < s —2u;,j = 1, 2. Such pq, p; surely exist if

(p+1Ds(r) = g(p D<@+ D) +5s—2u1+ (P — D — 2u).

The left inequality is satisfied by virtue of the assumption for §(r); the right inequality is also satisfied again by the
assumption for §(r), since the right-hand side is sufficiently close to (p+ 1)§(r) + (p — 1)s by our choice of 141, u,. Therefore

it follows that || d:ufl g ey < C||u||Bu1 @, y =< CR. On the other hand, by the inequality

If" (u(t + 1) — f W(®) | < Clu(t +7) —u@®)|P~"

and the representation of the Besov norm (2.3), we have

!
- <
P @lgecr oy < U @l o,

00 dr (p—1)/2
CllullByten, + C (t 72 u( 4 1) — ullag,1m)) —
Lq(LPZ) LA(I7;LP2) T
—00

IA

| /\

pP—
s 1, = Clulyy o (3:4)
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wherel, = {t € (0, T); t + v € (0, T)}. Since (L", B q)(,j/S 2= Br ,and 2u; + oj < s, we have by Lemma 2.1

1—0j/s aj/s
Il 7, < g, Dl < CR

Consequently we obtain ||f’ W deull, 3/2 1y < CT*RP.
q

If p > 2, we further decompose (p —1)/p2 = (p — 2)/p3 + 1/ pa4, or equivalently
P+Dé()+0o1+(p—2)o3+04= 5@ -1

with o = §(p;) — 8(r), j = 3, 4. We can choose ps3, p4 such that 0 < o3 < 5,0 < 04 < 2.Then by the inequality
1
If" (ut + ) —f @) | < / dr |f" Gt + ©) + (1 = Vu)] u(t + ) — u(®)|,
0

we obtain ||f/(u)||Bs/2—l Lwn/o-D) < C||u||LQ(Lp3)||u||BZ§4(L,)4). Therefore, like in the case p < 2, we obtain

If (u)atullgs/z 1oy = <z CT"RP

Step 3. The estimate of f’(u)d;u in L) (L702)) N [9:©0) (1= (0)) In this step we simply write § = §(A), etc. Let2 < ys, ys <
oo and x > 0 satisfy

1/G=1/ys+®—1D/vs + k.
If 1/q < p/q, then we choose k > 0 sufficiently small and ys, Y such that
O<us—1=1/q—1/ys <s/2 -1, 0<ug=1/q—1/ys;

if 1/q > p/q, then we choose 0 < x < 1/q — p/q and us — 1, ug to be sufficiently small positive numbers. Moreover, let
ps, Pe satisfy 1/7 = 1/ps + (p — 1)/ ps, or equivalently

8(r) =pé(r) —n(p—1)/2+ 05+ (p — 1o
with oj = §(p;) — 8(r),j = 5, 6. We choose ps, ps such that 0 < o5 < s — 2us, 0 < 05 < s — 2ug, which is possible if

_ n
0.<8() —p3() + 5 (0 — 1) <525 + (¢~ D(s — 2us). (3.5)
The left inequality of (3.5) is true since the middle of (3.5) is
260 — 1)8(r) — pd(r) + g(p —1) > 264(r) > 0.

To check the right inequality of (3.5), we separately consider the cases 1/q < p/qand 1/q > p/q.1f 1/q < p/q, this is true
for 6+ ~ s/2 — 1 and sufficiently small « since §(r) — p§(r) = 2 (k — us — (p — 1) g + 0) and therefore

- n n
s =25+ (p = D —29) = (5B —psO) + 50— 1) =s—0— (5 =5) - — 2

~2—<g—s>(p—l)>0.

If 1/q > p/q, the right inequality of (3.5) is true since s — 1 and g are sufficiently small and therefore
_ n n
s =25+ (p = D= 219) = (60) = pSO) + 5= 1) ~5-2= (5 =5) @~ D+ (@ +3 - 98(r)
> (s—2)(1—=468(r)) > 0.
Therefore, Holder’s inequality, Sobolev’s inequality and Lemma 2.1 yield
If' Wdrullaqr < CT* ”u”LVG(L/)G)||8[u||L75(L95) < CT*R". (3.6)

We can analogously estimate ||f’(u)d¢u| rax 1r+).

Step 4. The estimate of f(u) in L(H*~%) N LY(B}_%). We estimate f (u) in L*(H*~?). The estimate in LY(B]?) is similar. Let

Wy, kg satisfy 1/q < pj < 1withk = u7+(p— ])/J,g —p/qbeing sufficiently small. Let p7, pg satisfy 1/2 = 1/,o7+(p 1)/ ps,
or equivalently

pd(r)+o7+(P—1og—s+2—n(p—1)/2=0

with o7 = §(p7) — 6(r) + s — 2, 03 = 8(pg) — 8(r). We choose p7, pg suchthats —2 <o; <s—2u7,0 <og <S—2us,
which is possible if

pa(r)—gm—])50<p8<r>—2u7—2(p—1)u8+2—(g—s)@—l).
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The left inequality holds by the assumption, and the right inequality holds since the right-hand side is equal to 2 — (n/2 —
s)(p — 1) — 2«, which is positive if « > 0 is sufficiently small. Therefore

IF @ liseqr—z) < Cltlciy Il -2,
< Ol g Il 7, = TR
Step 5. In view of Steps 1-4, we have proved
[l < (1+1615:") I@llu: + TR
for u € 4. Like in Step 1, we obtain
@ W) — @)l < TR lu— vl|qr) (3.7)

foru, v € 4. Therefore, for sufficiently large R > 0 and sufficiently small T > 0, @ is a contraction mapping from % to itself,
which implies the unique existence of the solution to (1.3) in Xp. We should also show the continuity of u in H®. To this end,
it suffices to show that f (u) € C(H*~2) since we immediately obtain u € C'(H*~2) by Lemma 2.3 and the previous steps. By
the estimate (3.2) with ¢ replaced by u, we can show that ||f (u)|;csoy < CT*RP. On the other hand, we can easily prove
f(u) € C(L?). Indeed, by the Hélder and the Sobolev inequalities, we see that

If (u(t + b)) = F@(®) 2 < Cllulfx s llult + h) — u(®)l|zs—s0 — 0

ash — 0.Since sy > s — 2, we obtain f (u) € C(H*"2) by interpolation.

Step 6. Continuity of the flow mapping. Let ¢, — ¢ in H® and let u,, be the solution to (1.3) with ¢ replaced by ¢,,. We
shall show that u, — u in Xo. We may assume that ||uyllx, < R.In the same way as in the proof of (3.7), we can easily
show that [luy — ulleoq2ynaqry < Clligm — @2 — 0. To prove the continuous dependence in full strength, we remark

that ;u,(0) = —(A/2)¢m + f(¢m) — 8:u(0) in H*~2. This can be proved in the same way as in Step 5. We also remark
that ||u, — ulqu(Ba y = 0ifo < s, since (L, rq){,/sz = B7, and ||um — ullaqry — 0. Moreover [[um — ullBu LB, 0if

o + 2u < s by Lemma 2.1 since {u,,} is bounded in B (Lr) Using Lemma 2.3 we have

19 (um — wlly < Cllde(um — u)(O)lys—=2 + ClIf (W) et — f' (W) deully
< Cll3(um — w)(O) llys—2 + CIIf"(m) @cttm — 3eu) Iy + CII(F (m) — f'(w))deullg- (3.8)
In the same way as in the previous steps, the middle term in the right-hand side is estimated by CT*RP~1||9; (um — u)|ly,
which is absorbed in the left-hand side. Therefore, in order to prove ||9;(u,;; — u)|ly — 0, we have only to show that the last
term in the right-hand side of (3.8) tends to zero. In what follows, we only consider the case p < 2; we only need a slight
modification in the case p > 2. We estimate || (f/(um) —f’(u)) d:ully by analogy with (3.3) and (3.6) with f’(u) replaced by
f'(un) — f'(u). Since

p—1
If (um) — f (u)”Lq/(p Dro/-1y = < Cllum — ”L‘I(B 0)

and

”f/(um) _f/(u)”LVG/(P—U(LPG/(P—U) =< Cllum — u” “6(3 )

tend to zero in view of the remark above, it suffices to show that f'(u,;,) — f’(u) in B/ ! (LP2/®=1)_ The estimate (3.4)

q/(p—1).2
shows that ||f" (uy)|| 26— < CRP~!, On the other hand, again by the remark above, we see that
Bojo-1.2/0-1)

p—1
If' Wm) = f @l 06— gr2ro-1y < Clltim — U||Lq(B 2) ™ 0.

(Lﬂz/(P*U)

Therefore, we obtain that f'(u,) — f'(u) in BZ//z(;ln ,(1#2/?=D) by interpolation. We finally check that f (u,) — f(u) in

[®(H"2) N Lq(B 2y Like in Step 5, we can show that ||f(”)||Lw(H50)qu(330 < CRP and
I ) = F ) i 2yusry < R it = Ul i yaseio, = O

thereby proving the assertion. O
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