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a b s t r a c t

We study the well-posedness for the nonlinear Schrödinger equation (NLS)

i∂tu +
1
2
∆u = λ|u|p−1u

in R1+n, where p > 1, λ ∈ C, and prove that (NLS) is locally well-posed in Hs if 2 < s < 4
and s/2 < p < 1+4/(n−2s)+. To obtain a good lower bound for p, we systematically use
Strichartz type estimates in fractional order Besov spaces for the time variable.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the Cauchy problem for the nonlinear Schrödinger equation

i∂tu +
1
2
∆u = f (u), (1.1)

u(0) = φ, (1.2)

where u:R1+n
→ C is the unknown function, and f (u) = λ|u|p−1u with p > 1, λ ∈ C. Introducing the propagator

U(t) = exp(it∆/2) and the retarded potential Gg(t) =
 t
0 U(t − τ)g(τ )dτ , we can convert the problem (1.1)–(1.2) to the

equivalent integral equation

u(t) = U(t)φ − i (Gf (u)) (t). (1.3)

The solvability of (1.1)–(1.2) has been studied by many authors; see e.g. [1–10]. The problem (1.1)–(1.2) is said to be
locally well-posed in Hs if (1.3) has a unique local (in time) solution u ∈ C([0, T ];Hs) for any φ ∈ Hs and the flow mapping
φ → u is a continuous mapping from Hs to C([0, T ];Hs). Here T needs to be taken uniformly in some neighborhood of
arbitrarily fixed φ ∈ Hs. For 0 ≤ s < n/2, the local solvability of (1.3) has been established for p0(s) < p < 1 + 4/(n − 2s),
where p0(s) = 1 for s ≤ 2, s − 1 for 2 < s < 4 and s − 2 for s ≥ 4; if s ≥ n/2, (1.3) is locally solvable for p0(s) < p < ∞.
In some cases, we need auxiliary spaces of Strichartz type (see [11]). The lower bound p0(s) mentioned above is due to [8].
This result was proved for s = 1 by Ginibre and Velo [3,4], s = 0 by Tsutsumi [9], and s = 2 by Tsutsumi [10] provided
that λ ∈ R, mainly by the use of the Lp–Lq estimate and the regularization technique. Kato [5,6] systematically used the
Strichartz estimate (see [4,12,13]) and gave an alternative proof of solvability for s = 0, 1, 2. His proof is also applicable for
the case λ ∉ R. Cazenave and Weissler [2] proved the result above for s ∉ Z under the additional assumption p > [s] + 1,
and this can be lowered to p > s by themethod of Ginibre, Ozawa and Velo [14]. Pecher [8] used fractional regularity spaces
of Besov type for the time variable and proved the result for p > p0(s). Strictly speaking, his proof shows the existence of
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solutions in C([0, T ];Hs−ϵ), but the ϵ-loss of regularity can be recovered if we use Proposition 2.3 in [15] or Lemma 2.3(ii)
in the present paper instead of Proposition 2.7 in [8]. On the other hand, the continuity of the flow mapping in full strength
was proved for s = 1 in [3], for s = 0 in [9], and for s = 0, 1, 2 in [5,6]. Recently, continuity of the flow mapping for s ∉ Z
was proved for 0 < s < 1 in [16] and for 1 < s < 2 in [15].

In the preceding results referred to above, the natural upper bound p < 4/(n − 2s) comes from the scale invariance of
(1.1), whereas the lower bound p > p0(s) comes from the finite (atmost p times) differentiability of the nonlinear term f (u).
Indeed, Pecher [8] principally estimate the equation inH1

q (B
s−2−ϵ
r,2 )when 2 < s < 4, and inH2

q (B
s−4−ϵ
r,2 )when s ≥ 4, forwhich

we would need p > p0(s). However, this condition does not seem to be natural since p0(4− 0) > p0(4+ 0). Taking account
of the property that for the Schrödinger equation, one time derivative corresponds to two space derivatives, the optimal
lower bound for 2 < s < 4 should be p > s/2, which linearly connects p0(2) and p0(4). Actually, by the systematical use of
fractional order Besov spaces for the time variable, we can obtain the following:

Theorem 1.1. Let n ≥ 5, 2 < s < min(4, n/2) and s/2 < p < 1 + 4/(n − 2s). Letn
2

− s
 p − 1
p + 1

<
2
q

= δ(r) ≡
n
2

−
n
r

< min

n
2

− s;
n
2

·
p − 1
p + 1

;
2

p + 1


.

Then for any φ ∈ Hs, there exists T = T (∥φ∥Hs) and (1.3) has a unique solution u in

X = C([0, T ];Hs) ∩ Lq(0, T ; Bs
r,q) ∩ Bs/2

q,2(0, T ; Lr).

Moreover, the flow mapping φ → u is a continuous mapping from Hs to X.

We remark that in the preceding we have assumed s < n/2, which requires n ≥ 5 in our theorem, simply because we
describe the results (and the proof of the theorem) in a unified manner. If s > n/2, we can obtain similar results more easily
because Hs

⊂ L∞. In particular, we can prove the result analogous to our theorem under the assumption n ≥ 1, 2 < s < 4
and s/2 < p < 1 + 4/(n − 2s)+. If s ≥ n/2, we should choose q, r such that

0 <
2
q

= δ(r) < min

n
2

·
p − 1
p + 1

;
2

p + 1


.

We conclude this section by giving the notation used in this paper. For Banach couples Ā = (A0, A1), Āθ,α and Ā[θ ] denote
its real and complex interpolation spaces respectively. Lr ,Hs

r and Bs
r,α denote the usual Lebesgue, Sobolev and Besov spaces

on Rn respectively; see [17,18]. Hs is an abbreviation of Hs
2. For 1 ≤ r ≤ ∞, we put r ′

= r/(r − 1) and δ(r) = n/2 − n/r .

2. Preliminaries

We first introduce vector-valued Sobolev/Besov spaces. For the details, see [19–21]. Let A be a Banach space. Let I ⊂ R
be an open interval. For 1 ≤ q < ∞ and m = 0, 1, 2, . . . ,Hm

q (I; A) denotes the space of all A-valued functions defined on I
whose distributional derivatives up tom belong to Lq(I; A). The norm of Hm

q (I; A) is defined by

∥u∥Hm
q (I;A) =

m
j=0

∥∂ ju∥Lq(I;A). (2.1)

For 1 ≤ q, α < ∞ and µ > 0, we define

Bµ
q,α(I; A) =


Lq(I; A),Hm

q (I; A)

µ/m,α

, (2.2)

where the right-hand side is the real interpolation space, and m > µ is an integer. If µ is not an integer, we have the
following equivalent representation of the norm of Bµ

q,α(I; A) by the modulus of continuity:

∥u∥Bµ
q,α(I;A) ≃ ∥u∥H[µ]

q (I;A)
+


∞

−∞


τ−(µ−[µ])

∥∂ [µ]u(· + τ) − ∂ [µ]u∥Lq(Iτ ;A)

α dτ
τ

1/α

, (2.3)

where [µ] is the integer part of µ and Iτ = {t ∈ I; t + τ ∈ I}. By definition and the fundamental properties of real
interpolation, we have

Bµ
q,α(I; A) ⊂ Bµ

q,β(I; A) ⊂ Bν
q,α(I; A) ⊂ Lq(I; A)

with continuous injections if α ≤ β and 0 < ν < µ. If 1 ≤ q < r < ∞ and s = 1/q − 1/r , then we have the Sobolev type
inequality

∥u∥Lr (I;A) ≤ C∥u∥Bsq,r (I;A).

On the other hand if 1 < q, α < ∞ and 1/q < µ < 1, we have
∥u∥L∞(I;A) ≤ C min(1, |I|µ−1/q)∥u∥Bµ

q,α(I;A).

In what follows, Bµ
q,α(I; A) is often abbreviated to Bµ

q,α(A) unless the statements do not essentially depend on the choice of I .
Similarly, we simply write Lq(A) = Lq(I; A), etc.
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Lemma 2.1. Let Ā = (A0, A1) be a compatible Banach couple and let A = Āθ,α with 0 < θ < 1, 1 ≤ α ≤ ∞. Let
µ > 0, 1 < q0, q1, β < ∞ and 1/q = (1 − θ)/q0 + θ/q1. Then for any u ∈ Bµ

q0,β
(A0) ∩ Lq1(A1), we have

∥u∥B(1−θ)µ
q,β/(1−θ)

(A)
≤ C∥u∥1−θ

Bµ
q0,β (A0)

∥u∥θ
Lq1 (A1)

.

Proof. Similar to the proof of [8, Lemma 4.1]. �

Lemma 2.2. Let 0 < µ < 1, and let 1 < qj, rj, α < ∞ with 1/q0 = 1/q1 + 1/q2 = 1/q3 + 1/q4, 1/r0 = 1/r1 + 1/r2 =

1/r3 + 1/r4. Then for any u ∈ Bµ
q1,α(Lr1) ∩ Lq3(Lr3) and v ∈ Lq2(Lr2) ∩ Bµ

q4,α(Lr4), the following inequality holds:

∥uv∥Bµ
q0,α(Lr0 ) ≤ C∥u∥Bµ

q1,α(Lr1 )∥v∥Lq2 (Lr2 ) + C∥u∥Lq3 (Lr3 )∥v∥Bµ
q4,α(Lr4 ).

Proof. We can easily prove the inequality by using (2.3) and the Hölder inequality. �

We next introduce Strichartz type estimates used in the proof of the theorem.

Lemma 2.3. Let s > 0, 0 < θ− < θ < θ+ < 1 and let 0 < 2/q = δ(r) < 1. Then we have the following:

(i) if φ ∈ Hs, then U(·)φ ∈ C(Hs) ∩ Lq(Bs
r,2) ∩ Bs/2

q,2(L
r) with the estimate

∥U(·)φ∥L∞(Hs)∩Lq(Bsr,2)∩Bs/2q,2(Lr ) ≤ C∥φ∥Hs;

(ii) if f ∈ Bθ
q′,2(L

r ′) ∩


±
Lq∗(θ±)(Lr∗(θ±)), then Gf ∈ C(H2θ ) with the estimate

∥Gf ∥L∞(H2θ ) ≤ C∥f ∥Bθ
q′,2

(Lr′ ) + C max
±

∥f ∥Lq∗(θ±)(Lr∗(θ±)),

where 1/q∗(θ) = (1 − θ)/q′ and 1/r∗(θ) = (1 − θ)/r ′
+ θ/2;

(iii) if f ∈ Bθ
q′,2(L

r ′) ∩


±
Lq̄(θ±)(Lr∗(θ±)), then Gf ∈ Lq(B2θ

r,q) ∩ Bθ
q,2(L

r) with the estimate

∥Gf ∥Lq(B2θr,q)∩Bθ
q,2(L

r ) ≤ C∥f ∥Bθ
q′,2

(Lr′ ) + C max
±

∥f ∥Lq̄(θ±)(Lr̄(θ±)),

where 1/q̄(θ) = (1 − θ)/q′
+ θ/q and 1/r̄(θ) = (1 − θ)/r ′

+ θ/r.

Proof. (i) See [2, Theorem 2.2] and [8, Proposition 2.5].
(ii) This is a refinement of [8, Proposition 2.7]. For the proof, see [15, Proposition 2.3].
(iii) This is a refinement of [8, Proposition 2.6]. By the usual Strichartz estimate, G maps Lq

′

(Lr
′

) into Lq(Lr). On the other
hand,GmapsH1

q′(Lr
′

)∩Lq(Lr) intoH1
q (L

r) and also into Lq(H2
r ) by virtue of [8, Proposition 2.3]. Therefore, by real interpolation,

Gmaps
Lq

′

(Lr
′

),H1
q′(Lr

′

) ∩ Lq(Lr)


θ,2
= Bθ

q′,2(L
r ′) ∩


Lq

′

(Lr
′

), Lq(Lr)


θ,2

⊃ Bθ
q′,2(L

r ′) ∩


±


Lq

′

(Lr
′

), Lq(Lr)


[θ±]

= Bθ
q′,2(L

r ′) ∩


±

Lq̄(θ±)(Lr̄(θ±))

into

Lq(Lr),H1

q (L
r)


θ,2

= Bθ
q,2(L

r). (See [8, Lemma 2.1].) Similarly, G maps

Lq

′

(Lr
′

),H1
q′(Lr

′

) ∩ Lq(Lr)


θ,2
into

Lq(Lr), Lq(H2
r )


θ,q = Lq(B2θ

r,q) by virtue of [18, Theorem 1.18.4]. �

To estimate the nonlinear term, we need the following lemma:

Lemma 2.4. Let 0 < s < p, 1 < r0, r1, ρ, α < ∞ and f (u) = |u|p−1u. Let 1/r0 = 1/r1+(p−1)/ρ . Then for any u ∈ Lρ
∩Bs

r1,α
we have

∥f (u)∥Bsr0,α
≤ C∥u∥p−1

Lρ ∥u∥Bsr1,α
.

Proof. See [14, Lemma 3.4]. �
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3. Proof of Theorem 1.1

In this section we arbitrarily fix the exponents q, r satisfying the assumption of Theorem 1.1. Let X0 = L∞(0, T ;Hs) ∩

Lq(0, T ; Bs
r,q) ∩ Bs/2

q,2(0, T ; Lr) and

B = {u ∈ X0; ∥u∥X0 ≤ R, u(0) = φ}.

B is closed in X0 and complete, with metric d(u, v) = ∥u − v∥Lq(Lr ). We show that for suitable choices of T and R,

Φ(u) = U(·)φ − iGf (u)

is a contraction mapping on B. Since (i∂t + ∆/2)Φ(u) = f (u), it suffices to estimate Φ(u) in L∞(L2) ∩ Lq(Lr),

i∂tΦ(u) = U(·) (−(∆/2)φ + f (φ)) − iG (∂t f (u))

in Y = L∞(Hs−2) ∩ Lq(Bs−2
r,q ) ∩ Bs/2−1

q,2 (Lr) and f (u) in L∞(Hs−2) ∩ Lq(Bs−2
r,q ).

Step 1. The usual Strichartz estimate and the Hölder inequality show that

∥Φ(u)∥L∞(L2)∩Lq(Lr ) ≤ C∥φ∥L2 + C∥f (u)∥Lq′ (Lr′ )

≤ C∥φ∥L2 + CT κ
∥u∥p−1

Lq(Lρ0 )
∥u∥Lq(Lr ).

Here κ = 1 − (p + 1)/q > 0 and ρ0 is determined by 1/r ′
= (p − 1)/ρ0 + 1/r , or equivalently 2δ(r) + (p − 1)δ(ρ0) =

n(p− 1)/2. If we put σ0 ≡ δ(ρ0)− δ(r), we have (p+ 1)δ(r)+ (p− 1)σ0 = n(p− 1)/2. Therefore, there exists ρ0 satisfying
0 ≤ σ0 < s if (n/2 − s)(p − 1)/(p + 1) < δ(r) ≤ n(p − 1)/2(p + 1). Since Bs

r,q ⊂ Bσ0
r,2 ⊂ Lρ0 provided that 0 ≤ σ0 < s, we

have ∥u∥Lq(Lρ0 ) ≤ C∥u∥Lq(Bsr,q) ≤ CR, and consequently

∥Φ(u)∥L∞(L2)∩Lq(Lr ) ≤ C∥φ∥L2 + CT κRp.

Step 2. The estimate of ∂tΦ(u) in Y . By Lemma 2.3,

∥∂tΦ(u)∥Y ≤ C∥ − (∆/2)φ + f (φ)∥Hs−2 + C∥f ′(u)∂tu∥Ỹ , (3.1)

where

Ỹ = Bs/2−1
q′,2 (Lr

′

) ∩


±


Lq̄(θ±)(Lr̄(θ±)) ∩ Lq∗(θ±)(Lr∗(θ±))


and 0 < θ− < s/2 − 1 < θ+ < 1. We put s0 = s − (n/2 − s)(p − 1). By the assumption, we see that s0 > s − 2. Using the
Sobolev inequality and Lemma 2.4, we can show that

∥f (φ)∥Hs0 ≤ C∥φ∥
p−1
L2n/(n−2s)∥φ∥Hs , (3.2)

thereby obtaining that the first term in the right-hand side of (3.1) is bounded by C

1 + ∥φ∥

p−1
Hs


∥φ∥Hs . Applying

Lemma 2.2, we see that

∥f ′(u)∂tu∥Bs/2−1
q′,2

(Lr′ ) ≤ CT κ
∥u∥p−1

Lq(Lρ0 )
∥∂tu∥Bs/2−1

q,2 (Lr ) + CT κ
∥f ′(u)∥Bs/2−1

q/(p−1),2(L
ρ2/(p−1))

∥∂tu∥Lq(Lρ1 ), (3.3)

where κ and ρ0 are the same as in Step 1, and ρ1, ρ2 satisfy 1/r ′
= 1/ρ1 + (p − 1)/ρ2, or equivalently (p + 1)δ(r) + σ1 +

(p − 1)σ2 = n(p − 1)/2 with σj ≡ δ(ρj) − δ(r), j = 1, 2. The first term in the right-hand side is bounded by CT κRp in the
same way as in Step 1.

We estimate the second term separately in the cases p ≤ 2 and p > 2.
If p ≤ 2, let µ1, µ2 satisfy 1 < µ1 < s/2, (s − 2)/2(p − 1) < µ2 < 1 with µ1 + (p − 1)µ2 being sufficiently close to

s/2. For such µ1, µ2, we choose ρ1, ρ2 such that 0 ≤ σj < s − 2µj, j = 1, 2. Such ρ1, ρ2 surely exist if

(p + 1)δ(r) ≤
n
2
(p − 1) < (p + 1)δ(r) + s − 2µ1 + (p − 1)(s − 2µ2).

The left inequality is satisfied by virtue of the assumption for δ(r); the right inequality is also satisfied again by the
assumption for δ(r), since the right-hand side is sufficiently close to (p+1)δ(r)+(p−1)s by our choice ofµ1, µ2. Therefore
it follows that ∥∂tu∥Lq(Lρ1 ) ≤ C∥u∥B

µ1
q,2(B

σ1
r,2)

≤ CR. On the other hand, by the inequality

|f ′ (u(t + τ)) − f ′ (u(t)) | ≤ C |u(t + τ) − u(t)|p−1

and the representation of the Besov norm (2.3), we have

∥f ′(u)∥Bs/2−1
q/(p−1),2(L

ρ2/(p−1))
≤ C∥f ′(u)∥

B
(p−1)µ2
q/(p−1),2/(p−1)(L

ρ2/(p−1))

≤ C∥u∥p−1
Lq(Lρ2 )

+ C


∞

−∞


τ−µ2∥u(· + τ) − u∥Lq(Iτ ;Lρ2 )

2 dτ
τ

(p−1)/2

≤ C∥u∥p−1
B
µ2
q,2(L

ρ2 )
≤ C∥u∥p−1

B
µ2
q,2(B

σ2
r,2)

, (3.4)
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where Iτ = {t ∈ (0, T ); t + τ ∈ (0, T )}. Since (Lr , Bs
r,q)σj/s,2 = B

σj
r,2 and 2µj + σj < s, we have by Lemma 2.1

∥u∥
B
µj
q,2(B

σj
r,2)

≤ C∥u∥
1−σj/s

Bs/2q,2(Lr )
∥u∥

σj/s
Lq(Bsr,q)

≤ CR.

Consequently we obtain ∥f ′(u)∂tu∥Bs/2−1
q′,2

(Lr′ ) ≤ CT κRp.

If p > 2, we further decompose (p − 1)/ρ2 = (p − 2)/ρ3 + 1/ρ4, or equivalently

(p + 1)δ(r) + σ1 + (p − 2)σ3 + σ4 =
n
2
(p − 1)

with σj ≡ δ(ρj) − δ(r), j = 3, 4. We can choose ρ3, ρ4 such that 0 ≤ σ3 < s, 0 ≤ σ4 < 2. Then by the inequality

|f ′ (u(t + τ)) − f ′ (u(t)) | ≤

 1

0
dλ |f ′′(λu(t + τ) + (1 − λ)u(t))| |u(t + τ) − u(t)|,

we obtain ∥f ′(u)∥Bs/2−1
q/(p−1),2(L

ρ2/(p−1))
≤ C∥u∥p−2

Lq(Lρ3 )
∥u∥Bs/2−1

q,2 (Lρ4 )
. Therefore, like in the case p ≤ 2, we obtain

∥f ′(u)∂tu∥Bs/2−1
q′,2

(Lr′ ) ≤ CT κRp.

Step 3. The estimate of f ′(u)∂tu in Lq̄(θ±)(Lr̄(θ±))∩Lq∗(θ±)(Lr∗(θ±)). In this step we simply write q̄ = q̄(θ±), etc. Let 2 < γ5, γ6 <
∞ and κ > 0 satisfy

1/q̄ = 1/γ5 + (p − 1)/γ6 + κ.

If 1/q̄ ≤ p/q, then we choose κ > 0 sufficiently small and γ5, γ6 such that

0 < µ5 − 1 ≡ 1/q − 1/γ5 < s/2 − 1, 0 < µ6 ≡ 1/q − 1/γ6;

if 1/q̄ > p/q, then we choose 0 < κ < 1/q̄ − p/q and µ5 − 1, µ6 to be sufficiently small positive numbers. Moreover, let
ρ5, ρ6 satisfy 1/r̄ = 1/ρ5 + (p − 1)/ρ6, or equivalently

δ(r̄) = pδ(r) − n(p − 1)/2 + σ5 + (p − 1)σ6

with σj ≡ δ(ρj) − δ(r), j = 5, 6. We choose ρ5, ρ6 such that 0 ≤ σ5 < s − 2µ5, 0 ≤ σ6 < s − 2µ6, which is possible if

0 ≤ δ(r̄) − pδ(r) +
n
2
(p − 1) < s − 2µ5 + (p − 1)(s − 2µ6). (3.5)

The left inequality of (3.5) is true since the middle of (3.5) is

(2θ − 1)δ(r) − pδ(r) +
n
2
(p − 1) > 2θδ(r) > 0.

To check the right inequality of (3.5), we separately consider the cases 1/q̄ ≤ p/q and 1/q̄ > p/q. If 1/q̄ ≤ p/q, this is true
for θ± ∼ s/2 − 1 and sufficiently small κ since δ(r̄) − pδ(r) = 2 (κ − µ5 − (p − 1)µ6 + θ) and therefore

s − 2µ5 + (p − 1)(s − 2µ6) −


δ(r̄) − pδ(r) +

n
2
(p − 1)


= s − θ −

n
2

− s


(p − 1) − 2κ

∼ 2 −

n
2

− s


(p − 1) > 0.

If 1/q̄ > p/q, the right inequality of (3.5) is true since µ5 − 1 and µ6 are sufficiently small and therefore

s − 2µ5 + (p − 1)(s − 2µ6) −


δ(r̄) − pδ(r) +

n
2
(p − 1)


∼ s − 2 −

n
2

− s


(p − 1) + (p + 3 − s)δ(r)

> (s − 2) (1 − δ(r)) > 0.

Therefore, Hölder’s inequality, Sobolev’s inequality and Lemma 2.1 yield

∥f ′(u)∂tu∥Lq̄(Lr̄ ) ≤ CT κ
∥u∥p−1

Lγ6 (Lρ6 )
∥∂tu∥Lγ5 (Lρ5 ) ≤ CT κRp. (3.6)

We can analogously estimate ∥f ′(u)∂tu∥Lq∗ (Lr∗ ).
Step 4. The estimate of f (u) in L∞(Hs−2) ∩ Lq(Bs−2

r,q ). We estimate f (u) in L∞(Hs−2). The estimate in Lq(Bs−2
r,q ) is similar. Let

µ7, µ8 satisfy 1/q < µj < 1withκ ≡ µ7+(p−1)µ8−p/qbeing sufficiently small. Letρ7, ρ8 satisfy 1/2 = 1/ρ7+(p−1)/ρ8,
or equivalently

pδ(r) + σ7 + (p − 1)σ8 − s + 2 − n(p − 1)/2 = 0

with σ7 ≡ δ(ρ7) − δ(r) + s − 2, σ8 ≡ δ(ρ8) − δ(r). We choose ρ7, ρ8 such that s − 2 ≤ σ7 < s − 2µ7, 0 ≤ σ8 < s − 2µ8,
which is possible if

pδ(r) −
n
2
(p − 1) ≤ 0 < pδ(r) − 2µ7 − 2(p − 1)µ8 + 2 −

n
2

− s


(p − 1).
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The left inequality holds by the assumption, and the right inequality holds since the right-hand side is equal to 2 − (n/2 −

s)(p − 1) − 2κ , which is positive if κ > 0 is sufficiently small. Therefore

∥f (u)∥L∞(Hs−2) ≤ C∥u∥p−1
L∞(Lρ8 )

∥u∥L∞(Bs−2
ρ7,2)

≤ CT κ
∥u∥p−1

B
µ8
q,2(B

σ8
r,2)

∥u∥B
µ7
q,2(B

σ7
r,2)

≤ CT κRp.

Step 5. In view of Steps 1–4, we have proved

∥Φ(u)∥X0 ≤ C

1 + ∥φ∥

p−1
Hs


∥φ∥Hs + CT κRp

for u ∈ B. Like in Step 1, we obtain

∥Φ(u) − Φ(v)∥Lq(Lr ) ≤ CT κRp−1
∥u − v∥Lq(Lr ) (3.7)

for u, v ∈ B. Therefore, for sufficiently large R > 0 and sufficiently small T > 0,Φ is a contractionmapping from B to itself,
which implies the unique existence of the solution to (1.3) in X0. We should also show the continuity of u in Hs. To this end,
it suffices to show that f (u) ∈ C(Hs−2) since we immediately obtain u ∈ C1(Hs−2) by Lemma 2.3 and the previous steps. By
the estimate (3.2) with φ replaced by u, we can show that ∥f (u)∥L∞(Hs0 ) ≤ CT κRp. On the other hand, we can easily prove
f (u) ∈ C(L2). Indeed, by the Hölder and the Sobolev inequalities, we see that

∥f (u(t + h)) − f (u(t))∥L2 ≤ C∥u∥p−1
L∞(Hs)∥u(t + h) − u(t)∥Hs−s0 → 0

as h → 0. Since s0 > s − 2, we obtain f (u) ∈ C(Hs−2) by interpolation.
Step 6. Continuity of the flow mapping. Let φm → φ in Hs and let um be the solution to (1.3) with φ replaced by φm. We
shall show that um → u in X0. We may assume that ∥um∥X0 ≤ R. In the same way as in the proof of (3.7), we can easily
show that ∥um − u∥L∞(L2)∩Lq(Lr ) ≤ C∥φm − φ∥L2 → 0. To prove the continuous dependence in full strength, we remark
that ∂tum(0) = −(∆/2)φm + f (φm) → ∂tu(0) in Hs−2. This can be proved in the same way as in Step 5. We also remark
that ∥um − u∥Lq(Bσ

r,ρ ) → 0 if σ < s, since (Lr , Bs
r,q)σ/s,2 = Bσ

r,2 and ∥um − u∥Lq(Lr ) → 0. Moreover ∥um − u∥Bµ
q,2(B

σ
r,ρ ) → 0 if

σ + 2µ < s by Lemma 2.1 since {um} is bounded in Bs/2
q,2(L

r). Using Lemma 2.3 we have

∥∂t(um − u)∥Y ≤ C∥∂t(um − u)(0)∥Hs−2 + C∥f ′(um)∂tum − f ′(u)∂tu∥Ỹ

≤ C∥∂t(um − u)(0)∥Hs−2 + C∥f ′(um)(∂tum − ∂tu)∥Ỹ + C∥(f ′(um) − f ′(u))∂tu∥Ỹ . (3.8)

In the same way as in the previous steps, the middle term in the right-hand side is estimated by CT κRp−1
∥∂t(um − u)∥Y ,

which is absorbed in the left-hand side. Therefore, in order to prove ∥∂t(um − u)∥Y → 0, we have only to show that the last
term in the right-hand side of (3.8) tends to zero. In what follows, we only consider the case p ≤ 2; we only need a slight
modification in the case p > 2. We estimate ∥


f ′(um) − f ′(u)


∂tu∥Ỹ by analogy with (3.3) and (3.6) with f ′(u) replaced by

f ′(um) − f ′(u). Since

∥f ′(um) − f ′(u)∥Lq/(p−1)(Lρ0/(p−1)) ≤ C∥um − u∥p−1
Lq(B

σ0
r,2)

and

∥f ′(um) − f ′(u)∥Lγ6/(p−1)(Lρ6/(p−1)) ≤ C∥um − u∥p−1
B
µ6
q,2(B

σ6
r,2)

tend to zero in view of the remark above, it suffices to show that f ′(um) → f ′(u) in Bs/2−1
q/(p−1),2(L

ρ2/(p−1)). The estimate (3.4)
shows that ∥f ′(um)∥

B
µ2(p−1)
q/(p−1),2/(p−1)(L

ρ2/(p−1))
≤ CRp−1. On the other hand, again by the remark above, we see that

∥f ′(um) − f ′(u)∥Lq/(p−1)(Lρ2/(p−1)) ≤ C∥um − u∥p−1
Lq(B

σ2
r,2)

→ 0.

Therefore, we obtain that f ′(um) → f ′(u) in Bs/2−1
q/(p−1),2(L

ρ2/(p−1)) by interpolation. We finally check that f (um) → f (u) in
L∞(Hs−2) ∩ Lq(Bs−2

r,q ). Like in Step 5, we can show that ∥f (u)∥L∞(Hs0 )∩Lq(B
s0
r,q)

≤ CRp and

∥f (um) − f (u)∥L∞(L2)∩Lq(Lr ) ≤ CRp−1
∥um − u∥

L∞(Hs−s0 )∩Lq(B
s−s0
r,2 )

→ 0,

thereby proving the assertion. �
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