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Cholesterol incorporation into lipid bilayers, in the form of multilamellar vesicles or extruded large
unilamellar vesicles, has been quantitated. To this aim, the cholesterol contents of bilayers prepared from
phospholipid:cholesterol mixtures 33–75 mol% cholesterol have been measured and compared with the
original mixture before lipid hydration. There is a great diversity of cases, but under most conditions the
actual cholesterol proportion present in the extruded bilayers is much lower than predicted. A quantitative
analysis of the vesicles is thus required before any experimental study is undertaken.
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1. Introduction

Cholesterol (Chol) is an essential lipid component in mammalian
membranes. Either Chol or other related sterols are found in all
eukaryotic membranes. There are examples in biology in which high
Chol concentrations, i.e. mole fractions of 0.4 and above, are found. This
is the case of the ocular lens membrane [1], or of the so-called nuclear
envelope remnants [2]. Beginningwith the seminal studies by Chapman
and co-workers [3,4] innumerable publications have dealt with the
physical properties of Chol in lipid bilayers. To mention a few
contributions, the reader is directed to Refs. [5–9]. In spite of all efforts,
theeffects of cholesterol on thebiophysical properties ofmembranes are
far from being adequately understood.

Many of the studies on cholesterol in membranes are carried out on
model membranes, particularly multilamellar or large unilamellar
vesicles (MLV, LUV, respectively). It has usually been taken for granted
that all the lipids would be equally incorporated into the bilayers, i.e.
that the liposome lipid composition would be the same as that of the
original mixture fromwhich the vesicles were formed. It occurred to us,
however, that, particularly in mixtures with high cholesterol contents,
this might not be the case. Consequently a number of experiments were
undertaken, inwhich the chemical composition of LUVwas determined,
and comparedwith the original lipidmixture. Several studies have been
carried out on the solubility of Chol in phospholipid bilayers [10–12] but
we have focused our attention on the fate of cholesterol during vesicle
preparation, particularly when extrusion methods are involved. The
results summarized below indicate important deviations from the
predicted behaviour, i.e. liposome cholesterol content is often much
lower than intended. Conversely, none of the experimental values for
Chol incorporation in this study is beyond the maximum solubilities
measured by Huang et al. [11].

2. Materials and methods

2.1. Materials

Chol, DPPC, POPC, DOPC, DLPC, DAPC and SM were purchased from
Avanti Polar Lipids (Alabaster, AL). Egg PE, egg PC and egg DAG were
purchased from Lipid Products (South Nutfield, UK). Ferric chloride
hexahydrate, sulfuric acid and phosphoric acid were purchased from
Sigma. A kit for measuring cholesterol concentration was supplied by
BioSystems (Barcelona, Spain). This kit is based on three coupled
reactions using Chol esterase, Chol oxidase and peroxidase. Tests carried
out in our laboratorywith the Chol enzymekit on appropriate standards
provided a linear response (r2=0.99) for Chol concentrations in the 1–
4 mM range, in which our samples were included.

2.2. Multilamellar vesicle preparation

For multilamellar (MLV) liposome preparation the lipids were
dissolved in chloroform/methanol (2:1) and mixed at the required
proportions, and the solvent was evaporated to dryness under a stream
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Table 1
Cholesterol incorporation into lípid bilayers. A comparison of predicted and
experimental values. “Predicted” refers to the calculated data assuming 100%
phospholipid and Chol incorporation into the bilayers. Data are given as cholesterol
molar fraction×100 (or mol% cholesterol). Average values±S.D. (n=3–5).

# Lipid
mixture

XChol×100 (mol% Chol)

1 DOPC/
Chol

Predicted 33 50 67 75
Experimental (LUV) 30±4.3 43±8.3 57±6.4 59±6.1

2 POPC/
Chol

Predicted 33 50 67 75
Experimental (non
extruded)

34±0 80±4

Experimental (LUV) 15±4.1 54±6.8 59±9.0 59±4.0
Filter 19±1.9 17±5

3 DLPC/
Chol

Predicted 33 50 67
Experimental (non
extruded)

63±5

Experimental (LUV) 35±8.3 49±2.9 50±14.8
Filter 20±9

4 DAPC/
Chol

Predicted 33 50 67 75
Experimental (non
extruded)

32±1 80±2.5

Experimental (LUV) 22±1.5 9±0 18±1.1 10±1.8
Filter 11±1.3 63±7.5

Table 2
Cholesterol incorporation into lipid bilayers in the gel or fluid state. A comparison of
predicted and experimental values. “Predicted” refers to the calculated data assuming
100 % phospholipid and Chol incorporation into the bilayers. Data are given as
cholesterol molar fraction×100 (or mol% cholesterol). Average values±S.D. (n=3–5).

# Lipid
mixture

T
(°C)

XChol×100 (mol% Chol)

1 DPPC/
Chol

45 Predicted 33 50 67 75
Experimental
(LUV)

26±0 30±2.8 42±2.7 47±6.4

2 DPPC/
Chol

22 Predicted 33 50 67 75
Experimental
(non extruded)

33±1.3 80±0.7

Experimental
(LUV)

25±1.5 22±0+ 20±2.4+++ 31±0+

Filter 15±6 50±9
3 SM/

Chol
45 Predicted 33 50 67 75

Experimental
(LUV)

29±0.95 43±2.1 48±4 37±4.5

Filter 8±3 15±0.8 28±8 35±5
4 SM/

Chol
22 Predicted 33 50 67 75

Experimental
(LUV)

34±2.8+ 44±3 40±5 41±3

Filter 5±2 12±3 29±5 25±3

Statistical significance (Student's t-test). +,++,+++ represent, respectively, pb0.05,
pb0.01, pb0.001 between 22 °C and 45 °C, all other conditions being the same.
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of nitrogen. Traces of the solvent were removed by evacuating the
samples under high vacuum for at least 2 h. The sampleswere hydrated
in 25 mM HEPES, 150 mM NaCl, pH 7.4 helping dispersion by stirring
with a glass rod.Whenvesicles had to be prepared at a high temperature
the hydration buffer was pre-heated. In order to ensure that all the lipid
was incorporated the sample was subjected to a brief period of bath
sonication. To ensure homogeneous dispersion the hydrated samples
were passed between two syringes through a narrow tubing (0.5 mm
internal diameter, 10 cm long) 100 times at 45 °C.

2.3. LUV preparation

LUV of diameters 100–150 nm were prepared by the extrusion
method [13] using Nuclepore filters 0.1 μm pore diameter at room
temperature, in 25 mM HEPES, 150 mM NaCl, pH 7.4.

2.4. Phosphorus and cholesterol assays

Phospholipid concentration was measured as lipid phosphorus
[14]. Chol was usually assayedwith an enzymatic procedure involving
Chol oxidase and peroxidase (see section 2.1).

When the vesicles contained SM a non-enzymatic Chol quantifica-
tion method was used. The reason for this was that according to Slotte
[15,16] the activity of Chol oxidase is decreased when SM is present in
themembrane. The protocol is based on Bowman andWolf [17]. Briefly,
300 μl of sample were diluted to 3 mlwith ethanol. To each tube 3 ml of
working iron reagent were added. The working iron reagent is
composed of 8 ml stock iron reagent+92 ml concentrated sulfuric
acid. The stock iron reagent contains 2.5 g ferric chloride hexahydrate
+100 ml phosphoric acid. The tubes were carefully vortexed and
absorbance read at 550 nm. Both enzymatic and chemical methods of
Chol determination gave coherent results in the absence of SM.

2.5. Sonication procedure

For Chol assays using the enzymatic procedure, MLVwere sonicated
prior to the assay in order to make Chol fully accessible to the enzyme.
The lipid suspension was sonicated with on/off intervals of 10 seconds.
The total sonication time (“on” intervals) was 10 min. The vials were
kept on ice during the process to avoid sample overheating.

2.6. Statistics

Unless otherwise indicated, data are average values of 3–5
independent measurements±one standard deviation. Student's t-test
was used in order to assess the significance of observed differences.

3. Results and discussion

An extensive series of lipid mixtures containing Chol was prepared
under different conditions. After hydration and, eventually, extrusion
through polycarbonate filters (100 nm pore diameter) the actual
proportion of cholesterol was quantitated and compared with the
theoretically predicted (calculated) value, should all the cholesterol and
all the phospholipid have been incorporated into the lipid suspension.
Before cholesterol assays, non-extruded preparationswere subjected to
sonication, in order tomake Chol fully accessible to the enzyme because
it is known that multilamellarity affects oxidation rate. Results, as
“predicted” and “experimental”mol% Chol in the extrudedmixtures, are
summarized in Tables 1–4. The absolute figures of phospholipid and
cholesterol are given in the Supplementary Material, Tables S1-S4.

Cholesterol solubility is not uniform for all phospholipids. Huang et
al. [11] reported XChol=0.66 as the solubility limit for DOPC and DPPC.
Using different methods, Epand et al. [18] found phase separation in
POPCbilayers atXCholN0.5. Brzustowiczet al. [19] foundevidence of Chol
crystallization in DAPC already at XChol=0.17. In gel phase DPPC, Chol
phase separation was observed at XChol=0.5 [4,20]. Predicted Chol
concentrations in our lipid mixtures ranged from 25 to 75 mol%. Even if
the highest Chol concentrations predicted were above the solubility
limits of Chol in phospholipids, we assayed them in order to confirm the
previous data, and to detect possible patterns of Chol incorporation as a
function of Chol/phospholipid ratio. Perusal of the data indicates that, in
most cases, the actual proportion of Chol was lower, even much lower,
than predicted. Also, in agreementwith Pan et al. [10], the incorporation
patterns differed considerably with the phospholipid acyl chain.
3.1. PC containing monounsaturated acyl chains

Liposomes based on DOPC or POPC are often used to mimic the
physical properties of cell membranes. In mixtures with DOPC (Table 1,
#1), when the predicted Chol concentration was 33 mol%, the
experimental value for LUV was about the same, but with predicted
Chol concentrations≥50 mol%, Chol appeared to be incorporated only
partially, with a maximum at ≈60mol% irrespective of the original
proportion of lipids before hydration.



Table 3
Cholesterol incorporation into lamellar or inverted hexagonal lipidic structures. A
comparison of predicted and experimental values. “Predicted” refers to the calculated
data assuming 100 % phospholipid and Chol incorporation into the bilayers. Data are
given as cholesterol molar fraction×100 (or mol% cholesterol). Average values±S.D.
(n=3–5).

# Lipid
mixture

T
(°C)

pH Phase XChol×100 (mol% Chol)

1 PE/Chol 45 9.5 lamellar Predicted 50 67
Experimental
(non extruded)

54±4 63±3.8

Experimental (LUV) 44±1.3 44±0.5
2 PE/Chol 45 5.0 inverted

hexagonal
Predicted 50 67
Experimental (non
extruded)

41±5 46±3

Experimental
(hexagonal)

35±9.6 43±6.7

3 PE/Chol 25 5.0 lamellar Predicted 50 67
Experimental (non
extruded)

46±4 67±3

Experimental (LUV) 39±4.7 61±7.6

Statistical significance (Student's t-test). No significant differences were found between
the experimental results displayed in this table.
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Mixtures with POPC behaved differently (Table 1, #2) in that the
proportion of incorporated cholesterol in LUV was always lower than
predicted. Even at the lowest proportion tested (predicted 33 mol%),
incorporation was poor. The highest experimental values of Chol
incorporation remained at ca. 60 mol% Chol. This may correspond to
the maximum solubility of Chol in bilayer in binary mixtures with
phospholipids, in agreement with Feigenson and co-workers [11,21]. In
order to find out the fate of the “missing” Chol, in selected assays the
polycarbonate filters used in the extrusion procedure were extracted
with organic solvents, andChol assayed in those extracts. The results are
shown in Table 1 (“Filter”). The sumof theamountof Chol in LUV+filter
corresponded, within experimental error, to the predicted value, and to
the experimental value obtained in the non-extruded samples. This
suggests that Cholwas incorporated in ametastableway in somebilayer
samples, and extrusion drove the sterol out of the phospholipid-based
lipid phase. In contrast to Chol, all the phospholipid was retrieved in the
extruded samples (Tables S1–S4).
3.2. Polyunsaturated PC

Binary mixtures of DLPC and Chol incorporated the predicted
amounts of Chol up to 50 mol%, but not beyond. Again the extrusion
filters retained someof theChol that hadnotbeenproperly incorporated
into the bilayers (Table 1, #3). Mixtures with DAPC, in turn, displayed a
paradoxal behaviour (Table 1, #4), the higher the original Chol
proportion, the lower the experimental value after vesicle formation.
Missing Cholwas recovered in the polycarbonate extrusionfilter. DAPC/
Chol mixtures were a prime example of differences between predicted
and experimental Chol concentration, e.g. 50 mol% and 9 mol%
Table 4
Cholesterol incorporation into complex lipidic mixtures. A comparison of predicted and expe
and Chol incorporation into the bilayers. Data are given as cholesterol molar fraction×100

# Lipid mixture (mol ratio) Phase

1 PC:PE:Chol
(2:1:3)

lamellar Predicted
Experimental
(LUV)

2 PC:PE:Chol:
DAG (2:1:X)+
5 mol% DAG

lamellar Predicted
Experimental
(LUV)
Filter

3 PC:PE:Chol:
DAG (2:1:X)+
30 mol% DAG

inverted
hexagonal

Predicted
Experimental
(LUV)
respectively for LUV. Note as well the very low solubility measured for
Chol in DAPC bilayers by other authors [19].

In general, fatty acyl polyunsaturation appeared to decrease Chol
miscibility with phospholipids. This is in agreement with the 2H-NMR
and X-ray diffraction studies of Stilwell and co-workers [12,22,23]
who found a markedly decreased solubility of Chol in di-C20:4 and di-
C22:6 bilayers as compared to di-C18:2. Note however that, in the
nuclear envelope remnants [2], up to 42 mol% Chol was found,
solubilised by mainly polyunsaturated polyphosphoinositides. In this,
and perhaps other cases, phospholipid polar head groups may be
important in Chol stabilization in bilayers.

It may be mentioned in this context that, in our hands, diphytanoyl
PC, containing branched fatty acyl chains, did not give rise to stable
bilayers with Chol, even at low proportions, and experimental
measurements provided erratic results. The fact that diphytanoyl PC in
mixtures with Chol can give rise to four coexisting phases [24] may
explain this complex behaviour.

3.3. Disaturated PC and sphingomyelin

In all DPPC/Chol mixtures tested, Chol incorporation was clearly
below the predicted values, both above and below the gel-fluid
transition temperature of the pure phospholipid (41 °C) (Table 2). In
the gel state, incorporationwas somewhat lower. Extrusion to form LUV
at 22 °C, i.e. in the gel state, caused in most cases a decrease in Chol
contents of the vesicles (Table 2, #2). Chol was recovered in the filters
(Table 2, #2). It is remarkable that, according to our measurements, a
commonly studied mixture such as DPPC/Chol at a 2:1 mol ratio might
in fact contain, for LUV in the fluid state, only 26 mol% Chol, i.e. ≈3:1
DPPC/Chol mol ratio (Table 2, #1), and the corresponding values for a
theoretical 1:1 mixture would actually be 30 mol%, i.e. ≈3.3:1 DPPC/
Chol mol ratio.

Sphingomyelin exhibited, when fully hydrated, a gel-fluid phase
transition at ca. 40 °C. Chol incorporation approached the predicted
value only for the 33 mol% mixture, at 22 °C (34±2.8 mol% see Table 2,
#4). The incorporation of Chol was higher below the gel-fluid transition
with amaximum incorporation of 40 mol%. Themissing cholesterol was
recovered in the filter that was used in the extrusion process. It is
interesting in this context that ocular lens membranes, that are rich in
SM and in dihydroSM, may contain 50 mol% Chol. In this case,
dihydroSM appears to be able to solubilize larger amounts of Chol
than SM [1].

3.4. Inverted hexagonal phases

Egg PE can exist in either lamellar or inverted hexagonal phases,
depending on pH and temperature [25,26]. Three conditions were
selected, namely pH 9.5, 45 °C, when PE was lamellar, pH 5.0, 45 °C,
when PE was in the inverted hexagonal phase, and pH 5.0, 25 °C, when
PE was again in the lamellar state (Table 3). In general, cholesterol
increased the propensity of lipids to adopt the inverted hexagonal phase
rimental values. “Predicted” refers to the calculated data assuming 100 % phospholipid
(or mol% cholesterol). Average values±S.D. (n=3–5).

XChol×100 (mol% Chol)

50
46±6.2

25 40 50 58
26±1.0 40±3.0 45±12.7 47±7.6

9±3 10±4
25 40 50 58 70
25±0.75 35±5 45±5 50±5 60±8



1738 M. Ibarguren et al. / Biochimica et Biophysica Acta 1798 (2010) 1735–1738
[27,28]. There was no significant difference in Chol incorporation to PE
under conditions favouring the lamellar or the non-lamellar state
(Table 3). In fact, the actual proportions of Chol incorporated to PE
bilayers under any conditions were very similar to those found in
mixtures with DOPC or POPC (Table 1, #1, 2). PE may be somewhat
unstable at pH 9.5, but, according to our quantitative TLC data no
significant degradation occurred within the experimental time range
(b2% PE loss 2 h after extrusion, i.e. approximately 1 h after our
experiment was completed).

3.5. Ternary and complex mixtures

PC:PE:Chol mixtures, sometimes with added diacylglycerol, have
beenoften inuse in ours andother laboratories in experiments involving
vesicle fusion induced by phospholipases C [29,30]. Chol incorporation
into this sort of mixtures was tested, and the results are summarized in
Table 4. Cholwas readily incorporated into thePC:PE:Cholmixture, even
at a 2:1:3 mol ratio (Table 4, #1). In the presence of 5 mol% DAG
(additional %) incorporation was also quantitative up to 50 mol% Chol
(Table 4, #2). When DAG was added at 30 mol% (additional %), under
conditions that favour inverted hexagonal phase formation, Chol
incorporation occurred more or less to the same extent as in the
lamellar phase (Table 4, #3). In general, Chol incorporation appeared to
be easier in the PC:PEmixture,with andwithout DAG, than in the binary
mixtures, in agreement with the notion that more degrees of freedom
generate bilayers with higher stability [31].

4. Conclusion

The above results show that, under most conditions, and
particularly in binary mixtures with phospholipids extruded through
polycarbonate filters, Chol does not become quantitatively incorpo-
rated into lipid bilayers. It is therefore imperative to carry out
quantitative tests of vesicle composition once the lipid mixtures have
been hydrated and equilibrated, and before they are used for
experimental purposes. Perhaps some previous results will require
revision in the light of the present data.
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