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Abstract

During the execution of a Composite Web Service (CWS), different faults may occur that cause WSs fail-
ures. There exist strategies that can be applied to repair these failures, such as: WS retry, WS substitution,
compensation, roll-back, or replication. Each strategy has advantages and disadvantages on different ex-
ecution scenarios and can produce different impact on the CWS QoS. Hence, it is important to define
a dynamic fault tolerant strategy which takes into account environment and execution information to ac-
cordingly decide the appropriate recovery strategy. We present a preliminary study in order to analyze the
impact on the CWS total execution time of different recovery strategies on different scenarios. The exper-
imental results show that under different conditions, recovery strategies behave differently. This analysis
represents a first step towards the definition of a model to dynamically decide which recovery strategy is
the best choice by taking into account the context-information when the failure occurs.
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1 Introduction

Nowadays, SOA architecture is used as a platform for business applications for

accessing data and services in distributed environments. The constantly increasing

number of such applications currently deployed over the Internet is enabled by

the latest SOA techniques, such as Web Services (WS) and Web 3.0, and is a

consequence of the need for business integration and collaboration. With machine

intelligence, users can resolve complex problems that require the interaction among

different tasks. One of the major goals of the Web 3.0 is to support automatic and

transparent WS composition and execution, allowing a complex user request to be

satisfied by a Composite Web Service (CWS). Hence, in a CWS, functionalities

of individual WSs (possibly from different providers) are combined to resolve the

complex query [2].

Most of the generic or domain-tailored solutions for creating, executing, and

managing such CWSs have been extensively treated in the literature, exhibit-

ing sophisticated interfaces and a multitude of connectors to subsystems to rep-

resent functional properties, and increasing support for non-functional proper-

ties [5,3,13,17,11,6,15]. Nevertheless, recovery of failures for reliable execution have

received relatively limited attention.

During the execution of a CWS, different faults may occur that cause a WS fail-

ure. However, a fault-tolerant CWS is the one that, upon a service failure, ends up

the whole composite service (e.g., by retrying, substituting, or replicating the faulty

WS) or leaves the execution in a safe state (e.g., by rollbacking or compensating

the faulty WS and the related executed WSs). In this sense, fault tolerant CWS

becomes a key mechanism to cope with challenges of open-world applications in

dynamic changing and untrusted operating environments to ensure that the whole

system remains in a consistent state even in the presence of failures [23].

Several techniques have been proposed to implement fault tolerant CWS exe-

cution. In some works, transactional properties of component WSs (e.g., retriable,

compensable or not) are considered to ensure the classical ACID (all-or-nothing)

properties in CWSs [13,11,6,15,9,4]. In this context, failures during the execution

of a CWS can be repaired by backward or forward recovery processes. Backward

recovery implies to undo the work done until the failure and go back to the ini-

tial consistent state (before the execution started), by roll-back or compensation

techniques. Forward recovery tries to repair the failure and continue the execution,

using retry and substitution, for example. In previous works, we presented our

solutions based on backward and forward recovery [8,10].

However, backward recovery means that users do not get the desired answer to

their queries, besides roll-back techniques that claim for logs in persistent storage to

enable recovery after a re-start, reboot, or crash. The need for synchronous logging

slows down the execution speed during normal operation and the reliability of these

mechanisms depends on the reliability of the storage. Forward recovery could imply

long waiting times, due of the invested time to repair failures until users finally get

the response.
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Others works consider replication of WSs instead of transactional properties to

provide forward recovery. With this strategy, several equivalent WSs are simultane-

ously invoked and the response is taken from the first successfully finished one [28,1].

Because WSs can be created and updated on-the-fly, the execution system needs to

dynamically detect changes during run-time, and adapt execution to the availabil-

ity of the existing WSs. Replicating a service creates the need for mechanisms to

distribute messages, order requests, and coordinate replicas. However, sometimes

it is not possible to replicate the invocation of several equivalent WSs or substitute

the faulty WS for an equivalent one, because equivalent WSs are not available or

because the extra consumption of resources.

Each strategy has advantages and disadvantages on different scenarios. These

scenarios can be defined by, for example, the execution state at the moment of the

failure (e.g., how many WSs have been successfully executed, how many WSs have

not been invoked), the impact of the recovery strategy in the QoS of the CWS,

and the stability and reliability of the system. Are all recovery techniques equally

practical, effective, and efficient? When is it better to apply backward or forward

recovery? Is replication the best strategy? Some replicas may become unavailable

permanently, while some new replicas may join in. WSs may be updated without

any notification, and the Internet traffic load and server workload are also changing

from time to time. Persistent storage can be available or not. These unpredictable

characteristics of WS environments provide a challenge for optimal fault tolerance

strategy determination. There is an urgent need for more general and smarter fault

tolerance strategies, which are context-information aware and can be dynamically

and automatically reconfigured for meeting different user requirements and changing

environments.

Focused on that need, in this paper we present a study to analyze the impact

on the CWS total execution time of different recovery strategies in different sce-

narios. We focus on backward, forward, and replication recovery techniques. The

experimental results show that recovery strategies behave differently under different

conditions. This analysis represents a first step towards the definition of a model to

dynamically decide which recovery strategy is the best choice taking into account

the execution state when a failure occurs, context-information, and the impact on

the QoS.

The remainder of this paper is organized as follows. Section 2 briefly describes

the most important concepts related to fault tolerance in CWS. In Section 3 we

characterize the CWS and the environment in terms of execution time a the basis

of our study. The experimental study is presented in Section 4. Section 5 presents

relevant related works. Finally, our conclusions and future work are presented in

Section 6.
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2 Fault Tolerance for Composite Web Services: the
background

This section recalls some important concepts regarding Composite Web Service

(CWS) execution and the most important recovery approaches implemented in

this area. We also describe a classification of failures that can affect the CWS

execution and point out which are considered in this work.

2.1 Composite Web Service

A Composite Web Service, denoted as CWS, is a combination of several WSs to

produce more complex services that satisfy more complex user requests. It concerns

which and how WSs are combined to obtain the desired results. A CWS can be

represented in structures such as workflows, graphs, or Petri Nets indicating, for

example, the control flow, data flow, WSs execution order, and/or WSs behavior.

The structure representing a CWS can be manually or automatically generated.

Users can manually specify how functionality of WSs are combined or a “composer

agent” can automatically decide which and how WSs are combined, according the

desired query. In both cases, the execution of a CWS is carried out by an “execution

engine” that invokes the WSs respecting such structure. In this paper, we consider

a CWS represented by a graph, formally defined in Def. 2.1.

Definition 2.1 Composite Web Service Graph. A Composite Web Service

Graph, denoted as G = (V,E), is a directed acyclic graph with the following con-

siderations:

• Nodes in V represent the component WSs, such that V = {wsi, i = 1..m} and

wsi is a component WS.

• Arcs in E denote the execution flow among component WSs. Execution flow

is defined by data or control flow relationships between two services. Data flow

relationship is defined in terms of service input/output attributes, such that out-

put values produced by a WS are part of the input parameters of another WS.

Control flow relationship is defined by execution order restrictions (e.g., business

process order, transactional property, concurrence control, deadlock avoidance)

that dictate that aWS has to be executed after anotherWS finishes its execution.

Control flow can be designated by control signals (as well called control data).

Thus, if wsi, wsj ∈ V and (wsi, wsj) ∈ E, then wsi produces output attributes

from which at least one is an input parameter of service wsj and/or wsj has to

wait for a control signal from wsi. In other words, if O(wsi) represents the set

of output attributes and control signals that wsi produces and I(wsj) represents

the set of input parameters and control signals needed to invoke wsj , then O(wsi)

∩ I(wsj) �= ∅.
• Entry nodes represent WSs whose input attributes are provided by the user, then

∃ wsi ∈ V : I(wsi) = ∅.
• Output nodes represent WSs that produce the final desired output attributes to
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the user, then ∃ wsi ∈ V : O(wsi) = ∅.
Note that workflows, bipartite graphs, and Petri Nets, the most popular struc-

tures used to represent CWS, can be matched to our graph definition.

2.2 CWS control execution

The execution of a CWS implies the invocation of all component WSs according to

the execution flow imposed by the structure representing theCWS (Def. 2.1). Thus,

there exist two basic variants of execution scenarios. In a sequential scenario, some

WSs cannot be invoked until previous services have finished, because they work on

the results of previous services or some control restrictions impose sequentiality. In

a parallel scenario, several services can be invoked simultaneously because they do

not have data or control flow dependencies.

The execution control can be centralized or distributed. Centralized approaches

consider a coordinator managing the whole execution process [20,26]. In distributed

approaches, the execution process proceeds with collaboration of several participants

without a central coordinator [4,1]. On the other hand, the execution control could

be attached to the WS [13,15] or it could be independent of its implementation

[9]. Some execution engines, such as the IBM framework BPWS4J 4 or the open

source Orchestra 5 solutions actually execute CWS specified with BPEL4WS in a

centralized fashion and the execution control is attached to WSs.

In this work, we consider distributed execution engine and execution control

independent of WSs implementation.

2.3 Failures classification

During the execution of a CWS, failures can occur at multiple levels: hardware, op-

erating system, web services, execution engine, and network. These failures result in

reduced performance and can cause different behaviors in the execution. According

the nature of failures, we divide faults into two types:

• Silent faults. These kind of faults are generic to all WSs and cause WSs to not

respond because they are not available or a crash occurred in the platform. Some

examples of silent faults are (i) communication timeout, (ii) service unavailable,

(iii) bad gateway, and (iv) server error. Silent faults can be easily identified by

the execution engine.

• Logic faults. Logic faults are specific to different WSs and are caused by error

in inputs attributes (e.g., bad format, out of valid range, calculation faults) and

byzantine faults (the WS still responds to invocation but in a wrong way). Also,

various exceptions thrown by the WS to the service users are classified into the

logic-related faults. It is difficult for the execution engine to identify such type of

faults.

4 Business Process for Web Services JavaTM, http://www.alphaworks.ibm.com/tech/bpws4j - Extracted
on April 2013
5 Orchestra,http://orchestra.ow2.org/xwiki/bin/view/
M ain/WebHome - Extracted on April 2013
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Regarding faults, in this paper we consider: (i) the execution engines run far

from WS hosts, in reliable servers such as clusters computing, they do not fail,

their data network is highly secure, and they are not affected by WS faults (the

execution control is detached from WSs); and (ii) component WSs can suffer silent

failures; run-time failures caused by logic faults are not considered.

2.4 Fault tolerant CWS execution

Some execution engines are capable to manage failures during the execution. Ones

are based on exception handling[21,18], others are based on transactional proper-

ties [11,4,7], some others use a combination of both approaches [13,15], and others

base the fault tolerance on replication techniques [28,1].

In previous researches in the field of supporting reliability and fault tolerance in

WS composition, only low level programming constructs such as exception handling

(for example in WSBPEL) were considered. Exception handling normally is explic-

itly specified at design time, regarding how exceptions are handled and specifying

the behavior of the CWS when an exception is thrown. This approach is normally

used to manage logic faults, which are specific to WSs.

More recently the reliability and fault tolerance for CWS have been handled

at a higher level of abstraction, i.e., at the execution flow structure level such as

workflows or graphs. Therefore, technology independent methods for fault-tolerant

CWS have emerged, such as transactional properties and replication.

Transactional properties implicitly describe the behavior in case of failures and

are considered to ensure the classical ACID (all-or-nothing) transactional proper-

ties. When transactional properties are not considered, the system consistence is

responsibility of users/designers.

WSs that provide transactional properties are useful to guarantee reliableCWSs

execution and to ensure the whole system consistent state even in presence of fail-

ures. The basic recovery techniques supported by transactional properties are:

• Backward recovery: it consists in restoring the state that the system had at the

beginning of the CWS execution; i.e., all the effects produced by the failed WS

and the previous executed WSs before the failure are semantically undone by

roll-back or compensation techniques.

• Forward recovery: it consists in repairing the failure to allow the failed WS to

continue its execution; retry and substitution are some techniques used to provide

forward recovery; with the popularization of WSs, more and more functionally

equivalent WSs are diversely designed and developed by different organizations,

making WS substitution an attractive fault tolerant choice for service reliability

improvement.

Figures 1 and 2 graphically show the different recovery techniques for a simple

WS and for a CWS based on transactional properties.

Backward recovery means that users do not get the desired answer to their

queries. Moreover, this strategy may imply roll-back techniques, which claim for logs

in persistent storage to enable recovery after a re-start, reboot, or crash. The need
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Fig. 1. Lifecycle of a WS and the different possible recovery techniques

Fig. 2. Lifecycle of a CWS and the different possible recovery techniques

for synchronous logging slows down the execution speed during normal operation

and the reliability of these mechanisms depends on the reliability of the storage.

Forward recovery could imply long waiting times because of the invested time to

repair failures until the users finally get response. They can be difficult to ensure

the retriable property to all WSs.

Replication of WSs is an alternative strategy to implement forward recovery

regardless transactional properties. This technique implies that several equivalent

WSs are simultaneously invoked and the response is taken from the first successfully

finished one [28,1]. In the modern era of SOA, the cost of developing multiple service

versions is greatly reduced. In consequence, equivalent WSs designed/developed

independently by different organizations can be readily employed as redundant al-

ternative components for building diversity-based fault tolerant systems. In this

context, a replica represents a functionally equivalent WS. Replicas can be used

for replication or substitution. Byzantine faults can be also supported by repli-
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cating the WS invocations and by ensuring all replicas reach an agreement on the

input despite Byzantine faulty replicas. Such an agreement is often referred to as

Byzantine agreement.

These strategies can represent advantages or disadvantages depending on user

requirements (functionality and QoS criteria), nature of services, and execution en-

vironment. Thus, they can affect differently the final execution result. For example,

for some users partial results may have sense, then, partial backward recovery in

the part of the CWS affected by the failure should be the best strategy; some users

need the results no matter other QoS criteria; hence, forward recovery strategies

are appropriated in these cases. The decision of which forward recovery mechanism

(retry, substitution, replication) is the most appropriated depends on the execution

context, since for other users the total execution time is the most important QoS;

then depending on the context execution, backward or forward recovery can apply.

The unpredictable characteristics of WS environments provide a challenge for opti-

mal fault tolerance strategy determination. Depending on the scenario in which the

failure occurred, some recovery techniques are more practical, effective, and efficient

than others or some recovery techniques are not possible to apply. Consequently,

the execution engine should be capable to adapt fault tolerant decisions for meeting

different user requirements and changing environments.

In this paper we study the impact of different recovery strategies on the global

QoS of CWSs. We focus on CWS execution time; however, other QoS criteria

can be studied. This study is the first step towards a dynamic recovery decision

method.

3 CWS Execution Time: An study towards a dynamic
recovery decision model

In this section, we present the basis to characterize the CWS and the environment in

terms of execution time in order to study the impact of different recovery strategies.

This study considers the QoS of component WSs, the state of the execution at the

failure moment, and the effect of the recovery strategies on the global QoS of the

CWS.

3.1 Preliminaries

QoS criteria describe non-functional WS characteristics (e.g., execution time, price,

reliability). The QoS values can vary for a single WS during its lifecycle. Hence,

there exist several techniques to keep these values of the QoS parameter as most

as possible updated. Particularly, execution time estimation for WSs can be done

with analytic, simulation, or test based techniques. In [14], there are proposed

methodologies based on a two-factorial analysis and a Gaussian majorization of

previous service execution times, enabling the estimation of a WS execution time.

In [16], the performance of WSs at different levels (i.e., user level, network level,

hardware resource level and software design level) is analyzed. The user level is

the one corresponding to the execution time of the WS, which is calculated by

R. Angarita et al. / Electronic Notes in Theoretical Computer Science 302 (2014) 5–2812



the mean value during a certain period by invoking the actual WS. There is also

research in the estimation of the execution time forCWSs. In [25], a time estimation

method for CWSs is proposed based on mining historical execution information of

the component WSs in the dynamic environment. It takes into account the WS

execution time and the network transmission time.

Independently of the technique used for execution time estimation, we assume

that each WS is annotated with its estimated execution time, defined as follows.

Definition 3.1 Estimated Execution Time for a WS. The Estimated Exe-

cution Time for a WS, denoted as WS estimated TT , is the execution time value

estimated through an estimation technique.

Therefore, the estimated total execution time of a CWS can be calculated in

terms of its component WSs and the execution flow depicted by the structure rep-

resenting the CWS. Recall that in CWSs exist two basic variants of execution

scenarios: sequential and parallel. For sequential execution, the estimated execu-

tion time is the sum of the estimated execution times of each WS belonging to

the sequential path (Figure 3(a) and Equation 1), whilst for parallel execution,

the estimated execution time is the maximum estimated execution time of parallel

sequential paths (Figure 3(b) and Equation 2) [24].

tsp =
n∑

j=1

t(wsj) (1)

where, tsp is the estimated time of a sequential path with n WSs and t(wsj) is the

estimated execution time of a WS wsj .

tpp = max
1≤j≤m

(tspj ) (2)

where, tpp is the estimated time for parallel paths with m sequential paths and tspj
is the execution time of the sequential path spj .

(a) Sequential path

(b) Parallel paths

Fig. 3. Sequential and parallel paths
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Hence, the total estimated execution time of a CWS is bounded by its sequential

path with the maximum cost in terms of estimated execution times of its component

WSs. Note that real execution time can be also calculated with equations similar

to Eq. 1 and Eq. 2.

3.2 Definitions

We present in this section some definitions in order to formalize our considerations

regarding to the characterization of our study.

Definition 3.2 Initial node and final node of a CWS. Let G = (V,E) be a

CWS; the initial and final nodes, denoted as ni and nf respectively, are dummy

nodes added to a CWS, such that:

• V = {ni, nf} ∪ V ;

• ∀ wsi ∈ V : I(wsi) = ∅; E = E ∪ (ni,wsi); ni is the predecessor node to all entry

nodes (Def. 2.1) of the CWS;

• ∀ wsi ∈ V : O(wsi) = ∅; E = E ∪ (wsi,nf ); nf is the successor node to all output

nodes (Def. 2.1) of the CWS;

• I(ni) = ∅; O(ni) = | wsi ∈ V : I(wsi) = ∅ |;
I(nf ) =| wsi ∈ V : O(wsi) = ∅|; O(nf ) = ∅.
Initial and final nodes have only control responsibilities and they are used only

to define the start and the end of the CWS execution.

Definition 3.3 Maximum Cost Path of a CWS. Maximum Cost Path of a

CWS is the sequential path from ni to nf which has the maximum execution cost.

Note that, there can be more than one maximum cost path in a single CWS.

Definition 3.4 Estimated Execution Time of a CWS. The Estimated Execu-

tion Time of a CWS, denoted as CWS estimated TT , is the sum of the estimated

execution time of each WS belonging to the Maximum Cost Path. Its value is

calculated according Equation 2.

Definition 3.5 Delta of Estimated Total Execution Time of a CWS. The

Delta of Estimated Total Execution Time for a CWS, denoted as Δ CWSETET ,

represents the maximum time allowed to exceed for the execution of a CWS, and

it is expressed as a percentage of the Estimated Execution Time of the CWS.

Δ CWSETET denotes the degree of fault tolerated for a specific CWS in terms

of execution time. This value can be given by the user or it can be set by the

system.

Definition 3.6 Tolerated Execution Time of a CWS. Let cwsi be a CWS,

CWS estimated TTi its estimated execution time, and Δ CWSETETi its delta of

estimated total execution time; the Tolerated Execution Time of cwsi, denoted as

CWS tolerated TTi, is defined as:

CWS tolerated TTi = CWS estimated TTi +Δ CWSETETi
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Definition 3.7 Elapsed Real Execution Time for a WS. Let wsi be a com-

ponent WS in a CWS, the Elapsed Real Execution Time for wsi, denoted as

WS elapsed timei, refers to the real invested time since the CWS starts its ex-

ecution, from ni, until wsi is invoked.

With the WS elapsed time, it is possible to compute the variation between the

estimated execution time and the real execution time taken from the beginning of

the execution of a CWS until the actual invocation of each component WS. Note

that the WS elapsed timei can refer to the real execution time elapsed until the

moment in which wsi was invoked or until the moment the WS failed and an action

has to be taken in order to provide fault-tolerance.

Definition 3.8 Estimated Execution Time Left for a WS. Let wsi be a

component WS in a CWS, the Estimated Execution Time Left for wsi, denoted as

WS left timei, is the maximum cost among the costs of the sequential paths to

which wsi belongs to, measure from the invocation of wsi until the final node nf of

the CWS.

WS left time allows to look ahead and calculate how far (in terms of execution

time) is the end of the execution of the CWS, with respect to each component WS.

Note that, depending on the sequential path in which WSs are, this measure could

be different for different component WSs. In a specific moment in the line of the

execution time, one WS can be near to nf , while other WS can be in the maximum

cost path and far from nf .

Definition 3.9 Real Executed Time for a WS. Let wsi be a component WS

in a CWS, the Real Executed Time for wsi, denoted as WS executed timei, refers

to the real invested time since the wsi was invoked until wsi finished successfully

or unsuccessfully.

WS executed time represents the actual execution time invested in the ex-

ecution of a component WS. If the component WS finishes successfully, its

WS executed time will be the real execution time. In contrast, if the component

WS fails, it will represent the time from its invocation until the time when the

failure happened.

Definition 3.10 Delta of Estimated Total Execution Time for a WS. Let

be (i) cwsj a CWS, (ii) CWS tolerated TTj the tolerated execution time of cwsj
(see Def. 3.6), (iii) wsi a component WS of cwsj , (iv)WS elapsed timei the elapsed

real execution time for wsi (see Def. 3.7), (v) WS left timei the estimated execu-

tion time Left for wsi (see Def. 3.8), and (vi) WS executed timei the real executed

time for wsi (see Def. 3.9); the Delta of Estimated Total Execution Time for wsi,

denoted as Δ WSETETi , represents the maximum time allowed to exceed the execu-

tion of wsi, in order to do not overcome the CWS tolerated TTj , and it is expressed

as:

Δ WSETETi
= CWS tolerated TTi − (WS elapsed timei+

WS left timei +WS executed timei) (3)
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With the Δ WSETET the execution engine can decide at the moment when a

component WS fails, if it is convenient to perform any of the forward recovery strate-

gies without overcoming the tolerated execution time of the corresponding CWS.

In this sense, if a WS, let say wsi, fails and Δ WSETETi < 0 (from Equation 3),

it means that performing forward recovery will violate the restriction regarding the

tolerated execution time, then a backward recovery has to be performed.

3.3 Discussion

Since we consider a distributed execution engine and the execution control detached

from WS implementation, we can suppose that the information needed to decide the

appropriated recovery strategy is known by the execution engine at any moment for

each component WS. The execution engine is composed by independent software

components taking care of each component WS in a CWS. They communicate with

each other according to the execution flow depicted by the Composite Web Service

Graph to send input parameters or control signals (see Def. 2.1). Thus, along with

input parameters or control signals, components of the execution engine can send

information needed by the model proposed in Equation 3. The basic metric in our

model is the WS execution time. However, WS performance can be influenced by

the communication links. We plan to incorporate the metric of data transfer in

future work to calculate our metrics more accurately, which in consequence, will

support better decisions in case of failures.

By using this first version of our model, the selection of the recovery strategy

only considers execution time as the QoS criteria to conserve for a CWS. However, it

could be easily extended to consider user requirements/constraints of other QoS cri-

teria (e.g., price, availability) and use other context-information (e.g., data transfer

time, probability of faults for the remainder WSs, system reliability and confiabil-

ity). This kind of information should be useful to help in making better decisions

regarding the best recovery strategy choice. Thus, the model can be adaptable

and automatically configurable according to QoS user requirements and execution

context information.

Additionally, even if this model is designed to respond to silent faults, it could

be used to ensure the QoS at the execution time of the CWSs, not only in presence

of failures. If the execution conditions are tested before/after the execution of each

component WS, a decision for backward recovery could be made if QoS will be

violated. Imagine a part of the CWS execution takes much more time that the

estimated in a way the total estimated execution time is overcame, in which case

the execution has to be halted (a compensantion could be necessary).

As a first step towards a model to provide dynamic decision for fault tolerant

strategies, our proposed model allows to confirm that under different environment

conditions and different execution scenarios it is possible to adapt the best choice

of the recovery strategy when a failure occurs, and still guarantying different user

QoS requirements. Next section presents our experimental study.
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4 Experimental Study

We developed an execution engine that uses our model to support failures during the

execution of a CWS. We use Java 6 and the MPJ Express 0.38 library to allow its

execution in distributed memory environments. We deployed the execution engine

in a cluster of PCs, where the execution control of each WS is executed in a different

node of the cluster. All PCs have the same configuration: Intel Pentium 3.4GHz

CPU, 1GB RAM, Debian GNU/Linux 6.0, and Java 6. They are connected through

a 100Mbps Ethernet interface.

We automatically generated 10 CWSs by using the composition process pre-

sented in [6], from synthetic datasets comprised by 800 WSs with 7 replicas each

one, for a total of 6400 WSs. These 10 CWSs have 9 or 10 component WSs. All

WSs, including replicas, have different QoS values. In particular for experiments,

we consider the following QoS parameters:

• Estimated execution time (used in our model asWS estimated TT , see Def. 3.1);

• Availability (WS availability) representing the probability of the successful exe-

cution of a WS (used to simulate different environment conditions);

• Time reliability (WS reliability) denoting the degree of being capable of main-

taining the promised Estimated Execution Time (used to simulate different envi-

ronment conditions);

Our execution engine simulates different execution environments according those

QoS parameters.

We define two conditions: homogeneous environments and heterogeneous en-

vironments. In homogeneous environments all WSs have the same availability

(WS availability) and time reliability (WS reliability); while in heterogeneous en-

vironments, WS availability and WS reliability of all WSs vary. In both cases,

the estimated execution time (WS estimated TT ) for all WSs varies according an

uniform distribution.

We define four scenarios for each kind of environment. Table 1 describes the

eight scenarios. Column one enumerates each scenario, column two shows homo-

geneity level, denoted as hl (hl = 1 meaning homogeneous environment and hl = 0

means heterogeneous environment). WS availability and WS reliability for het-

erogeneous scenarios are shown as the rank of possible values taken. On each

scenario, the 10 CWSs were executed 1000 times; it means, 10000 executions for

each scenario and for all scenarios 80000 executions.

On each execution of a CWS, none, one, or more than one component WSs could

fail according their WS availability and WS reliability. Note that these QoS pa-

rameters are considered by our simulator to produce failures, they are not considered

in our model, which only uses WS estimated TT to make recovery decisions.

We design two set of experiments: (i) the first set of experiments were conducted

considering only the backward recovery and forward recovery strategies and, (ii) the

second set of experiments additionally considers the replication strategy.

To illustrate how the execution engine works based on our model, we will detail
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Scenario hl WS availability WS reliability

1 1 0.8 0.9

2 1 0.8 0.1

3 1 0.95 0.9

4 1 0.95 0.1

5 0 [0.64 - 0.96] [0.72 - 1.0]

6 0 [0.64 - 0.96] [0.08 - 0.12]

7 0 [0.76 - 1.0] [0.72 - 1.0]

8 0 [0.76 - 1.0] [0.08 - 0.12]

Table 1
Execution Scenarios

all the steps in the execution process with one of the 10 CWSs; however, similar

results and conclusions hold for all other generated CWSs. Figure 4 shows the

selected CWS as example. Table 2 shows the WS estimated TT (in seconds) for

each component WS of our selected CWS. Its Maximum Cost Path is shown in

Figure 4 by the red component WSs (ws3, ws9, and ws10). We extracted the

Maximum Cost Path of the CWS example in Figure 5. In this case, the estimated

execution time of the CWS example is bounded by its Maximum Cost Path and is

calculated as in Def. 3.6:
CWS estimated TT = WS estimated TTws3 +

WS estimated TTws9 +
WS estimated TTws10 .

CWS estimated TT = 34980 secs + 29650 secs + 2472 secs

= 67102 secs.

Note that, the failure of ws3, ws9, or ws10 will affect the estimated execution

time of the whole CWS, more than the failure of any other of its component WSs.

We assume Δ CWSETET = 0.1 ∗ CWS estimated TT , which means it is inad-

missible for an execution of a CWS to take more than 10% of its estimated execution

time (CWS estimated TT ). Hence, for the CWS example, the tolerated execution

time is calculated as in Def. 3.6:

CWS tolerated TT = CWS estimated TT +Δ CWSETET

= 67102 secs + 6710,2 secs = 73812,2 secs

Let us explain the first set of experiments with the CWS example.

Example 1:
Suppose ws9 fails when it had executed 18000 secs. Thus, we have:

• WS elapsed timews9 = 34980 secs (ws 3 execution time, see Def. 3.7);

• WS left timews9 = 29650 secs (its own execution time) + 2472 secs (ws10 execution time) = 32122
secs (see Def. 3.8); and

• WS executed timews9 = 18000 secs (see Def. 3.9).
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Fig. 4. Illustrative CWS: This CWS is one of the 10 automatically generated

Fig. 5. Maximum Cost Path of CWS in Figure 4

component WS WS estimated TT (secs)

ws1 8080

ws2 8020

ws3 34980

ws4 7570

ws5 12990

ws6 836

ws7 1388

ws8 13330

ws9 29650

ws10 2472

Table 2
WSs estimated execution time

As we showed before CWS tolerated TT = 73812, 2 secs, then from Equation
3, we have:

Δ WSETETws9
= 73812, 2− (34980 + 32122 + 18000)

= −11289, 8secs

Because Δ WSETETws9
< 0, the execution engine decides backward recovery. If

forward recovery is applied by retrying the execution of ws9 or selecting a substitute

that in the best case has the same estimated execution time of ws9, the expected

total execution time for the CWS will be exceeded.
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Example 2:
Now suppose that the failure was for ws10 when it was almost finishing its exe-

cution, at 2200 secs. Thus, we have:

• WS elapsed timews10 = 64630 secs (ws3 + ws9 execution times);

• WS left timews10 = 2472 secs (only its own execution time because the successor of ws10 is nf ); and

• WS executed timews10 = 2200 secs.

As we explain before CWS tolerated TT = 73812, 2 secs. Finally, from Equa-
tion 3, we have:

Δ WSETETws9
= 73812, 2− (64630 + 2472 + 2200)

= 4510, 2secs.

In this case Δ WSETETws10
> 0, then the execution engine decides forward recov-

ery, by retrying the execution of ws10 or selecting a substitute, because the expected

total execution time for CWS will be kept. When a substitute is selected, its esti-

mated execution time is the one considered in our model (Equation 3).

Note that in these examples, the faulty component WSs belong to the Maximum

Cost Path; however, the same procedure works for any component WS.

For experimental intentions, when backward recovery was decided, the execution

engine forced a forward recovery to show how much will be impacted the total

execution time of the CWS if backward recovery is not performed.

Table 3 shows the percentage of variation of CWSs Total Execution Time re-

garding its estimated time for the first set of experiments in all scenarios as the

average of the executions of the 10 CWSs. Table 3 presents in:

• Column one, each scenario;

• Column two, the results related to executions without faults (NoFaults).

• Column three, the results related to executions in which forward recovery was

decided (Forward);

• Column four, the results related to executions in which backward recovery was

decided but the execution engine forced a forward recovery (Forward), showing

the impact in the total execution time if backward recovery is not performed;

• Column five, the percentage of executions where the time constraint was violated

(T imeExceeded)

Columns two (NoFaults), three(Forward), and four (Forward) represent the

variation for the CWS estimated execution time regarding its estimated time; for

example, the value of column two line one indicates that the real execution time

was 2.6% more of the estimated execution time.

These results show that there is little variation in the total execution time be-

tween executions without failures (NoFaults) and executions in which forward re-

covery was decided (Forward). These values are relatively small, which means

that with the forward recovery strategy, performing re-execution or substitution

of WSs did not have a negative impact on the whole execution time regarding
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Scn NoFaults Forward Backward T imeExceeded

1 2.6 2.8 42.45 48

2 3.5 3.5 48.80 52

3 2.4 2.9 40.98 14

4 3.4 3.9 41.87 15

5 3.0 3.0 45.92 46

6 3.7 3.6 47.18 44

7 3.86 3.91 38.24 15

8 3.1 3.43 38.88 18

Table 3
Percentage of variation of CWSs Total Execution Time with Backward and Forward Recovery

the time constraint. Total execution time varied at maximum in 3.91% from the

CWS estimated TT with an expected Δ CWSETET = 10%∗CWS estimated TT .

In contrast, CWS estimated TT was exceeded in more than 38%, when the model

suggested backward recovery but the system forced a forward recovery (Backward),

exceeding the time constraint in at least 14% of the times (T imeExceeded).

The second set of experiments additionally takes into account replication. For

component WSs in the Maximum Cost Path, at the moment of its invocation,

the execution engine evaluates with the model (as we illustrated in Example 1)

“what will happen if this WS fails”; if its failure will cause a backward recovery,

then the execution engine invokes simultaneously its replicas. It means, replicas of

the WSs in the Maximum Cost Path can be executed in parallel along with their

corresponding original WS, as shown in Figure 6. Only the answer of the first WS

that finishes correctly is taken into account to continue with the execution of the

CWS. For any other component WS, not belonging to the Maximum Cost Path,

the replication decision is evaluated if it fails. If forward recovery keeps the total

execution time constraint, no replica is invoked.

Fig. 6. Replication of WSs in Maximum Cost Path

Tables 4, 5, and 6 show the results allowing the replication strategy to be
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performed using one replica, three replicas, and seven replicas per WS, respectively.

The columns Scn, NoFault, and Forward have the same meaning as in Table 3.

The column BackwardReplicat represents the percentage of the total execution

time using replication to go forward in the cases the model suggested backward

recovery because the time constraint was going to be violated. The column Replicat

shows percentage of the total execution time using replication. The column AllFail

represents the percentage of executions where the replication strategy could not

satisfy the time constraint because all replicas of one WS failed. The column

ReplicatNeed expresses the percentage of the total number of executions where the

result of a replica was used instead of the original WS, because it failed.

As in the first set of experiments, the forward recovery strategy (column

Forward, in the three tables) did not produce a high impact on the total exe-

cution time, the worst case was 3.97% with seven replicas, while the tolerated time

is 10%. Once again, when the model detected that the backward recovery should be

executed and the system forced forward recovery, the CWS estimated TT was ex-

ceeded in more than 30% when 1 or 3 replicas were used (column BackwardReplicat

in Tables 4 and 5); means that the replication strategy did not help to satisfy the

time constraint because at least one of the critical WSs and all its replicas failed in

at most 15% of the times (column AllFail in Tables 4 and 5); with seven replicas,

it never happened that backward recovery was needed (column BackwardReplicat

in Tables 6) because the original WS and all its replicas failed (column AllFail in

Table 6). When the original WS failed and one of its replicas finished successfully,

the total execution time is not impacted a lot (column Replicat in all tables), the

worst case was 3.81% of variation from the estimated total execution time and this

happened at least 30% times from the cases in which all replicas where invoked

along with the original WS (column ReplicatNeed in all tables); this result shows

that invoking replicas in normal conditions can prevent faults without almost any

impact in the total execution time.

Figure 7 illustrates the percentage of executions where the time constraint was

violated under the eight scenarios without using replication (first set of experiments)

and under the same scenarios enabling replication with one, three, and seven repli-

cas per WS (second set of experiments). Remember that in all cases, the model

suggested backward recovery but the system forced to forward recovery. As ex-

plained before, the replication strategy is chosen as prevention, if the WS to be

executed belongs to the Maximum Cost Path; therefore, there is more probability

of a successful execution of replicated WSs and then, been able to fulfill the time

constraint.

The difference between the bars in Figure 7 highlights the improvement achieved

by adding the replication strategy to the set of possible actions to perform in order

to maintain the time constraint. Table 7 shows the approximate failure probabilities

for a single node using different numbers of replicas and assuming that all original

WSs have the worst failure probabilities considered for these experiments, which

is 0.2. This is the reason behind the considerable decrease on the time constraint

violation percentages showed in Figure 7, specially for executions with 3 and 7
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Scn No Forward Backward Replicat All Replicat

Fault Replicat Fail Need

1 2.77 2.81 37.82 3.10 12 42

2 3.53 3.62 38.15 3.81 8 38

3 2.62 2.63 30.65 2.91 1 33

4 3.49 3.52 33.49 3.54 4 33

5 2.62 2.63 36.21 2.69 13 35

6 3.44 3.71 38.7 3.44 15 35

7 2.63 2.63 38.85 2.68 2 38

8 3.39 3.44 37.24 3.45 1 34

Table 4
Execution with Replication (1 replicas)

Scn No Forward Backward Replicat All Replicat

Fault Replicat Fail Need

1 2.95 2.92 ∅ 3.03 0 34

2 3.68 3.72 43.54 3.10 1 33

3 2.93 2.94 ∅ 2.91 0 37

4 3.69 3.68 ∅ 3.69 0 32

5 2.75 2.80 42.11 3.11 1 33

6 3.44 3.44 ∅ 3.50 0 34

7 2.63 2.65 ∅ 2.71 0 35

8 3.39 3.44 ∅ 3.45 0 30

Table 5
Execution with Replication (3 replicas)

replicas.

All these experiments illustrate that if a wrong recovery strategy is executed, the

impact in the global QoS parameters of a CWS can be highly affected. They also

show how suitable is to know information about the execution environment to apply

prevention strategies (as replication) that will not affect the QoS parameters in

neither in normal nor in faulty conditions. Thus, a model that can take into account

context-information will help the execution engine to make decision regarding the

best recovery strategy, while global QoS parameters are maintained.
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Scn No Forward Backward Replicat All Replicat

Fault Replicat Fail Need

1 2.95 2.92 ∅ 3.03 0 39

2 3.68 3.72 ∅ 3.10 0 38

3 2.93 2.94 ∅ 2.91 0 33

4 3.69 3.68 ∅ 3.69 0 34

5 2.75 2.80 ∅ 3.11 0 39

6 4.00 3.97 ∅ 3.77 0 37

7 2.63 2.61 ∅ 2.71 0 33

8 3.39 3.44 ∅ 3.45 0 36

Table 6
Execution with Replication (7 replicas)

Fig. 7. Time constraint violation without and with replication

Note that in our experiments, results were not impacted by the homogeneity

level. Similar results and conclusions were obtained from both cases. This experi-

ence can represent another benefit to mention of our model: it is independent from

how heterogenous is the execution environment. We plan to test our model with

more exhaustive cases to probe these preliminary suppositions.
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replicas failureprobability

0 ≈0.2

1 ≈0.04

2 ≈0.008

3 ≈0.008

4 ≈0.0016

5 ≈0.00002

6 ≈0.00002

7 ≈0.00002

Table 7
Node failure probabilities

5 Related Work

There exist many works related to fault tolerance execution for CWSs that imple-

ment a combination of several recovery strategies.

FENECIA framework [13] provides an approach for managing fault tolerance

and QoS in the specification and execution of CWSs. FENECIA introduces WS-

SAGAS, a transaction model based on arbitrary nesting, state, vitality degree, and

compensation concepts to specify fault tolerant CWS as a hierarchy of recursively

nested transactions. To ensure a correct execution order, the execution control of the

resulting CWS is hierarchically delegated to distributed engines that communicate

in a peer-to-peer fashion. A correct execution order is guaranteed in FENECIA by

keeping track of the execution progress of a CWS and by enforcing forward and

backward recovery. To manage failures during the runtime it allows the execution

retrial with alternative candidates. FACTS [15] is another framework for fault

tolerant composition of transactionalWSs based on FENECIA transactional model.

It combines exception handling strategies and a service transfer based termination

protocol. When a fault occurs at run-time, it first employs appropriate exception

handling strategies to repair it. If the fault cannot be fixed, it brings the CWS

back to a consistent termination state according to the termination protocol (by

considering alternative services, replacements, and compensation).

In [4], a compensation workflow is built. This workflow has the lowest com-

pensation cost, which includes the cost of failed WS and the total cost of com-

pensating the previously executed WSs. There exist some recent works related to

the compensation mechanism of CWSs based on Petri-Net formalism [17,19,22].

The compensation process is represented by Paired Petri-Nets demanding that all

component WSs have to be compensable.

There exist some works that implement different fault tolerant strategies based

on WS-BPEL technologies and consider highly dynamic environments as cloud com-
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puting. In [12], WS invocations are intercepted by an integrated software compo-

nent to the BPEL engine. If a failure occurs during an invocation, it is handled by

this extension according to policies that take into account specific characteristics of

the cloud environment. This solution is not transparent, it is strongly attached to

the specific BPEL engine implementation. In [1], a replication strategy is used and

a rollback workflow is automatically created considering the service dependencies.

An actively replicated platform is presented, in which all replicas of a WS are si-

multaneously invoked. Only results of the first replica finished are accepted, other

executions are halted or ignored. The process of replication and coordination of

replicas is implemented transparently to users and independent to WS implemen-

tation.

All those previously described works do not consider the dynamism of the execu-

tion context environment to adapt the decision regarding to which recovery strategy

is the most appropriated. They implement specific and static fault tolerance strate-

gies.

In [27], it is defined an adaptive and dynamic fault tolerance strategy based on

execution time, failures probability, and resource consumption parameters. Users

specify weights that represent their requirements over those three parameters. An

additive weighting function of the parameters. This work presents an experimental

study to show the feasibility of determining recovery strategies that comply user

needs. This work is the most related to our goals; however, it is meant for the fault

tolerance of single WSs, not for the fault tolerance of entire CWSs, as our study

does.

6 Conclusions and Future Work

In this work, we have presented a preliminary model to dynamically decide which

recovery strategy is the most appropriated according to execution time restrictions.

We conduced an experimental study towards the definition of a more complex and

complete model to adapt the fault-tolerance strategy to context-information. This

automatic decision takes into account the impact of the recovery strategy on QoS

parameters and user preferences or system constraints, like the time constraint

presented in this analysis. The alternative recovery strategies considered in our

study were backward and forward recovery based on transactional properties and

replication to support forward recovery. Our experimental study demonstrates that

a model that can take into account context-information will help the execution

engine to make decision regarding the best recovery strategy, while global QoS

parameters are maintained. They also show how suitable is to know information

about the execution environment to apply prevention strategies (as replication) that

will affect the QoS parameters in neither normal nor faulty conditions.

We plan to test our model with more exhaustive test cases to prove these prelim-

inary suppositions and to extend it to consider other context information and other

QoS requirements, as the availability and reliability of component WSs, in order to

better support the decision making. We also plan to adapt the model to integrate

other recovery strategies such as checkpointing techniques and tolerate other kind
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of failures such as Byzantine faults. Finally, we plan to perform experiments using

real data and uses cases.

References

[1] Behl, J., T. Distler, F. Heisig, R. Kapitza and M. Schunter, Providing fault-tolerant execution of
web-service–based workflows within clouds, in: Proc. of the 2nd Int. Workshop on Cloud Computing
Platforms (CloudCP), 2012.

[2] Benjamins, R., J. D. E. Dorner, J. Domingue, D. Fensel, O. López, R. Volz, A. Wahler and M. Zaremba,
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