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Abstract

We give an introduction to Tropical Geometry and prove some results in tropical intersection theory.
The first part of this paper is an introduction to tropical geometry aimed at researchers in Algebraic
Geometry from the point of view of degenerations of varieties using projective not-necessarily-normal
toric varieties. The second part is a foundational account of tropical intersection theory with proofs
of some new theorems relating it to classical intersection theory.
� 2008 Elsevier GmbH. All rights reserved.
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O monumento é bem moderno
Caetano Veloso [41]

1. Introduction

Tropical Geometry is an exciting new field of mathematics arising out of computer
science. In the mathematical realm, it has been studied by Mikhalkin [24], Speyer [33], the
Sturmfels school [30], Itenberg et al. [18], Gathmann and Markwig [15], and Nishinou and
Siebert [27] among many others. It has found applications in the enumeration of curves [23],
low-dimensional topology [40], algebraic dynamics [10], and the study of compactifications
[17,39].
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This paper is an introduction to tropical geometry from the point of view of degenerations
of subvarieties of a toric variety. In this respect, its approach is close to that of the Sturmfels
school.

In the first part of the paper, we use not-necessarily-normal projective toric varieties to
introduce standard notions such as degenerations, the Gröbner and fiber fans, and tropical
varieties. In the second part of the paper, we give a foundational account of tropical inter-
section theory. We define tropical intersection numbers, and show that tropical intersection
theory computes classical intersection numbers under certain hypotheses, use tropical in-
tersection theory to get data on deformation of subvarieties, and associate a tropical cycle
to subvarieties. The two parts can be read independently.

We will express tropical geometry in the language of projective not-necessarily-normal
toric schemes over a valuation ring (see [16, Chapter 5], for such toric varieties over
fields). These toric schemes give toric degenerations. There are other constructions of toric
degenerations analogous to different constructions of toric varieties. Analogous to the fan
construction as in [11] is the approach of Speyer [33]. See also the paper of Nishinou and
Siebert [27]. In [32], Speyer introduced a construction of toric degenerations paired with
a map to projective space. The construction we use here has the advantage of being very
immediate at the expense of some loss of generality by mandating projectivity and the loss
of computability versus more constructive methods.

We have chosen in this paper to approach the material from the point of view of algebraic
geometry and had to neglect the very beautiful combinatorial nature of this theory. We would
like to suggest that the reader takes a look at [30] for a more down-to-earth introduction
to tropical geometry. We also point out a number of references that are more combinato-
rial in nature and which relate to our approach. There is the wonderful book of Gelfand
et al. [16], which gives a combinatorial description of the secondary polytope among many
other beautiful results, the paper of Billera and Sturmfels on fiber polytopes [4] (see also
the lovely book of Ziegler [42]), the book of Sturmfels on Convex Polytopes and Gröbner
Bases [36] as well as the papers [20,35].

We should mention that since this paper first appeared in preprint form, there has emerged
a synthetic approach to tropical intersection theory. The intersection theory of tropical fans
was established by Gathmann et al. [14] and was extended to general tropical varieties in
Rn by Allermann and Rau [1].

Many of the results from the first part of this paper are rephrased from Speyer’s dissertation
[33] and the general outlook is implicit in the work of Tevelev [39], which introduced the
interplay between toric degenerations and tropical compactifications. Please see [8] for an
explanation of the relationship between such work. We hope this piece will be helpful to
other researchers.

2. Conventions

Let R be a ring with a valuation contained in a subgroup G of (R,+),

v : R\{0} → G ⊆ R.

Let K denote the field of fractions of R,m the maximal ideal v−1((0,∞)), and k=R/m.
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There are two examples that will be most important:

(1) K=C{{t}} =⋃
MC((t1/M)), the field of formal Puiseux series, v : K→ Q, the order

map and k = C.
(2) K=C((t1/M)), the field of formal Laurent series in t1/M , v : K→ 1/M Z, and k=C.

Note that the first choice of R has the disadvantage of not being Noetherian. This is not
much of a hindrance because any variety defined over K in the first case can be defined over
K in the second case for some M. This will be enough in practice.

In either case, given x ∈ K, we may speak of the leading term of x. This is the non-zero
complex coefficient of the lowest power of t occurring in the power-series expansion of x.

In either of these cases we have an inclusion k ↪→ R such that the composition

k ↪→ R→ R/m= k

is the identity.
Also, for every u ∈ G, we have an element tu ∈ K so that v(tu) = u. These elements

have the property that

tu1 tu2 = tu1+u2 .

The choice of a map u �→ tu as a section of v is perhaps unnatural. In [29], Payne introduced
a formalism of tilted rings, which avoids the need for a section.

For an n-tuple, w = (w1, . . . , wn) ∈ Gn, we may write tw for (tw1 , . . . , twn) ∈ (K∗)n.
Similarly, we may write v : (K∗)n→ Gn for the product of valuations.

For g = (g1, . . . , gn) ∈ (K∗)n, �= (�1, . . . , �n) ∈ Zn, we write g� for g
�1
1 ...g

�n
n ∈ K∗.

3. Polyhedral geometry

Here we review some notions from polyhedral geometry. Please see [42] for more details.
LetA ⊂ Rn be a set of points. Let P=Conv(A) be their convex hull. For v ∈ (Rn)∨, the

face Pv of P is the set of points x ∈ P that minimize the function 〈x, v〉. Let �v =A∩Pv .
The cone

C�v
=

{
w ∈ (Rn)∨

∣∣∣∣ 〈�i , w〉 = 〈�j , w〉 for �i , �j ∈ �v

〈�, w〉< 〈�′, w〉 for � ∈ �v, �′ /∈�v

}
is the normal cone to the face Pv . Observe that v is in the relative interior of C�v

.
The correspondence between Pv and C�v

is inclusion reversing. The C�’s form a fan,
N(P ), called the (inward) normal fan of P.

Two polytopes are said to be normally equivalent if they have the same normal fan.
A polyhedron in Rn is said to be integral with respect to a full-rank lattice � ⊂ (Rn)∨

if it is the intersection of half-spaces defined by equations of the form {x|〈x, w〉�a} for
w ∈ �, a ∈ R. We will usually not note the lattice when it is understood.

Definition 3.1. A polyhedral complex in Rn is a finite collection C of polyhedra in Rn that
contains the faces of any one of its members, and such that any non-empty intersection of
two of its members is a common face.



4 E. Katz / Expo. Math. 27 (2009) 1–36

A polyhedral complex is said to be integral if all of its members are integral polyhedra.
The support |C| of a polyhedral complex C is the set-wise union of its polyhedra. We say
that a polyhedral complex C is supported on a polyhedral complex D if |C| ⊆ |D|.
Definition 3.2. Given two integral polyhedral complexes, C,D in Rn, we say C is a refine-
ment of D if every polyhedron in D is a union of polyhedra in C.

It is well-known that for convex polytopes P and Q with normal fans N(P ), N(Q) and
N(P ) is a refinement of N(Q) if and only �Q is a Minkowski summand of P for some
� ∈ R>0. See [3, Proposition 1.2].

Given a polyhedron P in a complex C, we may construct a fan F called the star of P.
Pick a point w in the relative interior of P. Let D be the set of all polyhedra in C containing
P as a face. For every Q ∈ D, let CQ be the cone

CQ = {v ∈ Rn|w + �v ∈ Q for some � > 0}.
These CQ’s give a fan F. If P is a maximal polyhedron in C, then its star is its affine span.
Please note that this usage of star is non-standard.

Definition 3.3. Given n polytopes, P1, . . . , Pn ⊂ Rn, their mixed volume is the coefficient
of �1�2, . . . , �n in Vol(�1P1+ · · · + �nPn), which is a homogeneous polynomial of degree
n in �1, . . . , �n.

4. Toric schemes

4.1. Toric schemes over SpecR

We take the point of view of [31] and use the language of toric schemes over SpecR.
We use the not-necessarily-normal projective toric varieties of [16].

For T = (K∗)n a K-torus, let T ∧ = Hom(T , K∗) be the character lattice and T ∨ =
Hom(K∗, T ) be the one-parameter subgroup lattice. Let T ∧R =R⊗T ∧, T ∨R =R⊗T ∨, and
T ∨G =G⊗ T ∨.

A homomorphism of tori T → U induces homomorphisms T ∨ → U∨ and U∧ → T ∧.

Definition 4.1. Let T = (K∗)n ↪→ (K∗)N+1/(K∗) ↪→ PGlN+1(K) be a composition
of homomorphisms of groups where (K∗)N+1/(K∗) denotes the quotient by the diagonal
subgroup and the last homomorphism is the diagonal inclusion. For y ∈ PN

K, let Ty denote
the stabilizer of y in T. The toric variety associated to (T , y) is the closure

Y = (T /Ty)y.

Y lies in the fiber over the generic point in PN
R→ SpecR. Let the toric scheme Y be the

closure of Y in PN
R, and let Y0 =Y×Spec RSpec k be the special fiber.

Definition 4.2. If y ∈ Pn
k ⊂ Pn

K for k ⊂ K then the toric scheme is said to be defined
over k. Alternatively, it is obtained by base-change from a toric variety defined over k by
the map Spec K→ Spec k induced by the inclusion.
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Example 4.3. Let T = (K∗)2 → (K∗)4/(K∗) be the inclusion given by

(x1, x2) �→ (1, x1, x2, x1x2).

If y = [1 : 1 : 1 : 1] ∈ P3
K then

T · y = {[1 : x1 : x2 : x1x2] | x1, x2 ∈ K∗}.

The closure of the above is P1×P1 under the Segre embedding. This is defined over k.

Definition 4.4. There is a natural map from (K∗)n to Y given by

(K∗)n −→ Y ,

g �−→ g · y.

The image of the map is called the big open torus. If the map is an open immersion, we
say our toric variety is immersive.

Now, we explain a method of defining toric schemes. Let A = {�1, . . . , �N+1} ⊂
T ∧ = Zn be a finite set. Let a : A �→ G be a function called a height function. Let
y= (y1, . . . , yN+1) ∈ (K∗)N+1 be an element satisfying

v(yi)= a(�i ).

The choice of A induces a homomorphism of groups

T = (K∗)n→ (K∗)N+1,

g = (g1, . . . , gn) �→ (g�1 , . . . , g�N+1).

We may consider the map as a homomorphism T → (K∗)N+1/(K∗), where the quotient
is by the diagonal subgroup. Therefore, if y ∈ (K∗)N+1,

g · y = (g�1y1, . . . , g
�N+1yN+1).

One may ask how the toric variety depends on the choice of y. Let y, y′ ∈ (K∗)N+1 satisfy

v(yi)= v(y′i )= a(�i ).

Then y, y′ are related by multiplication by an element g ∈ (K∗)N+1 with v(g) = 0. This
element lifts to an element of (Gm)N+1

R . Therefore, the two choices of YA,a are related by
an action of the diagonal torus in PN

R. As a consequence, the special fibers are related by
an action of the diagonal torus in PN

k .
Let YA,a be the toric scheme associated to T and y. Note that if the integral affine span

of A is Zn then YA,a is immersive.
It is a theorem that the normalization of Y is the toric variety associated to the normal fan

of the polytope Conv(A). See [7] for details.

Definition 4.5. The induced subdivision of Conv(A) is given as follows. Let the upper
hull of a be

UH= Conv({(�, b)|� ∈A, b�a(�)}).
The faces of UH project down to give a subdivision of Conv(A).
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Conv(A) is called the weight polytope of Y, while the induced subdivision is called the
weight subdivision of Y.

Example 4.6. Let A = {(0, 0), (1, 0), (0, 1), (1, 1)} be the vertices of a lattice square.
Let a be given by

a(0, 0)= 0, a(1, 0)= 0, a(0, 1)= 0, a(1, 1)= 1.

Choose y= (1, 1, 1, t1). This induces the inclusion T ↪→ (K∗)4/(K∗) given by

(x1, x2) �→ (x0
1x0

2 , x1
1x0

2 , x0
1x1

2 , x1
1x1

1)= (1, x1, x2, x1x2)

as in Example 4.3. Therefore Y is the closure of the image of

(x1, x2) �→ [1 : x1 : x2 : tx1x2].
The fiber over Spec K is isomorphic to the closure of

(x1, x2) �→ [1 : x1 : x2 : x1x2],
which is P1

K × P1
K under the Segre embedding.

The special fiber can be seen as follows: taking the limit of (x1, x2) as t �→ 0, we
get [1 : x1 : x2 : 0] which is P2; taking the limit of (t−1x1, t

−1x2) as t �→ 0, we get
[0 : x1 : x2 : x1x2], which is another P2. One sees that the special fiber is two copies of
P2 joined along P1. We will show that this case is indicative of a general phenomenon in
Lemma 4.19.

4.2. Recovering the weight subdivision

There is a way of working backwards from (T , y) to A and a subdivision of Conv(A).

Definition 4.7. Let V be a K-vector space. A k-weight decomposition is a vector space
isomorphism defined over k ⊂ K

V �
⊕
�∈Zn

V�,

where H acts on V� with character �.

Lemma 4.8. Any K-vector space V on which H acts linearly has a k-weight decomposition.

Proof. See [6, Propositions 8.4 and 8.11]. �

Lift y ∈ PN
K to y ∈ KN+1. Write y = ∑

�y�. Let A = {� ∈ Zn|y� �= 0}. Then
Conv(A) is called the weight polytope of Y. If dim V�=1, set a�=v(v�). Otherwise, write
v�=v1+· · ·+vn where vi are vectors in a one-dimensional subspace on which H acts, and
set a�=min(v(vi)). Take the subdivision of Conv(A) induced by a�, which is independent
of the lift y.
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Fig. 1. The subdivision and its dual complex.

4.3. Dual complex

Consider the pairing

T ∧R ⊗ T ∨R → R

and the piecewise-linear function

F : T ∨R → R

defined by

F(w)= min
�∈A

(〈�, w〉 + a�).

The domains of linearity of F give a polyhedral complex structure on T ∨R . For � ⊂A, let

C� =
{
w ∈ (Rn)∨

∣∣∣∣ 〈�i , w〉 + a�i
= 〈�j , w〉 + a�j

for �i , �j ∈ �
〈�, w〉 + a� < 〈�′, w〉 + a�′ for � ∈ �, �′ /∈�

}
If C� is not empty, then � are points of A in a face of the weight subdivision. The C�’s
fit together to form an integral polyhedral complex, the dual complex, which is dual to the
weight subdivision. Note that if a� = 0 for � ∈ A, the weight subdivision becomes the
weight polytope and the dual subdivision becomes the normal fan.

Example 4.9. Fig. 1 shows the weight subdivision and dual complex for Example 4.6.
Here,

F(w)= min
�∈A

(〈�, w〉 + a�)

= min(0, w1, w2, w1 + w2 + 1).

The values of F on the dual complex are noted in the figure.

4.4. One-parameter families of points

Let us review the notion of specialization. For y ∈ PN
K, we may take y ∈ PN

R, considered
as a scheme over SpecR. The specialization of y is

ŷ = y×Spec RSpec k ∈ PN
k .
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We can compute the specialization by hand. Lift y to y ∈ KN+1\{0} such that min(v(yi))=0.
If yi �= 0, write yi = c1t

bi + . . . , where the ellipsis denotes higher order terms. Let

S = {i|bi = 0}.
Then ŷ satisfies

ŷi =
{

ci if i ∈ S

0 else.

Definition 4.10. Let Y be a toric scheme over R. Let y be a point in Y. Given g ∈ (K∗)n,
the family associated to (g, y) is the scheme over SpecR given by the closure of g · y.

Definition 4.11. The limit of (g, y) is the point in Y0 given by

g · y×Spec RSpec k.

Now, observe that

v((g · y)i)= 〈�i , v(g)〉 + a�i
,

where v(yi)=a�i
. Therefore, when we base-change to Spec k, the only components of g ·yi

that stay non-zero are the ones on which 〈�i , v(g)〉 + a�i
is minimized. Consequently, if

v(g) ∈ C� for a cell � of the weight subdivision, and ŷ is the limit of (g, y), then ŷi �= 0
if and only if �i ∈ �.

4.5. One-parameter families of subschemes

We will also consider degenerations of subschemes X of Y.

Definition 4.12. Let w ∈ Gn and g= tw. Consider the subscheme of Y given by g ·X, the
closure of g ·X. Define the initial degeneration of X to be the subscheme of Y0 given by

inw(X)= g ·X×Spec RSpec k.

Example 4.13. This definition specializes to the usual definition of the initial form of a
polynomial. Let

f = x2
1x2 + 7x1x2x3 + 4x3

3 ∈ K[x1, x2, x3],
and set w = (3, 4). Let X = V (f ) ⊂ Y = P2

K. Then twV (f ), a subvariety of P2
K,

is V (h) for

h= (t−3x1)
2(t−4x2)+ 7(t−3x1)(t

−4x2)(x3)+ 4(x3)
3

= t−10x2
1x2 + 7t−7x1x2x3 + 4x3

3

= t−10(x2
1x2 + 7t3x1x2x3 + 4t10x3

3).
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Therefore,

inw(V (f ))= tw · V (f )×Spec RSpec k

is cut out by

inw(f )= x2
1x2.

Now that if X = x is a point, then inw(X)= tw · x×Spec RSpec k.
Every point of inw(X) occurs as a limit of the form g · x×Spec RSpec k for x ∈ X. This

is the content of the tropical lifting lemma. This lemma was first announced without proof
in [37]. A proposed proof was given in [34] but has been found to be incomplete. A proof
using affinoid algebras was given by Draisma [9]. Jensen et al. provided an algorithm that
finds a tropical lift in [19]. This algorithm uses some ideas from our proof and their paper
is recommended as an exposition of our proof in terms of commutative algebra. In [29], by
applying a projection argument to reduce to the hypersurface case, Payne gave a stronger
version of tropical lifting that works over more general fields.

We first review the concept of relative dimension from [12, Chapter 20].

Definition 4.14. Let p : Z→ S be a scheme over a regular base scheme S. For V , a closed
integral subscheme of Z, let T = p(V ). The relative dimension of V is

r dim V= tr. deg .(R(V )/R(T ))− codim(T , S).

We will apply this definition for T =Spec C[[t1/M ]]. Note that a point in the special fiber
is of relative dimension −1.

Lemma 4.15 (Tropical lifting lemma). Let K = C{{t}}. If x̃ ∈ inw(X) then there exists
x ∈ X with

inw(x) ≡ tw · x×Spec RSpec k = x̃.

Proof. We treat X as a subscheme of PN
K. If dim X=0, then the support of twX is a union of

closed K-points. One such point specializes to x̃. The corresponding component has initial
deformation supported on x̃ and gives the desired point in X. Therefore, we may suppose
dim X = n > 0.

Pick M sufficiently large so that X is defined over F= C((t1/M)). Let Q= C[[t1/M ]].
By replacing X by twX we may suppose w= 0. Let X be the closure of X in Y. Note that

X is flat over SpecQ.
Let W0 be a codimension n subvariety of Y0 ⊂ PN

k such that W0 intersects

X0 =X×Spec QSpec k

in a zero-dimensional subscheme containing x̃. Extend W0 to a flat integral scheme W→
SpecQ so that W×Spec QSpec k =W0 (for example, we may set W=W0×Spec kSpecQ).
Then, X×YW is a scheme, all of whose components have non-negative relative dimension
over SpecQ. The following equality holds for underlying sets:

(X×YW)×Spec QSpec k =X0×Y0W0.
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Since the scheme on the right is zero-dimensional, there are no components of X×YW
contained in the special fiber. Therefore, the induced reduced structure on X×YW is flat,
has relative dimension zero, and has a component of its limit supported on x̃. Let W =
W×Spec QSpec F. By uniqueness of flat limits, the closure of the induced reduced structure
on X×Y W in Y is the induced reduced structure on X×YW.

Therefore, we may apply the zero-dimensional case to the induced reduced structure on
X×Y W . �

We will find the following corollary useful.

Corollary 4.16. Under the hypotheses of the previous lemma and the equality of underlying
sets X =X ∩ (K∗)n, we may suppose x ∈ X ∩ (K∗)n.

Proof. Produce x ∈ X as above. If x ∈ X ∩ (K∗)n then we are done. Otherwise, there is a
morphism

f : Spec K[[s]] → X,

so that the generic point is sent to X ∩ (K∗)n while the closed point is sent to x.
This morphism is defined over some C((t1/M)) and can be given as a base-change from

f : Spec C[[t1/M ]][[s]] → X,

where we view X as defined over C[[t1/M ]]. Therefore, we may extend the morphism to
f : Spec C[[t1/M ]][[s1/M ]] → X. Consider the diagonal morphism

i : Spec C[[u1/M ]] → Spec C[[t1/M ]][[s1/M ]]
induced by

t1/M �→ u1/M, s1/M �→ u1/M .

By restricting the composition f ◦i to the generic point, Spec C((u1/M)), we find the desired
K-point. �

4.6. Structure of YA,a

YA,a has well-understood fibers over the generic and special point.

Definition 4.17. For �, a face of the weight polytope, let Y 0(�) ⊂ Y be the set of all points
y ∈ Y ⊆ PN

K so that their lifts y ∈ (K)N+1\{0} satisfy

yi �= 0 if and only if �i ∈ �.

Definition 4.18. For �, a cell of the weight subdivision, let Y 0
0 (�) ⊂ Y0 ⊂ PN

k be the set
of all points y ∈ Y0 ⊆ PN

k so that their lifts y ∈ (k)N+1\{0} satisfy

yi �= 0 if and only if �i ∈ �.
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Proposition 4.19.

(1) Y =YA,a×Spec RSpec K is the toric variety associated to A. The non-empty faces of
the weight polytope are in inclusion-preserving bijective correspondence with its torus
orbits given by � �→ Y 0(�).

(2) The scheme Y0 = YA,a×Spec RSpec k is supported on the union of toric varieties
associated to the top-dimensional cells of the weight subdivision such that the non-empty
cells of the weight subdivision are in inclusion-preserving bijective correspondence with
its torus orbits given by � �→ Y 0

0 (�).

Proof. (1) is Proposition 1.9 of Chapter 5 of [16]. We give the proof of (2) which is directly
analogous. Elements of YA,a×Spec RSpec k are of the form

g · y×Spec RSpec k

by Lemma 4.16. If v(g) ∈ C�, the cell of the dual complex corresponding to �, then the
limit g · y×Spec RSpec k is in the orbit Y 0

0 (�).
Similarly if w ∈ C�, by varying g with v(g)= w, we may make g · y×Spec RSpec k be

any point of Y 0
0 (�). �

Part (2) of the above lemma is simply not true at the level of scheme structure. As a
counterexample, take A={0, 1, 2}, a(0)=0, a(1)=1, a(2)=0. Then Y0 is a double-line
in P2. The corresponding subdivision is the single cell [0, 2] whose toric variety is the
reduced induced structure on Y0. The construction of toric degenerations by fans as in [33]
is better behaved in this respect.

In the case of Example 4.6, we see that Y0 consists of two P2’s, five P1’s and four
fixed-points.

It is instructive to phrase the above theorem in the language of the dual complex. Given
two elements g, g′ ∈ (K∗)n with v(g)=v(g′), the limits of (g, y) and (g, y′) are related by
the action of an element of (k∗)n and so lie in the same open torus orbit. Therefore, we may
define an equivalence relation on Gn. Two elements w, w′ ∈ T ∨G are equivalent, written
w∼yw

′ if for g, g′ ∈ G satisfying w= v(g) and w′ = v(g′), the limits of (g, y) and (g′, y)

lie in the same open torus orbit.

Proposition 4.20. w∼yw
′ if and only if w and w′ lie in the same cell in the dual complex

associated to the toric scheme YA,a .

4.7. Invariant limits

The open orbits Y 0(�) and Y 0
0 (�) are fixed point-wise by sub-tori in T.

Lemma 4.21. Let � be a face of the weight polytope (resp. cell of the weight subdivision).
Let w ∈ C� and H ⊂ T be the sub-torus with H∨R = Span(C� − w). Let z ∈ Y 0(�)

(resp. Y 0
0 (�)). Then the maximal sub-torus fixing z is H.

Proof. We give the proof for Y 0
0 (�). The proof for Y0(�) is similar.
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Let z ∈ Y 0
0 (�). Lift z to z ∈ kN+1\{0}. Every g ∈ H satisfies g�i = g�j for �i , �j ∈ �.

Let g′ = g� ∈ k∗ for � ∈ �. Since zi �= 0 if and only if �i ∈ �,

g · z= g′z,

which is another lift of z.
If u ∈ T ∨\H∨, there exists �i , �j ∈ � such that

〈�i , u〉 �= 〈�j , u〉.
It follows is that z is not fixed by the one-parameter subgroup corresponding to u. �

We may rephrase the above lemma.

Lemma 4.22. Suppose g ∈ T satisfies v(g) ∈ C�. Then the limit of (g, y) in Y0 is invariant
under the torus H given by H∨R = Span(C� − w).

Proof. The limit of (g, y) lies in Y 0
0 (�). �

Suppose v(g) lies in C�, the cell of the dual complex dual to a cell � in the weight
subdivision. We may make use of the map SpecR→ Spec k to base-change the limit

g · y×Spec RSpec k

to

ŷ = (g · y×Spec RSpec k)×Spec kSpecR.

This just means that we should consider a limit point’s coordinates as points in K rather
than in k and take its closure.

Lemma 4.23. The weight polytope of the toric scheme Ŷ= (K∗)n · ŷ is Conv(�).

Proof. Lift ŷ to ŷ ∈ KN+1\{0}. The weights with which T acts on ŷ are � ∈ �. Therefore
the weight polytope in Conv(�). �

The dual complex of Ŷ is the normal fan of Conv(�). The normal fan of Ŷ is the star of
C�, the cell of the dual complex dual to �.

Lemma 4.24. Let ŷ = inw(X). For u ∈ T ∨G ,

inu(ŷ)= inw+�u(y)

for sufficiently small � > 0.

Proof. Let w ∈ C� for �, a cell of the weight subdivision. Then the weight polytope of ŷ

is Conv(�). Therefore, u is in a cone of the normal fan of � dual to some face �′ ⊆ �. It
follows that the coordinates of inu(ŷ) in PN are non-zero only for �i ∈ �′ and in that case
are equal to the leading terms of the coordinate of twy. Now, C� is a face of C�′ and we
may pick small � > 0 such that w + �u ∈ C�′ . Therefore, inw+�u(y)= inu(ŷ). �
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4.8. Naturality of dual complexes

Lemma 4.25. Given a proper surjective (K∗)n-equivariant morphism of n-dimensional
toric schemes, f : X → Y then the dual complex of X is a refinement of that of Y.
The normal fan to the weight polytope of X is a refinement of that of Y.

Proof. Let x ∈ PN
K so that X = T · x and Y = T · f (x) for (possibly different) diagonal

actions of T on PN
K, PN ′

K .
Now let C� be a k-dimensional cell in the dual complex ofX. We must show that f ∨(C�)

is in the relative interior of a cell in the dual complex of Y of dimension at least k. If g ∈ T

satisfies v(g) ∈ C�, then the limit, x̂ of (g, x) is invariant under the k-dimensional torus
H with H∨R = Span(C� − v(g)). Since f is equivariant, f (x̂) is the limit of (g, f (x)).
Furthermore if v(g) ∈ C�′ , a cell in the dual complex of Y then f (x̂) is invariant under an
l-dimensional torus H ′ with H ′R

∨ = Span(C�′ − v(g)). Since f (x̂) is also invariant under
H, then l > k.

To prove the statement for the weight polytope, we may set X = X × Spec K[[s]],
Y = Y × Spec K[[s]] where s is an algebraic indeterminate. Consider the valuation v :
K[[s]] → Z given by v(s) = 1, v(K∗) = 0. Then the weight subdivision of X and Y are
exactly the weight polytopes of X and Y and the same argument applies. �

4.9. Equivariant inclusions

In this section we consider a projection of integral polytopes p : P → Q, where
P = Conv(A).

Definition 4.26. Given a finite set A ⊆ Zn and a function

a :A→ R,

a projection p : Zn→ Zm, let B= p(A) and define the image height function

b : B→ R

by

b(�)=min({a(�)|� ∈ p−1(�)}).

The associated subdivision is the image subdivision.

Note that the image subdivision is dependent on the height function and not only on the
original subdivision. Weight polytopes and weight subdivisions are contravariant.

Lemma 4.27. Let i : T ↪→ U be an injective homomorphism of tori, so

T · v ↪→ U · v ↪→ Pn
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is a chain of equivariant inclusions. Then the induced projection

i∧ : U∧ → T ∧

takes the weight polytope and the weight subdivision of U · v to those of T · v.

Proof. The proof is straightforward. �

5. Degenerations

5.1. Moduli spaces

Tropical geometry is, in a certain sense, a method of parameterizing degenerations of
subvarieties of a toric variety. There are two useful spaces for parameterizing degenerations,
the Chow variety and the Hilbert scheme. Points in these moduli spaces correspond to cycles
or to subschemes. This is useful because limits of points in the moduli space correspond to
limits of cycles and subschemes. This allows us to apply the machinery developed in the
previous section to limits of subvarieties.

Let Y ⊆ PN be a projective toric variety whose torus action extends to one on PN . Recall
that k-dimensional algebraic cycles ofY are finite formal sums of k-dimensional subvarieties
of Y with integer coefficients. Consider a subvariety X ⊂ Y , with degree d in Y and Hilbert
polynomial P. There are two projective parameter spaces that one can construct, Chowd(Y )

and HilbP (Y ) that each have a point corresponding to X. Points in Chowd(Y ) correspond
to certain cycles in Y of degree d. We denote the point (called the Chow form) in Chowd(Y )

corresponding to X by RX. Chowd(Y ) is constructed as a closed subscheme of Chowd(PN),
which is a projective scheme. Points in HilbP (Y ) correspond to closed subschemes ofY with
Hilbert polynomial P. The point [X] in HilbP (Y ) corresponding to X is called the Hilbert
point. Similarly, HilbP (Y ) is a closed subscheme of HilbP (PN) which is projective.

See [22] for an in-depth construction of both varieties. See also [16] for a discussion
of the Chow variety. We will break from the usage in [22] and use Chow to denote the
un-normalized Chow variety which is there called Chow′. Note that the Hilbert scheme can
be constructed over an arbitrary Noetherian scheme S while there are restrictions on the
base-scheme of the Chow variety.

Let us review some useful properties of the Chow varieties and Hilbert schemes.

Property 5.1. The torus action on Y induces a group action on Chowd and HilbP , which
extends to an action on the ambient projective space.

Because the torus T acts on Y, for g ∈ T , g · X is a subvariety of Y of degree d and
Hilbert polynomial P. Therefore, Rg·X ∈ Chowd(Y ) and [g ·X] ∈ HilbP (Y ). This induces
T-actions on Chowd(Y ) and HilbP (Y ) given by

T × Chowd(Y )→ Chowd(Y ), T × HilbP (Y )→ HilbP (Y ),

(g, RX) �→ Rg·X, (g, [X]) �→ [g ·X].
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Property 5.2. There is a natural equivariant morphism FC : HilbP → Chowd

(see [26, 5.4]) called the fundamental class map that takes a scheme to its underlying
cycle.

A subscheme X of Y has an underlying cycle. Therefore, one may define a map

FC : HilbP → Chowd ,

[X] �→ RX.

This map is equivariant with respect to the above T-actions.

Property 5.3. The Hilbert scheme possesses a universal flat family UnivP → HilbP .

This universal family UnivP is a subscheme of Y ×HilbP (Y ). The fiber over the Hilbert
point [X] is the subscheme X. In particular, if Spec K→ HilbP (Y ) is the K-point [X] then
UnivP×HilbP (Y )Spec K=X.

The Chow variety does not usually have a universal flat family.

Property 5.4. The Hilbert scheme is natural under base-change. If Y → S is projective
then HilbP (Y/S) parameterizes S-subschemes of Y with Hilbert polynomial P. If Z→ S is
a morphism then

HilbP (Y×SZ/Z)= HilbP (Y/S)×SZ.

The Chow variety does not have this property.
The Hilbert scheme with its universal flat family and naturality properties is a much better

behaved moduli space. This makes it more useful for our purposes. However, there are very
beautiful combinatorial structures associated with the Chow variety. See [16] for details.

Now, we may use the Hilbert scheme to relate deformations of subschemes to limits of
the form (g, y). Let X be a subscheme of a toric variety Y. Let g ∈ T and w = v(g). By
uniqueness of flat limits, the SpecR-point g · [X] is the Hilbert point of g ·X in HilbP (Y).
Therefore, the specialization of g · [X],

g · [X]×Spec RSpec k ∈ HilbP (Y)×Spec RSpec k = HilbP (Y0)

is the Hilbert point, [g ·X×Spec RSpec k]. We may pull back the universal family by
SpecR→ HilbP (Y) to get a schemeU over SpecR. Its special fiber is g ·X×Spec RSpec k.
If g = tw, then the special fiber is the initial degeneration inw(X).

5.2. Associated toric schemes

Let Y be a toric scheme in PN
K with a torus T. Let X be a subvariety of Y. We may take

the Hilbert point [X] ∈ HilbP (Y ) or the Chow form RX ∈ Chowd(Y ) and consider the two
toric schemes, called the Hilbert and Chow images, respectively

HI = T/TX · [X] ⊆ HilbP (Y ), CI = T/TX · RX ⊆ Chowd(Y ),

where TX denotes the stabilizer of [X] or RX.
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Definition 5.5. The subdivisions (in (T /TX)∧ ⊆ T ∧) associated to the Hilbert and Chow
images are called the state subdivision and the secondary subdivision, respectively. The
dual polyhedral complexes (in (T /TX)∨) are called the Gröbner complex and the Chow
complex. In the case where X and Y are defined over k, these notions become the state
polytope, fiber polytope, the Gröbner fan, and the fiber fan, respectively.

In the case where X is also a toric subvariety in Y, the name fiber polytope is standard.
Otherwise our usage is somewhat non-standard.

Now we may apply Proposition 4.20 to the Gröbner complex.

Proposition 5.6. Two points w, w′ lie in the same cell in the Gröbner complex if and only
if inw(X) and in′w(X) are related by a Tk-action.

In the case where X is defined over k, this proposition is close to the usual definition of the
Gröbner fan. The usual definition, however, is a refinement of our definition. This is because
the initial ideals in the standard definition are sensitive to embedded primes associated to
the irrelevant ideal. Our definition is not. The definition we give is based on that of [2].

We may also apply Lemma 4.22 to the Gröbner complex.

Lemma 5.7. If w ∈ Gn is in the relative interior of a k-dimensional cell of the Gröbner
complex of X then the closed subscheme inw(X) is invariant under a k-dimensional torus.

Proof. By Lemma 4.22 the Hilbert point of inw(X) is invariant under a k-dimensional torus.
Therefore, the closed subscheme inw(X) is invariant under the same torus. �

Lemma 5.8. For u ∈ T ∨G ,

inu(inw(X))= inw+�u(X)

for � > 0 sufficiently small.

Proof. This is Lemma 4.24 applied to the Hilbert point [X]. �

There is a natural projection p : T ∨R → (T /TX)∨R. We may abuse notation and use the
term Gröbner or Chow complex to also denote the appropriate complex’s inverse image
under p.

Example 5.9. Let Y be a toric variety defined over k given by a set of exponents A ⊂ Zn.
Let X be a hypersurface defined in Y by

f (x) ≡
∑
�∈A

a�x� = 0,

where a� ∈ K and x� are coordinates on Y ⊂ P|A|−1. We may treat [a�] as coordinates
on a projective space (P|A|−1)∨. The torus T acts on (P|A|−1)∨ by

T × (P|A|−1)∨ → (P|A|−1)∨,

(g, [a�]) �→ [g−�a�].
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Then the equation∑
�∈A

a�x� = 0

cuts out a universal hypersurface U ⊂ Y × (P|A|−1)∨ over (P|A|−1)∨. This universal
family is flat and therefore defines a T-equivariant morphism (P|A|−1)∨ → HilbP (Y ).
The image of this morphism contains the Hilbert point of X. Therefore, the Hilbert image,
T · [X], is isomorphic to Y but with the opposite torus action. The state polytope, which
is the weight polytope of the Hilbert image, is −Conv(A). The Gröbner fan is the normal
fan, N(−Conv(A)).

For a down-to-earth exposition of this example, see [36, Proposition 2.8].

Example 5.10. Suppose that Y is a toric variety defined over k. Let X be a reduced K-point
contained in an open torus orbit Y 0(�). The Hilbert scheme parameterizes reduced points
in Y. Therefore, the Hilbert image is Y (�), the closure of Y 0(�). The weights on the Hilbert
point of X are � ∈ �, while the height function is a(�) = 〈�, v(X)〉. It follows that the
piecewise-linear function F whose domains of linearity are the cells of the dual complex is

F(w)=min
�∈�
〈�, w + v(X)〉.

In particular if x lies in the big open torus ofY then the Gröbner complex is just the normal
fan of Conv(�) translated by −v(X).

Let us examine initial deformations if X is a point in the big open torus in a toric variety
Y. If w = −v(X) then twX has valuation 0 and so inw(X) is a point in the big open torus
of Y0. Otherwise, inw(X) lies in some torus orbit. In fact, if w + v(X) ∈ C� for a face �
of Y’s polytope, then inw(X) is a point in Y 0(�). This is in agreement with the proof of
Proposition 4.19.

Example 5.11. LetY be a toric variety defined over k. Let X be the scheme-theoretic image
of a map Spec k[�]/�2 → Y . We visualize X as a point in Y with a tangent vector anchored
at it. Suppose the image lies in the big open torus and that the vector is chosen generically.
Let us find the weight polytope of HI. By Proposition 4.19, it suffices to find the vertices,
which correspond to the torus-fixed points in HI. The torus-fixed points in HI are schemes S
consisting of a fixed point p of Y together with a projectivized tangent vector pointing along
a one-dimensional orbit E containing p. By the genericity condition, all choice of (p, E)

with p ∈ E are possible. We must find the weights corresponding to these fixed points.

Let us first work out the case where Y = Pn. If HI ⊂ PN and y ∈ kN+1\{0} is a
vector corresponding to a torus fixed point Q, then the vertex of the weight polytope of HI
corresponds to the character of the action of T = (k∗)n on y. Because the embedding of HI
is given by the composition of the embedding of the Hilbert scheme into a Grassmannian
with the Plücker embedding into PN , the action of T on y is the same as the action of T
on ∧top(�(OQ(l))), where l is a sufficiently large positive integer. Now, a torus fixed-point
of HI consists of a pair (p, E). Suppose p is given by the point Xi = 	ir in homogeneous
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coordinates. Let xj = Xi/Xr be inhomogeneous coordinates on Xr �= 0. Then the fixed
point Q is given as the image of an affine morphism

An← Spec k[�]/�2,

k[x1, . . . , x̂r , . . . , xn+1] → k[�]/�2,

xi → c	is�,

where c ∈ k is some constant. In other words, the tangent vector points along the
xs-axis. The vector space OQ(l) is spanned by two monomials, Xl

r and Xl−1
r Xs . They

have characters ler and (l − 1)er + es , respectively where ei are the standard unit basis
vectors of T ∧. Therefore, ∧top(�(OQ(l))) has character (2l − 2)er + (er + es). Let 
n−1

be the unit simplex in T ∧ and � the convex hull of the mid-points of 2
. Then the state
polytope of X, which is the weight polytope of HI, is (2l − 2)
+ �.

For a general toric variety Y ⊆ Pn, we note that the Hilbert scheme HilbP (Y ) is con-
structed as a subscheme of HilbP (Pn). Let U be the torus of Pn, T the torus ofY, i : T → U

the homomorphism of tori, and i∨ : U∨ → T ∨ the induced projection. If Q is a T-fixed
point of HilbP (Y ), then Q is a U-fixed point and the character of the corresponding vertex
in U∨ pulls back by i∨ to the appropriate character in T ∨. Therefore, if � = Conv(A) is
the polytope corresponding to Y and 
 the convex hull of the mid-points of the edges of 2�,
the state polytope of X is (2l − 2)�+
 by Lemma 4.27. See [28] for a computation of the
related case of the Gröbner fan of generic point configurations in affine space.

The Chow image in this case is isomorphic to Y as its points correspond to points of Y
with multiplicity 2. The fiber polytope is �. Because the fiber polytope, P is a Minkowski
summand of the state polytope (2l − 2)�+ 
, the Gröbner fan is a refinement of the fiber
fan. This is an example of a general fact.

Proposition 5.12. The Gröbner complex is a refinement of the fiber complex.

Proof. The fundamental class map FC : HI → CI satisfies the hypotheses of
Lemma 4.25. �

For a combinatorial commutative algebra proof of the above, see [35].

6. Tropical varieties

6.1. Intersection of sub-tori

Before we give the definition of tropical varieties, we must digress to consider the
intersection two sub-tori in (k∗)n. Let

H1 = (k∗)m1 , H2 = (k∗)m2 ↪→ T = (k∗)n

be two injective homomorphisms with m1 + m2 = n such that images under the induced
maps H∨i → T ∨ are transversal. Let y1, y2 ∈ (k∗)n. Let Vi = Hi · yi . We compute the
intersection of V1 and V2.
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The inclusions H1, H2 ↪→ (k∗)n correspond to surjections T ∧ → H∧i . Let Mi be the
kernel of the surjections. We may also write Mi as H⊥i .

Proposition 6.1. The number of intersection points, |V1 ∩V2| is equal to [T ∧ : M1+M2],
the lattice index of M1 +M2 in T ∧.

Proof. The following argument is adapted from [37, pp. 32–33]. Pick bases for M1 and
M2. Vi is cut out by the equations

xa = ya
1 , xb = yb

2

for x ∈ (k∗)n, where a ranges over the basis for M1 and b ranges over a basis for M2.
We write the basis vectors as row vectors and concatenate them to form an n× n-matrix.

A=
[

A1
A2

]
.

Put this matrix in Hermitian normal form UA = R where U ∈ SLn(Z), and R is an upper
triangular invertible matrix. Therefore, the entries of R are

R =

⎡
⎢⎢⎢⎢⎢⎣

r11 r12 ... r1n

0 r22 ... r2n

...
...

...

0 0 ... rnn

⎤
⎥⎥⎥⎥⎥⎦ .

Finding intersection points of V1 and V2 amounts to solving the system

x
ri1
1 x

ri2
2 , ..., xrin

n = ci

for certain ci ∈ k∗. There are r11r22, . . . , rnn=| det(A)|= [T ∧ : M1+M2] solutions. �

The definition of tropical intersection numbers in [24] requires that the above lattice index
be equal to [Zn : M⊥1 +M⊥2 ] where M⊥i is the perpendicular lattice to Mi . For the sake
of completeness, we include a proof with simplifications by Frédéric Bihan that the lattice
indexes are equal.

Lemma 6.2. Let L and M be saturated lattices in Zn of complementary rank so that L+M

has rank n. Then

[Zn : L+M] = [Zn : L⊥ +M⊥],
where

L⊥ = ker((Zn)∨ → L∨),

M⊥ = ker((Zn)∨ → M∨).
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Proof. Let k = rank(L). Let Q= {q1, . . . , qk} be a basis for M⊥ and R = {r1, . . . , rk} be
a basis for L.

We first claim that

[Zn : L+M] = | det([qi(rj )]i,j=1,...,k)|.
Since M is saturated, we may pick a basis E = {e1, . . . , en} for Zn so that {ek+1, . . . , en}
is a basis for M. Let F = {f1, . . . , fk} be a basis for L, and form the n× n-matrix A whose
column vectors are the coordinates of f1, . . . , fk, ek+1, . . . , en, with respect to the basis E.
[Zn : L+M] = | det(A)|. The matrix A is block lower-triangular with respect to blocks of
size k× k and (n− k)× (n− k) centered at the diagonal. The lower right (n− k)× (n− k)

block is the identity matrix. Therefore,

| det(A)| = | det([aij ]i,j=1,...,k)| = | det([e∨i (fj )]i,j=1,...,k)|.
The determinant on the right is invariant under change of basis for L and M⊥. The claim is
proven.

Similarly, [Zn : L⊥ +M⊥] is the absolute value of the determinant of the k × k-matrix
formed by letting a basis of (L⊥)⊥ act on a basis of M⊥. Since L is saturated, (L⊥)⊥ =L,
so R is a basis of (L⊥)⊥. Therefore,

[Zn : L⊥ +M⊥] = | det([ri(qj )]i,j=1,...,k)|.
It follows that the lattice indexes, [Zn : L+M],[Zn : L⊥ +M⊥] are equal to the absolute
values of determinants of transposed matrices. Therefore, they are equal. �

6.2. Definition of trop

Let Y be an immersive toric scheme defined over k so Y = Y0×Spec kSpecR. Let X be
some subvariety of Y that intersects the big open torus. Let HI be the Hilbert image of X.
Its complex is the Gröbner complex.

Definition 6.3. The tropical variety of X, Trop(X) ⊂ Gn is given by all w ∈ Gn so that
inw(X) intersects the big open torus, (k∗)n ⊂ Y0.

By Proposition 5.6, if w and w′ are in the same cell of the Gröbner complex, then inw(X)

is related to in′w(X) by an action of (k∗)n. If inw(X) intersects the big open torus, so does
in′w(X). Therefore, the tropical variety is a union of cells of the Gröbner complex. We may
put a integral polyhedral complex structure on Trop(Y ) to make it a subcomplex of the
Gröbner complex.

The tropical variety is usually given by the image under the valuation map. We show that
these definitions are equivalent.

Consider the isomorphism between the big open torus ofY and (K∗)n given by g �→ g ·y.
This allows us to define a valuation map v : X ∩ (K∗)n→ Gn

Lemma 6.4. Trop(X) is equal to the image −v(X).
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Proof. −v(X) ⊆ Trop(X): Let g ∈ X ∩ (K∗)n. It suffices to show that the degeneration
g−1 ·X×Spec RSpec k intersects the big open torus in Y0. But,

1= (g−1 · g)×Spec RSpec k ∈ g−1 ·X×Spec RSpec k

is a point in the big open torus.
Trop(X) ⊆ −v(X): If w ∈ Trop(X), then

tw ·X×Spec RSpec k ∩ (k∗)n

is non-empty. Let x̃ be a closed point of the above. Then Lemma 4.15 produces a point
x ∈ X with inw(x)= x̃. It follows that −v(x)= w. �

Example 6.5. Let H ⊂ T be a sub-torus and x ∈ T . Let X = H · x. Then Trop(X) is
−H∨G − v(x).

Example 6.6. Let us revisit Example 5.9. The Hilbert image is the toric variety associated
to −A. We have the morphism (P|A|−1)∨ → HI. The hypersurface in Y corresponding to
[a�] ∈ HI,∑

�∈A
a�x� = 0

is disjoint from the big open torus if and only exactly one a� is not zero. Such points
correspond to the torus fixed points of HI or alternatively, the top-dimensional cones of
the Gröbner fan. Therefore the tropical variety of the hypersurface V (f ) is the union of the
positive codimension cones of N(−Conv(A)).

Let us relate the tropical variety of inw(X) to that of X.

Lemma 6.7. Let w be a point in a cell � of the tropical variety, Trop(X). Then Trop(inw(X))

is the star of � in Trop(X).

Proof. Recall that by Lemma 5.8, inu(inw(X))= inw+�u(X) for sufficiently small �. There-
fore, inu(inw(X)) intersects the open torus if and only w + �u ∈ Trop(X). �

The dimension of X and the dimension of Trop(X) are related. We give a proof adapted
from [37]. We begin with the case where Trop(X) is zero-dimensional.

Lemma 6.8. If X ⊆ (K∗)n is a variety with dim(Trop(X))=0 then X is zero-dimensional.

Proof. Suppose X is positive dimensional. Choose a coordinate projection p : (K∗)n→ K∗
so that p(X) is an infinite set. By Chevalley’s theorem [25], p(X) is a finite union of locally
closed sets and, since it is infinite, it must be an open set. Therefore, Trop(X) is bigger than
a point. �

We can reduce the general case to the above lemma.
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Proposition 6.9. If X ∩ (K∗)n is purely d-dimensional, so is Trop(X).

Proof. Suppose dim Trop(X) = k. Let w be an element of the relative interior of a top-
dimensional cell of Trop(X). Then w is in the relative interior of a k-dimensional cell C�
of the Gröbner complex. By Lemma 4.22, inw(X) is invariant under a k-dimensional torus,
U. The initial degeneration inw(X) intersects the open torus so if x ∈ inw(X) ∩ (k∗)n, the
k-dimensional variety U · x is a subset of inw(X). Since inw(X) is a flat deformation of X,
it is also d-dimensional. Therefore k�d . By Lemma 6.7, the tropical variety of inw(X) is
the k-dimensional subspace Span(C� − w).

Now, we show d=k. Let W be a variety of the form H ·z where H ⊂ (k∗)n is an (n−k)-
dimensional torus with H∨ is transverse to Trop(inw(X)). Now, by the Kleiman–Bertini
theorem [21], there is a choice of z so that inw(X) ∩ W is empty or of dimension d −
k. By Proposition 6.1, U · x and W must intersect, so inw(X) ∩ W is non-empty. But,
Trop(inw(X) ∩W) ⊆ Trop(inw(X)) ∩ Trop(W) which is a point. Therefore, inw(X) ∩W

is a d − k dimensional scheme whose tropicalization is a point. By the above lemma
d = k. �

6.3. Multiplicities

Let X be an m-dimensional subvariety of a toric variety Y. If w is in the relative interior
of an m-dimensional cell C� of Trop(X), then inw(X) ∩ (k∗)n is a subscheme invariant
under an m-dimensional torus H with H∨R = Span(C� −w). Therefore, inw(X) ∩ (k∗)n is
supported on

∐
i (H ·pi) where pi are points in (k∗)n. This allows us to define multiplicities

on Trop(X).

Definition 6.10. Given a top-dimensional cell � of Trop(X), let w be a point in the relative
interior of �. Decompose the underlying cycle of inw(X) ∩ (k∗)n as

[inw(X) ∩ (k∗)n] =
∑

mi[H · pi]
for H�(k∗)m ⊂ Tk, pi ∈ (k∗)n. The multiplicity m� is

m� =
∑

i

mi .

This multiplicities are also called weights.
Trop(X) obeys the following balancing condition first given in [33, Theorem 2.5.1].

Definition 6.11. An integrally weighted m-dimensional integral polyhedral complex is said
to be balanced if the following holds. Let � be an (m− 1)-dimensional cell of Trop(X) and
�1, . . . , �l be the m-dimensional cells adjacent to �. Let w ∈ �◦, V = Span(�− w), and �
the projection � : T ∨ → T ∨/V . Let pj = �(�j − w). Note that pj is an interval adjacent
to 0, and let vj ∈ T ∨/V be the primitive integer vector along Span+(pj ). Then

l∑
j=1

m�j
vj = 0.
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We will give a proof that the balancing condition is satisfied in Theorem 8.13.
The following relates the multiplicities on Trop(inw(X)) to those on Trop(X).

Lemma 6.12. Let w ∈ �◦ be a point in the relative interior of a cell of Trop(X).
Let �1, . . . , �l be the top-dimensional cells in Trop(X) containing �. Then the multiplicities
of the cones �1, . . . , �l in Trop(inw(X)) corresponding to �1, . . . , �k are
m�1 , . . . , m�l

.

Proof. Let u ∈ �i . Then inu(inw(X)) = inw+�u(X) by Lemma 4.24. By shrinking �
further if necessary, we may suppose w+�u ∈ �i . Therefore, the degeneration inu(inw(X))

used to compute m�i
is the same as the degeneration inw+�u(X) used to compute

m�i
. �

7. Intersection theory motivation: Bezout vs. bernstein

Let us consider two curves in (C∗)2 cut out by polynomials f (x, y) and g(x, y). Suppose
they have no component in common. We would like to bound the number of intersection
points in (C∗)2 counted with multiplicity. The Bernstein bound will motivate tropical in-
tersection theory.

7.1. Bezout bound

We first consider the Bezout bound. We compactify (C∗)2 to the projective plane P2. The
intersection number is given by topology and is equal to deg(f ) deg(g). This intersection
bound is rigid in that it is invariant under deformations of f and g. Unfortunately, the bound
is not the best because we introduced new intersections on the coordinate hyperplanes by
compactifying.

Let us make this concrete by picking polynomials (all borrowed from [37]). Let

f (x, y)= a1 + a2x + a3xy + a4y,

g(x, y)= b1 + b2x
2y + b3xy2.

To consider these polynomials on P2, we must homogenize them to

F(X, Y, Z)= a1Z
2 + a2XZ + a3XY + a4YZ,

G(X, Y, Z)= b1Z
3 + b2X

2Y + b3XY 2.

Then the Bezout bound is 2 × 3= 6. Notice that both curves contain the points [1 : 0 : 0]
and [0 : 1 : 0]. This leads Bezout’s theorem to over-count the number of intersections by 2.
It is impossible to remove these additional intersection points by an action of (C∗)2 since
these points are fixed under the torus action.
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7.2. Bernstein bound

Another approach is offered by Bernstein’s theorem:

Theorem 7.1. Given Laurent polynomials

f1, . . . , fn ∈ C[x±1
1 , . . . , x±1

n ]
with finitely many common zeroes in (C∗)n, let 
i be the Newton polytopes of fi . The number
of common zeroes is bounded by the mixed volume of the 
i’s. �

Bernstein’s theorem can be conceptualized in the above case as follows. One can com-
pactify (C∗)2 to a nonsingular toric variety so that the closure of the curves cut out by f =0
and by g = 0 does not intersect any torus fixed points. For instance, one may take the toric
variety whose fan is the normal fan to the Minkowski sum of the Newton polygons of f and
g. One may apply a (C∗)2-action to {f = 0} to ensure that there are no intersections outside
of (C∗)2. By refining the fan further, we may suppose that the toric variety is smooth. Then
one can bound the number of intersection points by the topological intersection number of
the two curves. This reproduces the Bernstein bound.

8. Intersection theory

Henceforth, we will be using tropical varieties Y (
) defined by a fan 
 as in [11].

8.1. Intersection theory over discrete valuation rings

Let us first review some notions of intersection theory from [12]. Let Y be a scheme. A
k-cycle on Y is a finite formal sum,

∑
ni[Vi] where the Vi’s are k-dimensional subvarieties

of Y and the ni’s are integers. k-cycles form a group under formal addition. There is a notion
of rational equivalence on cycles, and the Chow group, Ak(Y ) is the group of cycles defined
up to rational equivalence. This group is analogous to homology. If Y is complete, there is
a natural degree map deg : A0(Y )→ Z given by∑

mi[pi] �→
∑

mi .

For any proper morphism f : X→ Y , there is an induced push-forward homomorphism

f∗ : Ak(X)→ Ak(Y ).

This push-forward homorphism commutes with degree. If X is a disjoint union X=⊔
Xi ,

then we have Ak(X) =⊕
Ak(Xi). If Y is a smooth n-dimensional variety, there is an

intersection product

Ak(Y )⊗ Al(Y )→ Ak+l−n(Y ).

If V and W are varieties inY of dimension k and l, respectively, then the intersection product
factors through a refined intersection product

Ak(Y )⊗ Al(Y )→ Ak+l−n(V ∩W)
i∗→Ak+l−n(Y ),
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where i : V ∩W → Y . There is also Chow cohomology Ak(Y ), which is defined opera-
tionally.

Intersection theory can also be defined over discrete valuation rings. The reference is
[12, Chapter 20]. We will state the results for R = C[[t1/M ]], but they are true for more
general choices of R. In practice, however, given varieties defined over C{{t}}, we may
find a sufficiently large M so that they are defined over C((t1/M)) and apply the results
for the corresponding choice of R. Let p : Y → SpecR be a scheme over SpecR. Let
Y =Y×Spec RSpec K, Y0 =Y×Spec RSpec k.

Many results from intersection theory including the existence of degree and refined
intersection product remain true in this case using relative dimension over SpecR in place
of absolute dimension. The new feature in this situation is the specialization map

s : Ak(Y/K)→ Ak(Y0/k)

which is the Chow-theoretic analog of X→ (X)×Spec RSpec k.

Proposition 8.1. If Y is smooth over SpecR then the specialization map is a ring homo-
morphism. Moreover it commutes with refined intersection product.

Proof. See [12, Corollary 20.3 and Example 20.3.2]. �

8.2. Transversal intersections

Let V k, Wl ⊂ Yn be varieties of dimensions k and l where k + l = n. Let Y be a smooth
toric variety over Spec K.

Definition 8.2. V k and Wl are said to intersect properly if V×Y W is a zero-dimensional
scheme.

Definition 8.3. Two tropical varieties Trop(V ), Trop(W) are said to intersect transversally
if they intersect in the relative interior of transversal top-dimensional cells.

Note that it is not sufficient that V and W intersect transversally for Trop(V ) and Trop(W)

to intersect transversally. In fact, V and W can be disjoint while their tropicalizations
intersect (or even coincide, for example, x + y = 1 and x + y = 2 in (K∗)2). However, the
transversal intersection lemma of [5] does give a condition for V and W to intersect:

Lemma 8.4. If Trop(V ) and Trop(W) intersect transversally at w ∈ Rn, then w ∈
Trop(V ∩W).

Proof. Since w is in a top-dimensional cell of Trop(V ) and of Trop(W) then

supp(inw(V ))=H1 · V�,

supp(inw(W))=H2 ·W�,

where supp denotes underlying sets, V�, W� are finite sets of points, and H1, H2 are sub-tori
of dimension k and l, respectively. By Proposition 6.1,

(inw(V )×Y0 inw(W)) ∩ (k∗)n
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is non-empty and zero-dimensional. Let z be a closed point of (inw(V )×Y0 inw(W))∩(k∗)n.
Now let V= tw · V ,W= tw ·W . Let Z be a maximal irreducible component of V×YW
containing z. Therefore, (Z×Spec RSpec k) ∩ (k∗)n is non-empty and zero-dimensional.

We claim Z is not contained in the fiber over Spec k. Since V and W have relative
dimension k and l, respectively, each top-dimensional irreducible componentV×YWmust
have relative dimension at least 0 and therefore cannot be contained in the special fiber as
a zero-dimensional subscheme.

Z=Z×Spec RSpec K ⊂ twV×Y twW is non-empty and z ∈ inw(t−wZ) ⊆ inw(V×Y W).
Therefore V×Y W must have a point of valuation −w. �

Lemma 8.5. If all intersections of Trop(V ) and Trop(W) are transversal, then V ∩ (K∗)n
and W ∩ (K∗)n intersect properly.

Proof. Let Z be the intersection of the two varieties with the reduced induced structure.
Then Trop(Z) = Trop(V ) ∩ Trop(W) is zero-dimensional. Lemma 6.8 shows that every
component of Z is zero-dimensional. �

8.3. Intersection of tropicalizations

We will define an intersection number for transversal tropical varieties of complementary
dimensions.

Let Y be an n-dimensional smooth toric variety defined over k. Let V k, Wl ⊆ Y be
varieties of complementary dimensions such that Trop(V ) and Trop(W) intersect tropically
transversely. Let x ∈ Trop(V )∩ Trop(W) such that x is contained in top-dimensional cells
�x, �x of Trop(V ) and Trop(W), respectively. Translate Trop(V ) and Trop(W) so that x is at
the origin. We have inclusions R�x, R�x ↪→ T ∨R , which induce projections T ∧R → (R�x)

∨
and T ∧R → (R�x)

∨. Let Mx and Nx be the lattices defined by

Mx = ker(T ∧R → (R�x)
∨) ∩ T ∧,

Nx = ker(T ∧R → (R�x)
∨) ∩ T ∧.

Let mx, nx be the multiplicities of �x and �x in Trop(V ) and Trop(W), respectively,
and define the tropical intersection number to be

deg(Trop(V ) · Trop(W))=
∑

x∈Trop(V )∩Trop(W)

mxnx[T ∧ : Mx +Nx].

This definition is analogous to the definition in classical intersection theory. Here, mx, nx

are analogous to the multiplicities of subvarieties in cycles and the lattice index is analogous
to the length of a zero-dimensional component of the intersection.

Definition 8.6. V and W intersect in the interior if the support of V×Y W is contained in
the big open torus T of Y.

Theorem 8.7. If V and W intersect tropically transversally and in the interior then the
tropical intersection number of Trop(V ) and Trop(W) is equal to the classical intersection
number.
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Proof. Let us replace K by a field C((t1/M)) over which V and W are defined. First note
that Trop(V ∩W)= Trop(V ) ∩ Trop(W) by the transverse intersection lemma. It follows
that V ∩W is zero-dimensional. Decompose this intersection into a disjoint union

V×Y W =
∐

x∈Trop(V )∩Trop(W)

Zx ,

where v(Zx)=−x. Now, the refined intersection product is

V ·W ∈ A0(V ∩W)=
⊕

A0(Zx)

and the intersection number is the degree of the intersection product. If

x : A0(V ∩W)→ A0(Zx)

is the projection onto the summand, then

deg(V ·W)=
∑

x∈Trop(V )∩Trop(W)

deg(x(V ·W)).

Let w ∈ Trop(V ) ∩ Trop(W) and

V= tw · V ⊆ Y,

W= tw ·W ⊆ Y.

Note that V and W are flat over R.
Decompose the intersection of V and W as

V×YW=
∐

x∈Trop(V )∩Trop(W)

Zx ,

where

Zx×Spec RSpec K= tw · Zx .

The zero-dimensional scheme (Zx)0 = Zx×Spec RSpec k is contained in (k∗)n only if
x = w. Otherwise, it is disjoint from (k∗)n. Let (V×YW)0 = (V×YW)×Spec RSpec k.
Since Zw is proper over SpecR, by [12, Proposition 20.3 and Corollary 20.3], the images
of [twV ] ⊗ [twY ] under the following compositions are equal

Ak(Y )⊗ Al(Y )→ A0(t
w(V ∩W))

w→A0(t
wZw)

s→A0((Zw)0)
deg→Z,

Ak(Y )⊗ Al(Y )
s⊗s→ Ak(Y0)⊗ Al(Y0)→ A0((V×YW)0)

w→A0((Zw)0)
deg→Z.

But the second composition is just the degree of the intersection of the tori inw(V ) and
inw(W). Their intersection number is mwnw[T ∧ : Mw+Nw] by Proposition 6.1. Summing
over w ∈ Trop(V ) ∩ Trop(W), we get the result. �
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8.4. Transversality

Lemma 8.8. If V and W intersect all torus orbits properly then there exists � ∈ (k∗)n,
such that � · V intersects W properly and in the interior.

Proof. By the Kleiman–Bertini theorem [21] applied to each orbit closure V (�), there
exists a non-empty open set U ⊂ (K∗)n such that for all � ∈ U , � ·V intersects W properly
and in the interior. It suffices to show that U ∩ (k∗)n is non-empty.

Suppose U ∩ (k∗)n is empty. Let f ∈ K[x±1
1 , . . . , x±1

n ] be a Laurent polynomial over K

so that (K∗)n\V (f ) ⊆ U . Then V (f ) contains all k-points. By clearing denominators, we
may suppose f ∈ R=C[[t1/M ]] for some M where t1/M does not divide f. Since f = 0 on
(k∗)n, f |t1/M=0 = 0. It follows that t1/M divides f. This gives a contradiction. �

Note that � · V and V have the same tropical variety.

8.5. Balancing condition

In this section, we prove that if X is an m-dimensional subvariety of a toric variety Y, then
Trop(X) satisfies the balancing condition. The strategy of the proof is that a well-defined
tropical intersection number between Trop(X) and Trop(H · z) for H a sub-torus and z ∈ T

guarantees that Trop(X) is balanced.
We need the following technical lemma.

Lemma 8.9. Let x ∈ (K∗)n and � be a cone in 
. Then v(x) ∈ �◦ if and only if in0(x) ∈ O�,
the open torus corresponding to �.

Proof. Consider the toric chart U�= Spec K[�∨ ∩ T ∧] ⊃ (K∗)n. The torus orbit O� is cut
out by the ideal I� which is the kernel of the projection

K[�∨ ∩ T ∧] → K[�⊥ ∩ T ∧].
A monomial m ∈ I� is of the form xu for u satisfying 〈u, y〉> 0 for all y ∈ �◦. Since v(x) ∈
�◦, v(m(x)) > 0 for every monomial m ∈ I� while v(m(x))=0 for every m ∈ K[�⊥∩T ∧].

Suppose v(x) ∈ �◦. If m ∈ C[�∨∩T ∧] is a monomial, m(x)|t=0=m(in0(x)). Therefore,
for f ∈ I�, v(f (x)) > 0 so under the specialization t=0, f (x) goes to 0. On the other hand,
for every m ∈ C[�⊥ ∩ T ∧], m(x) goes to its leading term, which is non-zero. It follows
that in0(x) ∈ O�.

Now, suppose in0(x) ∈ O�. For any monomial m = xu ∈ I�, we have m(x)|t=0 =
m(in0(x))= 0. Therefore, v(m(x)) > 0, which implies 〈u, v(x)〉> 0. For u ∈ �⊥, m= xu

is non-zero on in0(x). It follows that 〈u, v(x)〉 = v(m(x))= 0 and so v(x) ∈ �◦. �

We need the following Lemma of Tevelev.

Lemma 8.10 (Tevelev [39], Lemma 2.2). Let Y (
) be a complete toric variety given by a
fan 
. Let X ⊂ Y (
) be a subvariety defined over k. Then −Trop(X) intersects a cone �
in the fan 
 in its relative interior if and only if X intersects O�.
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Proof. Write Xk for X and XK for X×Spec kSpec K. Observe that Xk = in0(XK).
Suppose −Trop(X) ∩ �◦ is non-empty. Then there exists x ∈ XK with v(x) ∈ �◦.

Therefore, in0(x) ∈ O�.
Now suppose X∩O� is non-empty. Then by Corollary 4.16, there exists x ∈ VK∩ (K∗)n

with in0(x) ∈ O�. It follows that v(x) ∈ �◦. �

Definition 8.11. A subvariety X ⊂ Y of dimension l is said to intersect orbits properly if

(1) for � a cone in 
 with dim � > l, X is disjoint from O�,
(2) for � a cone in 
 with dim �= l, X ∩ O� is a 0-dimensional scheme.

By replacing 
 with a finer fan so that −Trop(X) is supported on a union of cones of
dimension at most l, we may always ensure that X intersects orbits properly.

We first prove that curves defined over k are balanced.

Lemma 8.12. Let X be a curve defined over k in a complete toric variety Y (
).
Then Trop(X) is balanced.

Proof. By refining 
, we may suppose that X intersects torus orbits properly and that Y
is smooth. Trop(X) consists of rays �1, . . . , �l weighted with multiplicities m1, . . . , ml .
Let vi be the primitive integer vector along �i . It suffices to show that

l∑
j=1

mj 〈u, vj 〉 = 0

for any u in T ∧. Let H ⊂ T be the sub-torus so that H∨=u⊥. Let Wy=H ·y for y ∈ (k∗)n.
By refining 
 further, we may suppose that Wy intersects torus orbits properly. By replacing
Wy by � ·Wy , we may suppose that Wy intersects X is the interior.

Since for w, w′ ∈ T ∨G , twW and tw
′
W are related by the T-action, they are linearly

equivalent. Therefore, by Lemma 8.8 and Theorem 8.7, the tropical intersection number
deg(Trop(X) · Trop(twW)) is independent of w.

We may suppose without loss of generality that u is primitive. Pick w ∈ T ∨ such that
〈u, w〉> 0 and y ∈ (k∗)n. Then Trop(twWy) = −w − H∨R with some multiplicity nW .
Then �j ∩ Trop(twW) is non-empty if and only if 〈u, vj 〉< 0. The multiplicity of such an
intersection is

mjnW [T ∧ : (Zu)+ v⊥j ] =mjnW |〈u, vj 〉|.
Therefore,

deg(Trop(W) · Trop(X))=
∑

j :〈u,vj 〉<0

mjnW |〈u, vj 〉|.

Replacing w by −w, we see

−
∑

j :〈u,vj 〉<0

mjnW 〈u, vj 〉 =
∑

j :〈u,vj 〉>0

mjnW 〈u, vj 〉

from which the conclusion follows. �
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Theorem 8.13. Trop(X) satisfies the balancing condition.

Proof. Let � be some (m − 1)-dimensional cell of Trop(X) and �1, . . . , �l , the adjacent
m-dimensional cells. Let w be a point in the relative interior of �. inw(X) is a subscheme that
is invariant under an (m− 1)-dimensional torus. Trop(inw(X)), the star of � consists of the
linear subspace �=Span(�−w) and the cones �i =Span+(�i −w)+ �. The multiplicities
of the �’s in Trop(inw(X)) are the same as those of the corresponding cells in Trop(X) by
Lemma 6.12.

Let V be the union of the components of inw(X) that intersect the big open torus. Then,
Trop(V ) = Trop(inw(X)) and by refining 
, we may ensure V intersects the torus orbits
properly. Let K be the (m − 1)-dimensional invariant torus of V , and p : T → T/K

be the quotient map. The image of Trop(V ) under that map is a one-dimensional integral
polyhedral complex with one vertex and l rays R+v′1, . . . , R+v′l emanating from it where
v′i is a primitive integer vector. For u ∈ (T /K)∧, let H ⊂ (T /K)∨ be the (n − m − 1)-
dimensional torus with H∨ = u⊥. Now let H ′ ⊂ T be a (n − m − 1)-dimensional torus
with p(H ′)=H . Pick w ∈ T ∨G such that 〈u, p∨(w)〉> 0. For y ∈ (k∗)n, let Wy =H ′ · y.
Then �j intersects Trop(twWy) if and only if 〈u, vj 〉< 0. The intersection multiplicity in
that case is

m�j
nW [T ∧ : (H ′)∧ + (ker(T ∧ → (R�j )

∨) ∩ T ∧)] =m�j
nW [(T /K)∧ : Zu+ v⊥j ]

=m�j
nW |〈u, vj 〉|.

The argument now proceeds as in the case of curves. �

We should mention that the above argument can be simplified by using the theorem
that tropicalization is natural under monomial morphisms as proved by Sturmfels and
Tevelev [38].

9. Tropical cycles and the cohomology of toric varieties

In this section, we work over a field K ⊃ k=C. K may be the field of the Puiseux series
or the complex numbers.

9.1. Minkowski weights

In [13], Fulton and Sturmfels gave a description of Chow cohomology of a complete toric
variety in terms of the fan. This description is closely related to the balancing condition for
tropical varieties.

Consider a complete toric variety Y given by a complete n-dimensional fan 
. The
Chow cohomology of Y is given by Minkowski weights. Let 
(k) be the set of all cones
of codimension k. For a cone � ∈ 
(k), � ∈ 
(k+1), � ⊂ �, let N� be the lattice span
of � and let n�,� ∈ � be an integer vector whose image generates the one-dimensional
lattice N�/N�.
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Definition 9.1. A Minkowski weight of codimension k is a function

c : 
(k)→ Z,

so that for every � ∈ 
(k+1) and every element u ∈ �⊥ ∩ Zn,∑
�∈
(k)|�⊃�

c(�) < u, n�,� >= 0.

As a consequence of showing Ak(Y )=Hom(Ak(Y ), Z), it is proven in [13] that the Chow
cohomology group Ak(Y ) is canonically isomorphic to the group of Minkowski weights of
codimension k.

We can view a Minkowski weight as an integrally weighted integral fan,⋃
c(�)�=0

�,

where the cone � is weighted by c(�). There is a formula for the cup-product in terms of
Minkowski weights. If we view Minkowski weights c and d of complementary dimension
as fans, then their tropical intersection number (after translating one fan to ensure that
they are tropically transverse) is equal to the degree of their cup product evaluated on the
fundamental class of Y, deg((c ∪ d) ∩ [Y ]).

If X ⊂ Y is a codimension k subvariety defined over k, the function taking a cone in
Trop(X) to its multiplicity satisfies the balancing condition, which is exactly the Minkowski
weight condition.

9.2. Associated cocycles

If Y is smooth, to every algebraic cycle X of codimension k in Y, we may associate a
Minkowski weight of codimension k by Poincare duality. We will do this explicitly using
toric geometry.

Lemma 9.2. Let Y (
) be a smooth toric variety over k. Let X be a codimension k algebraic
cycle. Define a function

c : 
(k)→ Z,

c : � �→ deg([X] · [V (�)]).
Then c is a Minkowski weight and c ∩ [Y (
)] = [X].

Proof. [X] has a Poincaré-dual d satisfying d ∩ � = deg([X] · �) for � ∈ Ak(Y ). For all
k-dimensional torus orbits, V (�), we have

c(�)= deg([X] · [V (�)])= d ∩ V (�)

Since A∗(Y ) is generated by torus orbits and A∗(Y )=Hom(A∗(Y ), Z), c=d as Minkowski
weights. �
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If X is a subvariety of Y defined over k, we may relax the smoothness condition on Y after
mandating that X intersects the torus orbits of Y properly.

Definition 9.3. Let Y be a complete toric variety. Let Ỹ be a smooth toric resolution of Y
with fan 
̃, which is a refinement of 
. Define the associated cocycle of X, a Minkowski
weight on 
̃ by c(�̃)= deg([X] · [V (̃�)]).

The associated cocycle is well-defined as a Minkowski weight on 
̃. The following
proposition shows that it is well-defined on 
.

Proposition 9.4. If X is an k-dimensional subvariety of Y, defined over k, that intersects
the torus orbits properly then the associated cocycle of X is −Trop(X).

Proof. Because X intersects the torus orbits properly, by Lemma 8.10, −Trop(X) is
supported on k-dimensional cones in 
.

We need only show that for every �̃ ∈ 
(n−k), the multiplicity m�̃ is equal to c(�̃).
Let w ∈ −�̃◦. Because intersection product commutes with specialization,

deg([X] · [V (�̃)])= deg([inw(X)] · [V (�̃)]).
Let H ⊂ T be the k-dimensional sub-torus corresponding to � ⊂ T ∨R . The underlying cycle
of inw(X) can be decomposed as

[inw(X)] =
∑

mi[H · pi] +D,

where pi ∈ (k∗)n and D is disjoint from the big open torus.
We claim that D is disjoint from V (�̃). If it was not, it would have to intersect a proper

torus orbit of V (�̃). Therefore, it suffices to show that inw(X) does not intersect V (�̃) for
�̃ ⊃ �̃. If it did, then by Corollary 4.16, there would be x ∈ X∩(K∗)n so that inw(x) ∈ V (�̃).
By Lemma 8.9, v(x) + w ∈ �̃◦. Therefore, v(x) ∈ −w + �̃◦ ⊂ �̃◦ + �̃◦ ⊂ �̃◦. But we
assumed that −Trop(X) does not intersect �̃◦,which is a cone of 
̃ of dimension greater
than k.

By a local computation, we see H ·pi meets V (�̃) transversely in a single point. Therefore,
c(�̃)=∑

mi[H · pi] · [V (�̃)] =∑
mi =m�̃. �

It follows that the associated cocycle is a pullback by  : Y (
̃)→ Y (
). Furthermore,
the associated cocycle is dual to [X].

Lemma 9.5. If c is the associated cocycle of X ⊂ Y , then

c ∩ [Y ] = [X] ∈ Ak(Y ).

Proof. Let  : Y (
̃)→ Y (
) be a smooth toric resolution. By Lemma 9.2, ∗c∩[Y (
̃)]=
[−1(X)]. The projection formula tells us

c ∩ [Y ] = c ∩ ∗([Y (
̃)] = ∗([−1(X)])= [X]. �
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Example 9.6. This gives us the weights for the tropicalization of the hypersurface found
in Example 6.6. A top-dimensional cone of Trop(V (f )) corresponds to a one-dimensional
face � ⊂ Conv(−A). The multiplicity of that cell is deg(V (f ) · Y (�)). This intersection
is defined by∑

�∈�
a�x� = 0.

This is a polynomial in one variable whose Newton polytope is �. Therefore, the number
of points in the intersection, hence the multiplicity, is the lattice length of the edge �.

9.3. Proof of Bernstein’s theorem

For the sake of completeness, we outline a proof of Bernstein’s theorem along the lines
of the above section. In essence, this proof is a hybrid of the proofs given in [11,37].
We work over C.

Given Laurent polynomials

f1, . . . , fn ∈ C[x±1
1 , . . . , x±1

n ],
let Qi be the Newton polytope of fi . We summarize the facts we have established in the
lemma below.

Lemma 9.7. Let fi be a polynomial with Newton polytope Qi , and X(
i ), the toric variety
whose fan is 
i=N(Qi) The hypersurface V (fi) intersects torus orbits in X(
i ) properly.

We know by Example 9.6 that the associated cocycle ci of V (fi) is the union of cones of
the normal fan of 
i of positive codimension where the codimension 1 cones are weighted
by the lattice length of the dual edges of 
i .

Let 
 be a fan that refines the normal fans of the 
i’s so that X(
) is smooth. There are
birational morphisms from a non-singular variety, pi : X(
)→ X(
i ). By [37], the mixed
volume of 
1, . . . ,
n is equal to the tropical intersection of the ci’s. By [13], this is equal to
deg(p∗1c1 ∪ ...∪ p∗ncn), which is the intersection number of p−1

1 (V (f1)), . . . , p
−1
n (V (fn))

in X(
). This bounds the number of geometric intersections in (C∗)n.

10. Deformations of subschemes into torus orbits

This section is a generalization of [8, Theorem 2.2 ]. Let Y (
) be a smooth toric scheme
defined over k and X ⊆ Y , a purely k-dimensional closed subscheme. If w is in the relative
interior of an m-dimensional cell of the Gröbner complex of X, then inw(X) is invariant
under an m-dimensional torus. inw(X) has components supported in the big open torus
of Y and within smaller dimensional torus orbits. In particular if w is in the interior of an
open cell of the Gröbner complex, inw(X) is invariant under T. Therefore, the maximal
components of inw(X) are supported on the k-dimensional torus orbits. We can use tropical
geometry to determine which torus orbits.
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Let � be a codimension k cone in the fan of Y. Then V (�) is a k-dimensional subscheme.

Theorem 10.1. Let w ∈ T ∨G be a point in a top dimensional cell of the Gröbner fan.
The multiplicity of inw(X) along V (�) is∑

x

mx[T ∧ : Mx + �⊥],

where the sum is over all x in −�◦ ∩ (−w + Trop(X)) and the intersection multiplicities
correspond to the intersection of −w + Trop(X) and −�.

Proof. We may refine 
 so that X intersects torus orbits properly. By the toric version of
Chow’s lemma, we may further refine 
 by so that Y is smooth and projective. Let W be the
complete intersection of k ample hypersurfaces. By applying the Kleiman–Bertini theorem
on each torus orbit when choosing hypersurfaces, we may ensure that W intersects torus
orbits properly. By ampleness, W ∩ V (�) �= ∅.

Trop(W) is a union of cones of 
 of codimension at least k. Let d = deg(W ·V (�)). The
multiplicity of the cone −� in Trop(W) is d. By Lemma 8.8, without changing Trop(W),
we may replace W by � ·W to ensure that W intersects tw · X in the interior. If Z is any
components of inw(X) not supported on V (�), then Z must intersect V (�) in a proper
torus orbit. Since W intersects torus orbits properly, W does not intersect Z at any points
of V (�).

Now X×Y (t−w ·W) is a zero-dimensional scheme supported on T. Because specialization
commutes with refined intersection product as in Theorem 8.7,

inw(X·Y (t−w ·W))= inw(X)·Y0 inw(t−w ·W)= inw(X)·Y0W .

We decompose the intersection product of X and t−w ·W into contributions with different
valuations as in the proof of Theorem 8.7. Some contributions deform to give the intersec-
tion product of inw(X) and W along the components of inw(X) supported on V (�). By
Lemma 8.9, v(twx) ∈ �◦, if and only if inw(x) is a point in O�. Therefore, the components
of X ∩ (t−wW) that deform to the intersection of W with V (�) are the ones supported
on x with

v(x) ∈ (w − Trop(X)) ∩ (w − Trop(t−w ·W)) ∩ �◦ = (w − Trop(X)) ∩ �◦.

Each point x counts with multiplicity mxd[T ∧ : Mx + �⊥]. Since deg(W · V (�)) = d,
we divide by d to get the multiplicity of inw(X) along V (�). �
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