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Abstract

For a bounded domaif? inRY, N > 2, satisfying a weak regularity condition, we study existence
of positive andT -periodic weak solutions for the periodic parabolic problé&m, = Ag(x, ¢, u})
in 2 xR, uy =0 o0nadR2 x R. We characterize the set of positive eigenvalues with positive
eigenfunctions associated, under the assumptionsstigab Caratheodory function such that>
g(x,1,&)/& is nonincreasing 0, co) a.e.(x,t) € 2 x R satisfying some integrability conditions
in (x,t) and
T

/esssup‘nf Mdt >
xe2 £§>0

0.

0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let 2 be a bounded domain®Y, N > 2, satisfying the following regularity condition:
there existeg > 0 anddg € (0, 1) such that for allkk € 952 and allp < pg

B, (x) N 2] < (L-80)|By(x), (1.1)

whereB,, (x) denotes the open ball R" centered at with radiusp and|B,(x)| denotes
its Lebesgue measure.
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ForT > 0and 1< p, g < oo, let LP(L?) be the space of the measurable dngeriodic
functionsf on 22 x R (i.e., satisfyingf (x, 1) = f(x,t + T) a.e.(x, t) € £2 x R) such that
I fllLe(Lay < oo where|| fllLray = I f (x, DllLa(2.ax)llLr(©0.7).ar)- Provided with this
norm L?(L7) is a Banach space. Similarly, Iéﬁ'} be the Banach space @f-periodic
functionsf : 2 x R — R such thatf |« o,1) € L? (2 x (0, T)), equipped with its natural
norm ||f||L¥ = | flexo,nllLr@x©.1). Finally, let Cy be the space of continuous and
T -periodic functions o2 x R provided with theZ> norm.

Let us fix for the whole papep,s € R U {oo} such thatN/(2v) + 1/s < 1, with
s > 2. Let{a; j}1<i j<n 1Pjl1g, j<n be two families of7 -periodic functions satisfying
aij € LY, a;j =aj; for 1<i, j <N andb; € L®(L?). Assume that

Zai,j(x,t)éifj > apl€|?
i,J
for someap > 0 and all(x, 1) € 2 x R, £ e RV. Let A be theN x N matrix whosei, j

entry isa; j, letb = (b1, ...,bn), let cg > 0 be a function inL*(L"), and letL be the
parabolic operator given by

Lu=u, —div(AVu) + (b, Vu) + cou,
where(, ) denotes the standard inner productRh.
Let

W= {u € L?((0,T), H3(£2)): fl—’: e L%((0,7), Hl(.Q))}.

Given f € L3(LP) with p > 2N(N + 2)~1, we say that: is a weak solution of thg'-
periodic problenLu = fin 2 xR, u =00nd2 xR, if u|ox©,71) € W, u is T-periodic
inz and
oh
—uos (AVu,Vh) + (b, Vu)h + couh | = fh
2x(0,T) 2x(0,7)
forallh e C2°(£2 x (0, T)). Itis well known (see, e.g., [2,7]) that this problem has a unique
T-periodic weak solutiom with u|o 0,7y € L?((0, T), H}(£2)).
Let us consider, in the above weak sense, existence of positive solutions for some
nonlinear eigenvalue problems of the form
Lu=XMg(x,t,u) in2 xR,
{u:O onosf2 x R, (1.2
u T-periodic int,
whereg is a given function o2 x R x [0, 00). The linear casg(x, t, &) = m(x, 1) with
m € L5(LY) is studied in [5]. Fom € L*(L"), let
m(t) = esssum(x,t) (2.3)
xesf
and let
T

P(m) =/n~1(t) dr. (1.4)

0
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It is proved in [5], Theorem 3.6, that forn € L(L"), P(m) > 0 is a necessary and
sufficient condition for the existence of a positive principal eigenvalue (with associated
eigenfunctions in.” (L?)) for the problem

Lu = mu in 2 xR,
{u:O onas2 x R, (1.5)
u T-periodicinz, u > 0.

Moreover, such a positive eigenvalue (denotedihym)) is unique and algebraically
simple.

The conditionP (m) > 0 perhaps needs some explanation. Observe that theicdse
L0, T) is, a priori, possible. Howevep,(m) is well defined. Indeed, sina&(r) > m(x, 1)
a.e.(x,1) € 2 x Ritholds thatn ™ (r) < |m(x, t)| and soP (m) is well defined (the value
+o0 is allowed).

Looking for nonlinear cases, 2 is a C>*? bounded domain with & 6 < 1 andL
is a parabolic operator (in nondivergence form) with Hdlder continuous coefficients, it
is well known (see, e.g., [6], Section 27) thalgi= g(x, 1, &) is a concave function i§
satisfyinggs € C?(£2 x Rx[0, 00)) andg(x, ¢, 0) = 0, then there exists@! curver — u;
of positive solutions for (1.2). In [6], these results follow from some global bifurcation
theorems due to Rabinowitz (cf. [9]) and the implicit function theorem. On the other
hand, analogous elliptic problems are studied for selfadjoint operators in [3] assuming
that g € C?(£2 x [0, 00)) and thaté — g(x, £)/£ is nonincreasing. For the particular
caseg(x, &) = g(&), results of similar nature are given in [10] under the assumption
g € C([0,00)) and, forg € C?(£2 x [0, 00)) and more general boundary conditions, in
[11]. In order to relate these results to those in [6], observe thatif&) is concave irg
andg(x,0) > 0, theng(x, €)/& is nonincreasing.

Our aim in this paper is to show (see Theorem 3.7), following a different approach, that
if g:2 xR x [0, 00) — R satisfies the following conditions:

(H1) (x,t) — g(x,t, &) is measurable for alf € [0, co) andT-periodic int, g(x,1,-) €
C[0,00) a.e.(x,1) € 2 x R, and SUpc; ¢, gz (x. 1, &) € LS (LY) forall p > 0;

(H2) &€ — g(x,1,&)/& is nonincreasing in0, co) a.e.(x, 1) € 2 x R;

(H3) there exists > 0 and (xg, 79) € 352 x R such thatd/d&(g(x,t,&)/&) < O for all
£ €(0,8) a.e.(x,1) € Bs(xo, to) N (2 x R);

(H4) the functionsn(x, ) :=sup._og(x,,£) /&, m(x, 1) :=infe-0g(x, 1, &) /& belong to
LS(LY);

(H5) fOT esssup., m(x,1)dt > 0;

then

() (1.2) has a positive solutian, € Cr if and only if
A1(m) <A < A1(m);

(b) u; can be chosen such that— u; is a C1 map from (A1(/i), A1(m)) into Cr,
satisfying limy_,,n)+ s lloo = 0 @nd lim_,;, oum)- ua(x,t) = oo for all (x,7) €
£2 x R. Moreoveru; (x,t) > 0forall (x,r) € 2 x R.
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Moreover, we prove also (see Theorem 3.10) thakfar(h1 (), A1(m)), the existence
of positive solutions for (1.2) remains true if (H3) is removed and (H1) is replaced by
the assumption that is a T -periodic Caratheodory function. Finally, a related maximum
principle is presented in Theorem 3.9.

2. Somefactsabout linear problemswith weight

Let us start with some comments about results concerning principal eigenvalues for
periodic parabolic problems with weight contained in [5].

Remark 2.1. In [5], Lemma 2.1, it is shown that fat, v as in the introduction, there
exist p,q,r,w such that XX ¢, r < oo, r <s, p < w, 2N(N +2)_l <p<oo, l/w=

1/g +1/v andN/2(1/p — 1/q) + 1/r < 1. For suchp, r it is proved in Theorem 3.6
that form € LS(L"), the conditionP (m) > 0 is necessary and sufficient for the existence
of a unique positive principal eigenvalug(m) for (1.5) with a positive eigenfunction
associated ir.” (L?). The above conditions op, ¢, r, w were imposed in order to apply
results in [2] (namely Corollary 5.2, and so Theorems 5.1(a) and 4.4) without any regularity
assumptions ot2. However, we actually deal with domains satisfying condition (1.1) and
thusg = oo is allowed in Theorem 4.4 in [2] (see [2], Remark 4.6(b)) and so also in
Theorem 5.1(a) and Corollary 5.2. It follows that under condition (1.1) all results in [5]
remain true taking there = co, w = v, and p, r satisfying 2<r <oo,r <s, p < v,
p<ooandN/(2p)+1/r < 1. We fix from now onp, r satisfying these conditions (since
N/(2v) + 1/s < 1 suchp, r exist).

Remark 2.2. For f € L"(LP), the (unique) solution of the DirichletT -periodic problem
Lu = f belongs toCy. Moreover,L~1:L"(LP) — Cr is a compact operator. Indeed,
taking into account (1.1) and Remark 4.6(b) in [2], we get thatCy and, as we said
before, Theorem 5.1(a) in [2] remains true foe oo and gives the compactness.

If X,Y are Banach spaces, IB{X, Y) be the Banach space of the linear and bounded
operators fromX into Y. If S € B(X,Y) we will write ||S|/x,y for its operator norm and
if §e€ B(X, X) its norm will be denoted byS||x. ForR >0andf € L*(L*) or f € Cr
we will write B3"(f) or BST (f) respectively for the closed balls centeredfaand with
radiusR in the respective spaces.

Let R, A € (0, 00). Recalling (1.1), we can take = oo in [5], Proposition 2.4. An
inspection of its proof shows that there exigts= ko(R, A) such that fork > kg the
operator(L + A(k —m))~L: L7 (LP) — L%’ is compact and positive. In fact, we have

Lemma2.3.LetR, A € (0, 00) and letk > ko with ko as above. Then, for ath € B} (0),
A €[0, A] we have
(L +rtk —m))H(L" (L)) C Cr. (2.1)

Moreover,(L + A(k —m))~|¢, : Cr — Cr is a compact operator.
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Proof. As in Proposition 2.4 in [5], forf € L"(L?), the equationL + Atk — m))u = f
can be written as

(I = (L + 2 +m)) mH)u=(L+rk+m)) . (2.2)
Now, Remark 2.2 (applied td. + A(k + m™) instead ofL) gives that((L + A(k +
m™)"tm ) (L) C Cr. Also, for k large enough

(L 4+ 2k +m™) ) < AL ARG +mD)) T o < 1,

where the last inequality follows from Lemma 2.3 in [5] taking thgee co. Thus, for such
ak, (I =M(L+xrtk+m™)"tmT) Y ¢, : Cr — Cr is awell defined and bounded operator
and so (2.1) follows from (2.2). Sing& + A(k —m))~1: L"(LP) — L is compact, (2.1)
gives the last assertion of the lemmaz

Lemma 2.3 implies that the principal eigenfunctionsZin(L?) for problem (1.5)
actually belong taCr.

Remark 2.4. Let R, A, ko, k, ., m be as in Lemma 2.3. Then, the spectrum of
(L+Atk—m) Y, :Cr—Cr (2.3)
agrees with the spectrum of
(L+ntk—m)) " L7 (LP) — L' (LP) (2.4)

and, for a given eigenvalue, these operators have the same generalized eigenspaces.
In particular, they have the same spectral ragiug. ,,. Moreover, SinCeox . » IS an
algebraically simple eigenvalue for (2.4) (see [5, Remark 2.7]), the same is true for (2.3).

Fori > 0,m e LS(LY), let u,,(A) be defined by x.m = (Ak 4+ wm (X)L (taking k
large enough). Thug,, (1) does not depend adhand can be characterized as the unique
u € R such that the problem

Luy = Amuy m + puty i 2 x R,
upm=0 onas2 x R, (2.5)
u,.m T-periodic inz,
has a positive solution, ,, in L"(L?), i.e., by Remark 2.4, ilfr. We recall thaiw,, is
real analytic, concave and, (0) > 0 (cf. [5], Lemma 3.2 and Remark 3.3).

Remark 2.5. Let £2¢ be a bounded domain iRY and letI":R — R be ac? andT-
periodic curve. We set

Bro,={(x,1): xeI'(t)+ R0, 1 € (0, T)}. (2.6)

Form e LS(LY), let P(m) be defined by (1.4). Observe thA{m) > 0 is equivalent
to the following condition: there exis2q and I" as above withBr o, C £2 x R and
such thathr oo™ > 0. Indeed, clearly the existence of suclBa o, implies P(m) > 0.

Suppose nowP (m) > 0. For j € N, let m; = min{j, m} and letm;, m be defined by
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(1.3). Som(t) = min{j,m(t)}. Moreover,{m;};cn is a nondecreasing sequence that
converges a.e. té. Now, m; € L*(L") and som; € L*(LY). Thenm; € L*(L"). Also,
0<mj+m~ <mjy1+m~, jeN.Thuslim,_, P(m;) = P(m) and soP (m j,) > O for
somejo. Sincem j, is bounded from above, Lemma 3.4 in [5] gives a bounded do2gin
andI” e C2(R,R") such thatfy, . mj, >0andsofy . m>0.

We will need the following result about perturbation of simple eigenvalues due to
Crandall and Rabinowitz (see [1, Lemma 1.3]).

Lemma 2.6. Let X be a real Banach space. L&y be a bounded operator o, and
assume thatp is an algebraically simple eigenvalue @§. Then there exist8 > 0 such
that whenevel|T — Top|l < §, there is a unique (T) € R satisfying|r(T) — ro| < § for
whichr(T)I — T is singular. Moreover, the map — r(T) is analytic andr(T) is an
algebraically simple eigenvalue @f. Finally, it can be chosen an eigenvector associated
v(T) such that also the map — v(T) is also analytic.

We have the following proposition.

Proposition 2.7. The map(:, m) — w,;; (1) is real analytic fromR x L*(L") into R.
Moreover, a positive eigenfunction,_ ,, for (2.5)can be chosen such thét, m) — u;
is also real analytic fronR x L*(L?) into Cr.

Proof. Let us show thagx, m) — u, (1) is continuous. Lef(x;, m;)} jen be an arbitrary
sequence that convergeslinx LS(L") to some(ig, mo). As in the proof of Lemma 3.2

in [5] we get that{w,; (2 ;)} e is bounded. After passing to some subsequence we can
assume thaumj (1) converges to som@ € R. Let it m; be a positive solution of
(2.5) (taking therex = 4, m = m;) normalized bylliis; m,llc = 1. Remark 2.2 gives

a subsequenoﬁjk,mjk that converges to somesatisfyingLu = Amu + pu. Moreover,

u > 0andthemn = wum (). So,{um; (Aj)}jen has a subsequence that convergeson).

This proves thatx, m) — w, (1) is continuous.

Now, for (ho, mg) € R x L*(LV), let Vig.mo = (Ao — 8, Ao + 8) x By"(0) with &, R
positive and small enough, and let> ko(R, Ao + 8) with kg as in Lemma 2.3. Since
(A, m) = up, () is continuous, the same is true for, m) — p, » Where p, ,, is the
spectral radius (and so the algebraically simple positive principal eigenvaldg),pf=
(L + r(k —m))"L:Cr - Cr. Since(r,m) — T is real analytic (see the proof of
Theorem 3.9 in [5]), Lemma 2.6 concludes the proafi

Let

M={meL*(L"): P(m) >0} (2.7
with P(m) defined by (1.4). By Remark 2.5 it is clear th&t is an open set i.* (LY).

Corollary 2.8. For m € M and A = A1(m), a positive eigenfunction,, of problem(1.5)
can be chosen such that— u,, is real analytic fromM into C7.



170 T. Godoy, U. Kaufmann / J. Math. Anal. Appl. 277 (2003) 164-179

Proof. We know thatn — 11(m) is real analytic (cf. [5, Theorem 3.9]). Let, ,, be the
eigenfunction for (2.5) provided by Proposition 2.7. Taking = u;,m).» the corollary
follows. O

Forx > 0, let
Dy ={meL’(L"): wm(») > 0}. (2.8)

By Proposition 2.7,D; is open inL*(L"). Let us observe that fax > 0 the condition
wm(A) > 0 is equivalent to: G< A < A1(m) if A1(m) exists and to. > O if the weightm
has no positive principal eigenvalue.

Lemma 2.9. LetA € (0, 00) and let(m, h) € D, x L"(L?). Then the problem,

Lu=XMmu-+h in 2 xR,
:u=o onda x R, (2.9)
u T-periodicinz,

has a unique solution € Cy. Moreover

(a) Let S, (m, h) denote the solution operator f@R.9). ThenS; (m,-): L"(L?) — Cr is
compact, and it > 0, thenS; (m, h)(x,t) > 0a.e.(x,t) € 2 x R.
(b) The operators, (., h): D, — Cr is compact.

Proof. Fork large enough leT’ = (L + A(k — m))~1. Now, (2.9) is equivalent to

1 1
—I —T )lu=—Th. 2.10
<Ak )“ Ak (2.10)
Let p(T) denote the spectral radius &fc,. Sinceu,, (1) > 0, we haveo(T) < 1/(Ak)
and thus(il —T)1:cr — Cr is a well defined and bounded operator. Then, (2.10) is

equivalent tau = (ﬁl — T)*lﬁTh and so (2.9) has a unique solutiere C7. Also, the
last formula together with Lemma 2.3 give the compactnes 6f, -) and the positivity
follows from Theorem 3.10 in [5].

To see (b), letn € D;, let {m;};en be a sequence i, that converges weakly ta
in L*(LY) and letu; = S, p(m;). Then{u;};cn is bounded inCr. Indeed, if for some
subsequence lim, o || j, [lo = 00, from

U; uj h
T T
llu i lloo lujllo  Nujilloo

and going to the limit, by Remark 2.2 we get that A1(m) contradicting thatn € D, .
Now, since supllujllec < 00, from Luj = Amju; + h, the same compactness argument
gives a subsequencs, that converges to the solution of (2.9), i.e.,$0,(m). Since
{m};en was arbitrary, this ends the proofo

Lemma 2.10. Let A/ be the set of the functiong € L¥(LY) such that(L + m)~1:
L"(L?) — Cr is a well defined and bounded operator. Th&his open inL* (L") and
the mapn — (L + m)~1 is continuous frordV into B(L" (L?), Cr).
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Proof. Let mg e N andm € L*(L?). For f € L"(L?), the equationLu + mu = f is
equivalent tar = (L + mo) ~L(mo — m)u + (L +mo)~1 f. Since

[(L +mo)~tomo—m) |, < |(L+mo)™

Lrary.cpllmo—miiLsy)
it follows that form close enough iL* (L) to mo,
(I = (L +mo) Y(mo—m))":Cr — Cr
is a well defined and bounded operator. Thus, for suatke have
w=(I—(L+mo) *mo—m) (L +mo)LF, (2.11)

but, (2.11) implies that fom close enough teig, (L +m)~1 is a well defined and bounded
operator fromL” (L?) into C7. SoN is open. Moreover|(L + m)*1||Lr(Lp),cT remains
bounded forn running on a small neighborhoodab. Since for suchn

(L+m) ™ = (L +mo)™ = (L +mo) ™ [(I — (mo—m)(L +mo)™) ™~ 1]
the lemma follows. O

Fore>0,let2, ={x € 2: d(x,082) > ¢} and letA, = 2 — £2.. We will need the
following Harnack type inequality for the positive eigenfunctions of (1.5).

Proposition 2.11. Let R, A € (0,00). Then, for eache > 0 there existsc > 0 such
that if m € By", 1 € [0, A] andu € Cr is a positive solution 0f(1.5), then |lu[lo <
cessinb, xo,1) .

Proof. Let 1 < §,7 < oo be defined byr 1 =571+ 571, p~t=v=1 4+ =1 and for
j=12,letd; € (0,1) be defined by ! = (1 —6;) and~1 =1 — 6. From (1.5) we
have

lulloo <AL

Lrwry.cplmlsanllullps oy < callullzs s
1-60, 1-6
Li(LP) LY

1—02]1791
L}

01

. 01
Loc(LfJ) <62||M||OO||M”

< callull el

0. 0:
< callull g [llwllZ2 llu

01+6,—016 1—(01+62—6162)
= collu |95 020002y 1 PO On
T

for somecy, c2 > 0. Since 1— (01 + 62 — 6162) > 0 we get
lulloo < esllullzz (2.12)
for somecs > 0. Now, ||”||L;(A5x(o,r)) <A Tlulloo < 3T |Ag| ||u||L%. Thus, ife is small
enough such thaT|A.| < 1/2 we obtain
1
||M||L:7I'~(QSX(O,T)) Z E”I/‘”L% (2.13)

From (2.12), (2.13), using Theorem 5.1 in [12], and taking into account the periodieity of
it follows that||u |l < cessink, «(o.1) u for somec > 0, withc dependingom, p,r, R, A,
£2 and the operatak. O
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Corollary 2.12. Let R, A € (0, 00). Then there exist® e L7 with & (x,t) > 0 for all
(x,1) € 2 x Rsuch thatifim € By", A € [0, A] andu € Cr is a positive solution of1.5),
thenu(x, 1) > |lulleo®(x, ) forall (x,1) € 2 x R.

Proof. We can assume thiit:|| = 1. Forj € Z, let
Aj={re: 27 <d(x,02)<277}.

Thus2 =z Aj. F.orj such thatA; # ¢, let ¢; be the constant given by Proposi-
tion 2.11 takinge = 27/~1. For(x,1) € A; x R we setd (x, 1) = 1/c;. SO®(x, ) > O for
all (x, ). Now, Proposition 2.11 implies thatx, 1) > essinf,,_;_, x.r)u > L —_o(x, 1)

T
forall (x,n e A; xR. O

3. Themain results
Letg:£2 x R x [0, o0) — R satisfying the following conditions:

(HY) (x,t) > g(x,t,&) is measurable for af € [0, c0) and T-periodic inz, and¢é —
g(x,t,&) is continuousiirf0, co) a.e.(x,7) € 2 x R.

(H2) limg_ o+ g(x,1,&)/& exists a.e(x,1) € 2 x R.

(H3) Forallp > Oinfoce<, g(x.1,86)/& € L*(LY) and Sup; g(x,1,8)/§ € L*(L").

(H4') Forallp >0, fOT esssup. g infocz<, g(x,1,8)/6 > 0.

Foru:2 xR — [0, 00), we set

g(x,t,u(x,1)) if uix.t 0
mae =1 " e e 3.1)
limg_ o+ == if u(x,1)=0.
Observe that if: € BET (0) then
inf Mgmug sup M (32)
0<é<p & 0<€¢<p &

Let g(u) be the Nemytskii operator defined gyu)(x,7) = g(x,#, u(x, t)). If g satisfies
(H1)—(H4), from the Lebesgue dominated convergence theorem it follows easily that
u — g(u) andu — m, are continuous maps froffiy into L*(L").

Let M be defined by (2.7) and fon € M, let cDi’") denote the positive principal
eigenfunction associated o (m), normalized by||®\"™ ||« = 1. Corollary 2.8 implies
thatm — qbim) is continuous fromM into C7. It follows thatu — qbim”) is a continuous
map fromCr into Cr.

Proposition 3.1. Letg: 2 x R x [0, 00) — R satisfying(H1')—(H4'). Then, for eaclp > 0,
(1.2) has a positive eigenvalue with a positive afieperiodic eigenfunction associated
u, € Cr satisfying|lu, [l = p. Moreoveru,(x,¢) > Oforall (x,¢) € 2 x R.
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Proof. We extendg(x,z,-) to the whole real line defining(x,7,&) = —g(x,t, —§)
for £ < 0. By (H2) and (H3) 9g/9&|¢=0 € L*(L"). Let p > 0. From (H3), (H4)
and Remark 2.5, it follows that there exists a dom&p and aT periodic curve
I' € C3R,RM) such thatBr o, C £2 x R and meo infoce<p g(x,1,6)/€ > 0. For

wE BET (0), letm,, be defined as in (3.1). Thus, (3.2) and (H&ply thatm,, € L* (L)
andemo my > 0 (i.e., P(my) > 0). So, there exists (m,,).

Let T: BST(0) — BS” (0) be defined byl (w) = p@{™*’. ThenT is a compact map.
Indeed,T is continuous. Now, lefw;} ey be a sequence iBS”. From (3.2) we have

llmaw; |lLs(Lvy < ¢ for somec > 0 and allj. Moreover, (3.2) and Proposition 3.1 in [5] imply
(mw ;)

that{)xl(mwj)}jeN is bounded. SpAri(my,;)my,; Dy ""}jen is bounded inL" (L?), and
hence the compactnessBffollows from Remark 2.2.

Now, Schauder’s fixed point theorem (e.g., [4, Corollary 11.2]) gives a fixed point
Up € BET for T. Thenu,, is positive, ||u, llc = p @NdLu, = A1(my,)g(x, t, u,). Finally,
sinceu, satisfiesLu, = A1(my,)my,u,, Corollary 2.12 says that,(x,) > 0 for all
(x,nefR2xR. O

Proposition 3.2. Letg: £2 x R x [0, c0) — R satisfying(H1)—(H3) and(H4). Leth be a
nonnegative and nonzero functionfifi(L?). Then for all0 < A < A1(m) the problem,

u=0 ond x R, (3.3)

: Lu=xg(x,t,u)+h(x,1) in2 xR,
u T-periodicinz,

has a positive solution, € Cy. Moreoveru; (x,t) > 0a.e.(x,t) € 2 x R.

Proof. We extendg as in the proof of Proposition 3.1. L&Y, be defined by (2.8) and for
m € Dy, let S, »(m) be the solution of (2.9). Fav € Cr, letm,, be defined by (3.1). Since

0 < A < A1(m) and sincen,, < m, the comparison principle stated in [5, Remark 3.7] gives
0 <k < A1(my) and som,, € D, for all w € Cr. Moreover, there existR > 0 such that

[ San(mu) || <R (3.4)
for all w € Cr. Indeed, if not, le{w;} jen be a sequence iy such that
Jim [155om) ], = 00

and letuy,; = S, n(my;). Since{my,};en is bounded inL*(L") we can assume, after
passing to some subsequence, thgj converges weakly il (L") to somen. From

Uy; Uy); h
()
”uwj”oo ”uwj”oo ”uwj”oo

and Remark 2.2, we get that: = Amu has a positive solution. But < iz and so (by [5,
Remark 3.7]) we get < A1(i) < A1(m). Contradiction.

For w € Cr we setS(w) = Sy.n(my). Then, sincew — m,, is continuous fronCr
into LS (LY), it follows from Lemma 2.9(b) tha§:Cr — Crisa compact map. Now, let




174 T. Godoy, U. Kaufmann / J. Math. Anal. Appl. 277 (2003) 164-179

R satisfying (3.4). We havé(BgT 0)) C BgT(O) and so, the Schauder theorem gives a
positive solution for (3.3). The last assertion follows from Lemma 2.9(a).
For g satisfying (H1), we extengd to a functiong : 2 x R x (—1, co) — R defined by

g(x,1,8)

é 9
Definition 3.3. Let V be the open subset &y defined byV = {v € Cr: v(x,1) >
=1, (x,1) € 2 x R} and let

D ={(x,u) € (0,00) x Cr: u €V andgs (u) € Dy}

with D, given by(2.8). We recall that the conditiog («) € D, is equivalent to: G< A <
A1(ge (u)) if A1(ge (u)) exists andh > 0 if A1(gs (1)) does not exist.

g(x,1,&)=¢& lim Ee(-10). (3.5)
£—0t

Let F: D — C7 be defined by

FQuu) = (L —2g:) g w).
Note that by Lemma 2.9 is well defined.

Lemma 3.4. Suppose thag satisfiegH1). ThenD is open inR x Cr.

Proof. We proceed by contradiction. Suppose tifatt) € D and that{(x;, u )} jen is @
sequence iR x Cy such thatlim_, o (A, u;) = (A, u) and(r;, u;) ¢ D forall j. Clearly
uj e Vfor jlarge enough. LeR = 1+ |lu||oc. Thus there existg such thatu ; (x, 1)] < R
forall (x,r) € 2 xR, j > jo.

Suppose first thahi(gs (1)) exists. Thenme0 8e(u) > 0 for someBr o, as in
Remark 2.5. Sincg: (1) converges tog: (1) we have, enlargingp if necessary, that
meO ge(u;) > 0 for j > jo. Thus there exists.1(gs(u;)) for such aj. Moreover,
lim oo A1(8e (1)) = 21(g:(w)) > A (the inequality becausér, u) € D). Now, since
Aj — A we haver; < i1(g:(u;)) and so(r, u;) € D for j large enough. Contradiction.

Suppose now thait; (g: (1)) does not exist. Let

Jo=1{j € N: 11(ge(u;)) existy.
If J. is finite then(x;,u;) € D for j large enough. We claim that if, is not finite
then {A1(g:(u;)): j € J.} is unbounded. To see this we proceed by contradiction. Let
w; € Cr be a positive eigenfunction associated to the weighit;) normalized by
lw;llec = 1. Since we have assumed thatgs (1)) < ¢ for somec and allj € J., (H1)
and Holder's inequality give thathi(ge (1)) 8e (uj)w;llLrLry < ¢’ for somec’ and all
j € J.. Then there exists a subsequeneegs (1)) g (uj, )wj, that is weakly convergent
to somef € L"(L?) and so Theorem 5.1(a) in [2] (applied wijh= co) implies thatw ;,
converges in thé* norm to somew. Thusw € Cr and f = A1(8e (1)) g (u)w. Moreover,
w > 0 andLw = A1(ge (1)) ge (u)w. Contradiction. So our claim is proved. Thus, for some
subsequence;, with ji € J. we have

k"_)moo 21(8z (uj)) = o0.
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Sincea; converges we have; < A1(ge (u},)) for k large enough and the@ j,, u;,) € D
for suchk. Contradiction. O

Lemma 3.5. Suppose thag satisfies(H1). Then F: D — Cr is a continuous map.
Moreover, for each(Ag, ug) € D there exists a neighborhodds = (Ag — 8§, A0 + J) x
Bs(uo) such thatF|y, is a compact map.

Proof. From (H1), the magx, u) — —Age (1) is continuous fromD into L*(L"). So, by
Lemma 2.10A, u) — (L — 1 g¢ (u))~1is continuous fromD into B(L" (L?), Ct). Then,
for § small enoughl| (L — Age (u))*1||Lr(Lp),cT remains bounded faw., «) running onUs.
Since(A, u) — g(u) is also continuous we get thatis continuous and so, for a smaller
if necessaryF (Us) is bounded irCr. For such &, let {(x;, u )} en be a sequence itis
and letw; = F(x;,u;). Now,

Lwj=2x;8sujwj~+gu;). (3.6)

Since F(Us) is bounded inCr we havel|lw; |l < ¢ and then, by (H1), the sequence of
the L (L") norms of the right member of (3.6) is bounded. Thus, the same is true for its
L"(LP) norms and so Remark 2.2 gives the compactness assertion.

Remark 3.6. Lemma 3.5 allows us to apply an extension to Banach spaces of Peano’s
theorem about local existence of solutions for initial value problems (as stated, e.g., in [8,
Chapter 6, Theorem 3.6]) in order to obtain that,foru) € D, there exists a neighborhood
Uwu=Ah—¢g,r+e)x BSCT (u) ands > 0 such that for allX, it) € U,.., a solution for the

initial value problem,

{‘37 = F(,u),

MX:M,

is defined for. € (A — 8, & + §).

Theorem 3.7. Let g: 2 x R x [0,00) — R satisfying (H1)—(H5). Then(1.2) has a
positive solutior:; € Cr if and only ifA1(77) < A < A1(m). Moreoveru; can be chosen
such thati — u; is a C1 map from(x1(m), A1(m)) into Cr and u; (x, 1) > 0 for all
(x,1) € 2 x R. We also have thdim; _,; , )+ llua [l = 0 @ndlim, ;. ou)- ua(x, 1) = 00
forall (x,t) € 2 x R.

Proof. If (&, u;) solves (1.2) withu, > 0, let m,, : 2 x R — R be defined by (3.1). By
(H4), my,, € L°(LY). SinceLu, = Amy,u, we haver = r1(my,). Now, m < m,, < m.
Moreover, it is easy to see using (H3) that the strict inequalities hold in a subset of positive
measure and so [5, Remark 3.7] gives thgin) < A < A1(m).

To prove the remaining assertions of the theorem, we start with the solutiong)
of (1.2) given by Proposition 3.1. Sinceg(x, ) > 0 for all (x,7) € 2 x R, we have
that Ao = A1(g(uo)/uo). Also, (H2) implies thaige (uo) < g(uo)/uo. Moreover, if§ > 0
and (xo,7p) € 02 x R are given by (H3) we have the strict inequality a(e,7) €
Bs(xo,10) N (2 x R). So, by [5, Remark 3.7], we havey < 11(ge(uo)) if r1(ge(uo))
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exists and theiiro, ug) € D. Taking into account Remark 3.6 we have a local solution for
the Cauchy initial value problem,

{ i — F(h,up), (3.7)
U)g = UO-
Consider a maximal solution (i.e., with maximal connected domain) for this problem
and letl = («, ) be its domain. Observe that is continuous and sa. — u; is
continuously differentiable froml into Cy. Now, du;,/d)» = F(\,u;) can be read
(L — 2ge(uy))duy/dr = g(uy) and so, in a distributional sense, we hdvelu, /d)) =
g(us) + Age (wp)duy/d, i.e.,d/d (Luy) = d/dx (A§(u;)). Hence,Lu; — Ag(uy) does
not depend on.. Since it is zero foh. = Ao we haveLu; = Ag(u;) forall » € I.

Let us divide the rest of the proof in three steps.

Step 1. There exists an open intervdy aroundig such thatu,(x,r) > 0 for all
(x,1) e 2 xR, A € Ip.

Let m,, be defined by (3.1) withg in place ofg. For A € I, (H5) implies that
P(m,,) > 0 and soiq(m,, ) exists. Clearly we havip = M(ﬁmo)- Now, sincex — iy,
is continuous, Theorem 3.9 in [5] gives that> A1(7,,) is also continuous. So, given
& > O there exist$ > 0 such thak (72, )~ € (1/h0—¢, 1/ro+€) for A € (ho— 8, Ao +8).
On the other handﬂ(ﬂz,u)—1 € o(L~1M,), whereM, denotesthe operator multiplication
by 72, and wheres (L~M;) denotes the spectrum &1 M; : Cr — Cr. Sincer™! e
o (L~1M,), taking e > 0 small enough, the Crandall-Rabinowitz lemma implies that
A = A1(my, ) for A close enough t@g and sox, > 0 for suchr. Moreover, Corollary 2.12
says thati; (x, ) > 0 forall (x,7) € 2 x R.

Step 2. u; >0forallrel.
Consider the maximal open subintervabf I containingio such that; (x,t) > 0 for
all (x,1) € 2 xR, 1 e J. We will prove that/ = I. Let

AT =sup{h el uy(x,1)>0for(x,1) € 2 xR, nelro, 1)},
AT =inf{L eIt uy(x,1) > 0for (x,1) € 2 x R,n € (A, rol}.

It is enough to prove that™ = «, AT = 8. Let us show that™ = 8. We proceed
by contradiction. Supposg™ < 8. We already know that™ > 1. We claim that this
implies thatA™ € J. Indeed, let® be the function provided by Corollary 2.12 taking
there A = AT and R = |m||ps(Lv) + llmlLszv). NOw, sinceLu, = Am,,u; we get that

a = |lunlloo® for all A € [1o, AT). Suppose first thallu; ||« > ¢ for somec > 0 and
all » € [xo,AT). Thenu,+ > c® > 0 and sor™ e J. If there is not such a, then we
have lim;_ o [luz;llc = O for some sequencg;}jen C [1o, AT). After passing to a
subsequence we can assume that> A for somea € [, AT]. Thenu; = 0 and so
X = AT. On the other hand, (H2) implies thezt,,kj converges ton in L*(LY) and then
M(mmj) — A1(m). But Lu;; = Ajmuk/uk_, with u;; > 0 and soA; = Al(m%). Thus,
Xx1(m) = AT < Ao. Contradiction. Thus we have proved thdt € J. Now, reasoning as in
the proof of the existence @ but now withA* andu; + instead of.g andug, respectively,
we find an interval arounid* where each; is positive, contradicting the definition af .
Sort =g.
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On the other side, clearly™ < Ag. As above, if||u; | > ¢ for somec > 0 and
all A € (A7, Aol, we would haver™ € J and this leads to a contradiction with the
definition of A=. Thus lim;_, « ||, lcc = O for some sequendg.;}jen C (A7, Aol. The
dominated convergence theorem implies th@;j converges inL* (L") to m, and so

Aj= }‘1('"’”/) — X1(m). Sincea <A~ < A; we conclude thai™ =o.

Step 3. 1 = (A1(m), A1(m)).

Let {1;}jen be a sequence id such thati; — B. Then, as above, we have
inf; llu;, lloo > O (if nOt, we geth1 (i) = B which contradicts the fadt; (m) < 8). Suppose
first thatc1 < llur; lloo < €2 for somecs, c2 > 0 and all ;. Then||)»,-m,uj upllrery <c
for all j, and thus Remark 2.2 gives a subsequemp]? convergent to soma > 0
that satisfiedu = Bm,u. So g = A1(m,). Moreover,(B8,u) € D. In fact, this is true if
g¢ (1) has no positive principal eigenvalue Af(g: (1)) exists, by (H2) and (H3) we have
ge (u) < my with strict inequality on a subset of positive measure, theni1(ge (1)) and
so(B,u) € D. Thus, by Remark 3.6, there exists a neighborhGgg = (8 — ¢, B+ ¢) x
BSCT (1) ands > 0 such that foral(, it) € Ug,, there exists. — u; defined for € (8 -3,

B + &) that solves the Cauchy probledu; /di = F(x,u;) with initial value ug = i.
Taking(B, it) = (A, uy;,) With k large enough, we get a contradiction with the maximality
of 1. Then we have proved that lim.« ||u;, oo = 0o and so, by Corollary 2.12, we have
lim; 00 uy; (x,1) =00 foreach(x, 1) € 2 xR. Solim;_ Muy, =M in LS(L"V) and then

B =Xx1(m). A similar argument gives that [k ;} ;cn is a sequence such that — o, then
necessarilyiuy, loo — 0 and sax = A1(m). O

As an immediate consequence we have

Corollary 3.8. Let g: 2 x R x [0, 00) — R satisfying(H1)—(H5). Then the semilinear
periodic parabolic problem,

Lu=g(x,t,u) in 2 xR,
: u=~0 onos2 x R,
u T-periodicint,
has a positive solution € Cr if and only ifA1(m) < 1 < A1(m). Moreoveru(x, t) > O for

all (x,1) € 2 xR.
We have also the following related maximum principle.

Theorem 3.9. Letg: 2 x R x [0, 00) — R satisfying(H1)—(H5)and leti be a nonnegative
and nonzero function i (L?). Then, for all0 < & < A1(m), (3.3)has a positive solution
u;, € Cr satisfying that. — u, isaCl map from(0, 11(/m)) into C7 andu; (x,1) > 0a.e.
(x,1) e 2 xR.

Proof. We start with a solution (given by Proposition 3(2), ug) of the Dirichlet problem
Luo = Aog(x,t,uo) +h with 0 < Ag < A1(72) andug > 0. Let g be defined by (3.5). Since
m = my, > ge(ug) we have(ro, ug) € D. As in Theorem 3.7, consider a maximal solution
A — u; for (3.7) defined on some interval= («, 8) C (0, A1(m)) with Ag € I. As there,
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A — uy is continuously differentiable from into Cr and Luy = Ag(x, ¢, u;) + h for all
r€el,i.e. Luy = Ay, uy + h, wherem,, is defined by (3.1) witlg in place ofg. Since
0 < A < A1(m) we have O< & < A1(my, ) and so Lemma 2.9(a) implies that(x, r) > O,
a.e.(x,1) e 2 xR.

To prove thatl = (0, »1(m)) we proceed by contradiction. Suppose that 11(m).
Consider a sequendg.;}jen C I such thath; — g. From Remark 2.2 and sinde>
0 it is easy to see that ipflus,llec > 0. If [luy,llec < ¢ for somec > 0 and all j,
a compactness argument gives a solutios- O of the problemLu = Bm,u + h, i.e.
of Lu = Bg(x,t,u) + h. But A1(my,) > A1(m) > B and so(B,u) € D. Then, as in the
end of the proof of Theorem 3.7, recalling Remark 3.6 we get a contradiction with the
maximality of 1. Thus lim_ ||u;\]-k lloo = oo for some subsequeno:@jk, but, if this is
the case, frond uy /||us || = Amy, up/llun |l + 1/lluy ||, Remark 2.2 gives a positive solution
w of Lw = Bmw wherem is the weak limit of a suitable subsequenceankl,. So
B =A1(m) > A1(m), contradicting8 < A1(m). Therefore8 = 11 (m). '

Suppose now that > 0. Let {A;};eny C I such thath; — «. Proceeding as above,
we obtain that inf|u;,[lec > 0. Moreover, if|u;;[lco < ¢ for somec > 0, thenLu =
ag(x,t,u) + h for someu > 0. Hence, sincex < = r1(m) < A1(my,), we have
that (o, u) € D and this leads to a contradiction. So, Jim [lus, [lc = oo for some
subsequencmjk. But then, reasoning as above, by Remark 2.2 we have a positive
solutionu of Lu = amu wherem is the weak limit of some subsequencenof,. Thus
a = A1(m) = A1(m) = B, contradiction. O

Theorem 3.10. Letg: 2 x R x [0, o0) — R satisfying(H1)), (H2), (H4)and (H5). Then
(1.2) has a positive solution; € Cr for all A € (A1(m2), 21(m)). Moreover, if (1.2) has a
positive solution for somg > 0, theni € [A1(m), A1(m)].

Proof. The second assertion follows as in Theorem 3.7. In order to prove the first one,
we first prove that the theorem holds if (Bllis replaced by (H1). To see this, let

Yo € CL([0, 00)) satisfyingvy,(¢) < 0 for all £, ¥0(0) = 1 and lim_. o ¥o(§) = 0 and
forO<e <1, letg.(x,1,&)=g(x,t,&) + e&yo(§). Thus, for eacl, g, satisfies (H1)—
(H5). Letm, =limg_ o0 8o (x, 1, &) /&, me =limg_ 08¢ (x, t, £)/&. Observe that:, andm,
converge inL* (L") to m andm ase tends to zero, and therefore imoA1(m,) = A1(m)

and lime—.oA1(m,) = A1(m). Now, A1 (i) < A < A1(m) implies thathi (i) < A < Ag(m,)

for ¢ small enough. Thus, by Theorem 3.7 we have a positive soluﬁdn‘or (1.2) with

g in place ofg, i.e.,

(&)
g(x,t,u;”)
L =hge(w.t ) = A[Tf + Wo(ui““))}”;&)'
u
A

Letm, , be the expression inside the brackets. Then the n@mgs || s L») have an upper

bound independent ef. Let {¢;} ;e be a sequence that converges to zero. We claim that
||ui€'/) loo < ¢ for somec > 0 and allj. In fact, if not, we would have for some subsequence
that limg_ o ||u§f'/k) oo = 00, and so, by Corollary 2.12, lim, o uiejk)(x, t) = oo for all

(x, 1) and consequently lim, oo me; 5 =m in L¥(LY). Letwy = ufjk)/nufjk)noo. From
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Lw; = Amg; Wi, using Remark 2.2 we get easily thiat= 11(m). Contradiction. Thus,

if ¢, — 0, we hava|u§€")||00 < ¢ with ¢ independent of. Also, if for some subsequence

iMoo ||uigjk) loo = 0 we would geth = 11(m). From these facts and the compactness of

L~1 we obtain (going to the limit as goes to 0) that (1.2) has a positive solution.
Finally, suppose that satisfies the hypothesis of the theorem. .k defined by (3.5).

We setyr(x,1,&) =limg_ o+ g(x,2,8)/6 if =1 <& <0andy(x,1,8) =g(x,t,£)/& if

£ > 0. Letp € C*(R) with supf(¢) C [—1,1],0< ¢ <1 andf ¢ =1. Also, fore > 0,

let ¢, € C*°(R) be defined by, () = 1¢(&/¢) and letg, (x, 1, &) =& (x. 1, ) * ¢e) (£).
It is easy to check that for small enoughg;|j0,~) satisfies (H1), (H2), (H4) and (H5).
Thus, fori € (A1), A1(m)) we have (by the first part of the proof) a positive solution

uf) for Lu(f) = A8el[0,00) (X, 1, uf)). Now, similar arguments as we have used above give
the theorem. O

Remark 3.11. Let us mention that all our results remain true for the stationary case, i.e.,
for semilinear elliptic problems, replacirig (L) by L"(£2), r > N /2.
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