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Abstract Myelin basic protein (MBP) from multiple sclerosis
(MS) patients contains lower levels of phosphorylation at
Thr97 than normal individuals. The significance of phosphoryla-
tion at this site is not fully understood, but it is proposed to play
a role in the normal functioning of MBP. Human Herpesvirus
Type 6 encodes the protein U24, which has tentatively been
implicated in the pathology of MS. U24 shares a 7 amino acid
stretch encompassing the Thr97 phosphorylation site of MBP:
PRTPPPS. We demonstrate using a combination of mass spec-
trometry, thin layer chromatography and autoradiography, that
U24 can be phosphorylated at the equivalent threonine. Phospho-
U24 may confound signalling or other pathways in which phos-
phorylated MBP may participate, precipitating a pathological
process.

Structured summary:

MINT-6613181:

MAPK (uniprotkb:P28482) phosphorylates (MI:0217) MBP

(uniprotkb:P02687) by protein kinase assay (MI:0424)

MINT-6613171, MINT-6613190:

MAPK (uniprotkb:P28482) phosphorylates (MI:0217) U24

(uniprotkb:Q69559) by protein kinase assay (MI:0424)

� 2008 Federation of European Biochemical Societies. Published
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1. Introduction

Multiple sclerosis (MS) is an inflammatory, demyelinating

disease of the human central nervous system (CNS). While

complex genetic traits may provide predisposition to MS, it

is possible that an environmental factor, such as viral infection,

triggers the disease [1]. Human Herpesvirus Type-6 (HHV-6),

for example, has been shown to be associated with at least a
Abbreviations: CNS, central nervous system; MBP, myelin basic
protein; MS, multiple sclerosis; HHV-6, human herpes virus type 6;
SDS–PAGE, sodium dodecyl sulfate–polyacrylamide electrophoresis;
MAPK, mitogen-activated protein kinase; TLC, thin layer chroma-
tography; pSer, phosphoserine; pThr, phosphothreonine; pTyr, phos-
photyrosine; MALDI-TOF MS, matrix-assisted laser desorption
ionization mass spectrometry
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subgroup of MS patients [2]. The exact mechanism by which

HHV-6 may trigger or sustain disease pathology is as of yet

unknown, but molecular mimicry is one proposed mode of ac-

tion [3]. The concept of molecular mimicry is that a foreign

protein (i.e.: viral or bacterial) triggers an immune response,

and based on sequence or structural antigenic similarities with

self-proteins, the self-proteins are degraded, leading to tissue

damage such as demyelination. Myelin basic protein, a candi-

date autoantigen in MS, has a seven amino acid stretch

identity with HHV-6 U24 protein, PRTPPPS (MBP92–104 =

IVTPRTPPPSQGK; U241–13 = MDPPRTPPPSYSE). It was

demonstrated that greater than 50% of T-cells recognizing

MBP95–105 cross-reacted with and could be activated by a syn-

thetic peptide corresponding to U241–13 in MS patients [4].

Based on this sequence similarity and the fact that MBP has

two Thr that represent mitogen-activated protein kinase

(MAPK) targets in vivo (underlined above) [5] within this seg-

ment, we propose a mechanism by which U24 may addition-

ally contribute to the pathogenesis of MS: by representing an

alternative kinase target, U24 might interfere with essential

phosphorylation of MBP.

An excellent kinase substrate under both in vitro and in vivo

conditions [6], MBP experiences a rapid turnover of its phos-

phate groups [7]. Regulation of phosphorylation in MBP is

proposed to have both functional and structural implications

for maintaining the efficiency of nerve conduction and physical

integrity of the myelin sheath [8–10]. Thr94 (bovine number-

ing) is an in vivo phosphorylation site [5]. Thr97 is also an in

vivo phosphorylation site [11] that is recognized by both glyco-

gen synthase kinase (GSK) and MAPK under in vitro condi-

tions. Phosphorylation at Thr97 attenuates the ability of

MBP to polymerize and bundle actin, and to bind actin fila-

ments to a negatively charged lipid membrane [9]. This phos-

phorylation site has also been proposed to play a role in cell

signaling and myelin development, with the discovery that

MBP that has been phosphorylated at Thr97 is specifically

localized to lipid rafts [12,13].

In studies on humans with MS and on a spontaneously

demyelinating mouse model of MS, there was much less phos-

pho-Thr97 MBP detected compared to normal [5,14]. The full

consequences of this absence of post-translational modifica-

tion are as of yet unknown, but it has been shown that phos-

phorylation at Thr97 can protect against proteolysis of the

Arg96-Thr97 peptide bond by at least three types of proteases

[15]. Protection against MBP degradation would have a direct

positive impact on the integrity of the myelin sheath, and
blished by Elsevier B.V. All rights reserved.
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should further help by preventing MBP epitopes from being

released and exposed to the immune system. Here, in attempt

to identify a factor which may contribute to the cause of low

levels of phospo-Thr97 MBP in MS patients, we provide evi-

dence that U24 protein from HHV-6 can be efficiently phos-

phorylated by MAPK, based on the sequence similarity

between U24 and MBP.
Fig. 1. Phosphorylation kinetics data for U24 (open squares) relative
to MBP (closed squares), derived from SDS–PAGE/autoradiography
results (inset). The error bars were obtained by repeating the
measurements three times.
2. Materials and methods

2.1. Isolation of HHV-6 U24 protein
U24 protein was expressed and purified based essentially on the

method by Pryor et al. [16] with some changes. Full details of the
expression and purification will be presented elsewhere [17]. Briefly,
the gene for U24 from HHV-6A was cloned into plasmid pMAL-p2x
(New England Biolabs) and expressed in Escherichia coli as a C-termi-
nal fusion to maltose binding protein and a hexahistidine tag. Based on
primary sequence analysis, U24 has a hydrophobic C-terminus that is
possibly a transmembrane domain. Addition of Triton X-100 deter-
gent was thus a requirement to solubilize the fusion protein from the
Escherichia coli pellet. The expressed fusion protein was purified using
an immobilized metal affinity chromatography column, Histrap HP
(GE Healthcare) charged with Ni2+. Buffers contained 20 mM Na+/
K+ phosphate, 1 mM dithiothreitol, 0.5% Triton X-100 and
0–500 mM imidazole, pH 7.4. The fusion protein included a thrombin
cleavage site between the hexahistidine tag and U24 protein. After
cleavage with bovine thrombin (GE Healthcare), the digested protein
was reapplied to the column and the flow-through was applied to an
anion exchange column, Hitrap FF Q-Sepharose (GE Healthcare) to
remove thrombin, liberated maltose binding protein with histag, undi-
gested fusion protein, and residual protein impurities. U24 was col-
lected from the flow-through and its purity was determined by Tris–
Tricine SDS–PAGE and found to be >95% pure. The protein concen-
tration was determined using the bicinchoninic acid method (Pierce)
which included a procedure for removing interfering substances [18].
The yield of U24 was found to vary between 1 and 2 mg per L of min-
imal media M9 culture. The molecular mass of U24 was verified by
matrix-assisted laser desorption ionization mass spectrometry (MAL-
DI-TOF MS); in agreement with the theoretical mass, MALDI-TOF
MS data yielded an experimental mass of 10235 Da (theoretical
mass = 10235 Da, i.e. U241–87 plus two additional residues at the N-
terminus after thrombin cleavage).

2.2. Preparation of 32P-phosphate labeled U24 and MBP
Bovine MBP (Sigma) was dissolved in water and its concentration

was measured by the bicinchoninic acid method or by absorbance,
using an extinction coefficient of e276.4 = 10300 cm�1 M�1 [19]. MAPK
(Erk2) was obtained (New England Biolabs) and assays were set up for
MBP and U24 based on previously described methods [20]. In separate
microfuge tubes, 480 pmol each of U24 and MBP were diluted to a to-
tal volume of 60 ll with MAPK assay buffer containing 100 lM ATP
(New England Biolabs) and 0.04 lCi/ll [c-32P]ATP. Reactions tubes
were placed in a water bath or hotplate set at 30 �C, and reactions were
started by the addition of 200 U of MAPK.

2.3. SDS–PAGE/ autoradiography analysis of 32P-labeled proteins
At various time points, 40 pmol of protein were removed from the

kinase reaction, and the reaction was quenched by addition of an equal
volume of Novex 2· SDS buffer (Invitrogen) supplemented with 5 mM
of 2-mercaptoethanol (Sigma) and heated to 95 �C for 5 min. Samples
were loaded on Tris–tricine polyacrylamide gels (13.5%) and run for
2 h at 100 V. The gels were then wrapped in thin plastic film and ex-
posed for varying lengths of time to a phosphoimager screen before
being scanned with a Typhoon 9200 phosphoimager (GE Healthcare).
Relative 32P incorporation was quantified using ImageQuant 5.2 soft-
ware (Molecular Dynamics).

2.4. Phosphoamino acid analysis
After an overnight kinase reaction, 32P-phosphate labeled MBP and

U24 were precipitated by addition of tricholoracetic acid (20% w/v fi-
nal) and the pellet was washed with three volumes of ice cold acetone.
The pellets were then dissolved in 200 ll 6 M HCl and incubated for
1 h at 110 �C. Acid was removed from the hydrolysate by speed-vac
lyophilization, and the dried residue was suspended in 10 ll of water.
A few microliters of hydrolyzed sample were spotted on a silica thin
layer chromatography (TLC) plate (Merck). A small amount of a
phosphoamino acid mixture containing of 1 mg/ml each of O-phos-
pho-LL-serine, O-phospho-LL-threonine, and O-phospho-LL-tyrosine (Sig-
ma) was also spotted for reference. In a solvent composed of absolute
ethanol:25% ammonia solution, 3.5:1.6 [21], the plate was developed
by three rounds of thin layer chromatography. Phosphoamino acid
standards were visualized with ninhydrin spray; identities of the 32P-la-
beled phosphoamino acids were determined after the TLC plate was
exposed to a phosphoimager screen overnight and scanned with a
phosphoimager reader.

2.5. Characterization of phosphorylated U24 by MALDI-TOF MS
Phosphorylation reactions were set up as mentioned in Section 2.2,

with the omission of [c-32P]ATP, and unlabeled ATP concentration
was either 0.1 or 1 mM. Control reactions did not have kinase added.
All reactions were carried out for a minimum of 3 h to overnight.
After, U24 protein was precipitated by addition of tricholoracetic acid
(20% w/v final) and the pellet was washed with three volumes of ice
cold acetone. The MALDI matrix used was sinapinic acid, dissolved
in 50% acetonitrile with 0.1% TFA. The protein was also solubilized
in 50% acetonitrile with 0.1% TFA. Sample solution (1 ll) was spotted
on a MALDI target plate, sandwiched between two layers of matrix
solution (2 · 1 ll), with air drying between applications. A Bruker Bi-
flex IV (Bruker Daltonics) MALDI-TOF mass spectrometer was cali-
brated with bovine ubiquitin and horse heart cytochrome c (Sigma),
and the samples were analyzed in positive linear ion mode.
3. Results

3.1. MAPK-mediated phosphorylation kinetics of U24 and MBP

Fig. 1 demonstrates the time course of protein phosphoryla-

tion, illustrating that U24 and MBP can both be efficiently

phosphorylated by MAPK. Under these conditions, we take

100% phosphorylation of MBP to be approximately 1 mol

phosphate per mol protein [20], with the major phosphoryla-

tion site as Thr97 or TPR(phospho)TP [11]. Others have ob-

served that Thr94 also represents a minor phosphorylation

site in vitro [22], one that can be also be phosphorylated with
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increased kinase concentration and incubation time [9]. Our re-

sults suggest that U24 can by phosphorylated up to approxi-

mately 50% that of MBP or 0.5 mol phosphate per mol

protein.

3.2. Phosphoamino acid analysis

U24 has two potential MAPK target sites, Thr6 within the

optimal PX(T/P)S consensus sequence, and Ser25 within the

minimal (T/S)P consensus sequence [23]. To determine which

one or if a mixture of both sites are phosphorylated, we per-

formed a TLC analysis of the 32P-labeled phosphoamino acids

that were released by acid hydrolysis (Fig. 2). Using phosphoa-

mino standards dyed with ninhydrin and the 32P-labeled phos-

pho-threonine from MBP acid hydrolysis, we confirmed that it

is Thr6 in U24, part of the PRTPPPS sequence shared with

MBP, and not Ser25 that is phosphorylated. It should be noted
Fig. 2. One-dimensional TLC, followed by autoradiography of 32P-
phosphate labeled MBP and U24 acid hydrolysates. Positions of pTyr,
pThr, and pSer were revealed by ninhydrin staining. Significant
amounts of phosphothreonine only are detected in MBP and U24
(arrow).

Fig. 3. MALDI-TOF MS of unphosphorylated U24 (A) and U24 that has bee
ATP and 200 units of kinase. The mass shift of �+80 Da signifies the addit
because MAPK does not phosphorylate tyrosine, the artifacts

at the top of the TLC plate are not from phosphotyrosine, but

rather, they are likely from partially hydrolyzed peptides con-

taining phosphothreonine.

3.3. Evidence of U24 phosphorylation by MALDI-TOF MS

A kinase reaction run overnight with 1 mM ATP substrate,

using conditions analogous to those reported in [22], resulted

in U24 being fully phosphorylated at a single position; with

no unphosphorylated or multiply phosphorylated species de-

tected (Fig. 3). Conversely, after only 3 h of reaction and

0.1 mM ATP, a mix of both unphosphorylated and monopho-

sphorylated forms could be observed; no autophosphorylation

activity was detected when kinase was not added (data not

shown). The mass of unphosphorylated U24 was measured

to be 10235 Da, and monophosphorylated (+80 Da) was

10313 Da. A control kinase reaction was also run on MBP

and MALDI-TOF MS analysis of the data showed the addi-

tion of two phosphates (data not shown), as reported by

Hirschberg [22].
4. Discussion

The concept that a foreign protein substrate could compete

with MBP for phosphorylation was presented by Stoner et al.

[24]. They noticed that the large T-antigen of papovaviruses JC

shared a C-terminal subsequence with MBP that was also a

phosphorylation site in MBP. Unfortunately, no cells express-

ing T-antigen were detected in plaque or periplaque regions of

the MS brains or in control CNS tissue. However, a larger

sample set later revealed that JC virus DNA could be detected

in cerebral spinal fluid of 11 of 54 (9%) MS patients [25], but

none in normal patients, thus indicating a possible role for

JC virus in at least a small subset of MS patients. In another

study [26], large T-antigen expression was detected in neurofil-

ament-positive cells and astrocytes in the cortex juxtaposed to

MS plaques, but not in the plaques themselves. While the

molecular role of large T antigen as a phosphoacceptor
n phosphorylated by MAPK (B) after overnight incubation with 1 mM
ion of one phosphate to the protein.
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competing with MBP has not been followed up on, we sought

to investigate a similar role for U24 protein from HHV-6.

Transcription of HHV-6 genes has been detected in the

brains of MS patients [27]. It is the HHV-6A strain that has

been directly linked to MS, with a possible genetic factor

placing those with certain MHC2TA gene polymorphisms at

higher risk [2]. U24 expressed by HHV-6 has been shown to

down-regulate surface expression CD3 receptors in T-cells

[28], but the result of its expression in nervous tissue has yet

to be examined. Here we propose that because of a stretch of

sequence similarity between MBP and U24, PRTPPPS, there

may be cases of mistaken identity, resulting in essential interac-

tions with and post-translational modifications done on the vir-

al as opposed to the self-protein. This sequence is also a PXXP

SH3-target consensus sequence [29], and ultimately there may

be more examples [30] in which U24 and MBP compete for

molecular recognition based on their identity, perhaps addi-

tionally contributing to the destabilization of the myelin sheath

and the pathogenesis of multiple sclerosis. Although there are

clearly many membrane-associated phosphorylation targets in

myelin (e.g. MBP, tau [31]), perhaps U24, with its putative

transmembrane domain, sequesters phosphates to the mem-

brane, thereby interrupting signalling or other pathways in

which phosphorylated MBP may participate.
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