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a b s t r a c t

Given an instance of an optimization problem together with an optimal solution, we
consider the scenario in which this instance is modified locally. In graph problems, e. g.,
a singular edge might be removed or added, or an edge weight might be varied, etc. For a
problemU and such a local modification operation, let lm-U (local-modification-U) denote
the resulting problem. The question is whether it is possible to exploit the additional
knowledge of an optimal solution to the original instance or not, i. e.,whether lm-U is
computationally more tractable than U . While positive examples are known e.g. for metric
TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a
single deadline or the cost of a single edge is modified, exhibits the same lower bounds on
the approximability in these local-modification versions as those currently known for the
original problem.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, optimization theory has been concerned with the task of finding good feasible solutions to (practically
relevant) input instances, little or nothing about which is known in advance. Many applications, however, demand good,
sometimes optimal, solutions to a limited set of input instances which reflect a supposedly-constant environment (imagine,
e. g., an existing railway system or communications network).When this environment does change, maybe only slightly and
maybe only locally, do we have no choice but to recompute some good feasible solution, effectively forgetting about the old
one?
Here, wewill analyze localmodifications only. In a graph problem, for example, the cost of a single edgemight change, an

edge might be removed or added, or some other local parameter might be adjusted. Results related to this work pertain to
the question by howmuch a given instance of an optimization problemmay be varied if it is desired that optimal solutions
to the original instance retain their optimality [8,9,11–13]. In contrast with this so-called ‘‘postoptimality analysis,’’ our
approach here is to ask, if we cannot avoid losing the optimality of a given solution when an instance is varied arbitrarily,
what can we do to restore the quality of a solution, maybe in an approximative sense?
Surely, for some problems, knowing an optimal solution to the original instance trivially makes their local-modification

variants easy to approximate because the given optimal solution is itself a very good solution to the modified instance. For
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example, adding an edge in the instance of a coloring problem will increase the cost of an optimal solution by at most the
amount of one — an excellent approximation, but certainly not the object of our interest.
This concept of local modification was investigated for metric TSP in [3], where modifications of edge costs were

considered, and in [1,2], where the local modification consisted of vertex deletions and vertex insertions.
TSP with time windows is one of the fundamental problems in operations research [7]. In this generalization of TSP,

certain vertices must be reached within a certain time window. Usually, only heuristic algorithms are used to attack it
although the question how hard it is w. r. t. approximability has only recently been resolved in [5,4], where even an Ω(n)
lower bound on the polynomial-time approximability of metric TSP (∆-TSP for short) with time windows was shown, in
contrast to the constant approximability of∆-TSP. This lower bound already holds for the special case of this problemwhere
all time windows are immediately open. This special case we will call metric TSP with deadlines, or ∆-DlTSP for short.
Here, we consider local-modification versions of ∆-DlTSP. We show that, already if we only allow a single deadline to be
changed, and only by an amount of one time unit, the resulting problem, lm(D)-∆-DlTSP, has the same lower bound on the
approximation ratio as∆-DlTSP, namely that of asymptotically n/2. Let us underscore the importance of this negative result:
Not only does TSP with deadlines remain an intractable problem in its local-modification version, but the extra knowledge
of an optimal solution to a related instance does not even help a single bit. Likewise, we will establish a lower bound of
(2 − ε), for any ε > 0, for lm(D)-∆-DlTSP with a constant number of deadlines, the same bound as is known for ∆-DlTSP
with a constant number of deadlines [5,4]. These results can also be obtained if we modify the cost of an edge rather than
a deadline. Note that the original problem without reoptimization was proven to be approximable within a factor of 2.5
in [5,4].
So, while additional information about an optimal solution to a related input instance may be useful to some extent as

shown e. g. in [3], the local-modification problem variant may remain exactly as hard as the original problem. Very recently,
in [6] the reoptimization of ∆-DlTSP according to other local modifications such as addition and deletion of vertices was
investigated.
The paper is subdivided into four main sections. In Section 2, we will formally define TSP with deadlines as well as its

local-modification version. Section 3 is devoted to inapproximability results for the local-modification version of TSP with
deadlines where there is a bounded number of deadline vertices, and Section 4 will deal with the general problem, where
there may be an unbounded number of deadline vertices. In these two sections, we deal with the case where the local
modification consists of changing a deadline. Finally, in Section 5, we analyze the case where the local modification consists
of changing the costs of an edge.

2. Preliminaries

To begin with, let us define TSP with deadlines formally.

Definition 2.1. Let G = (V , E) be a complete graph weighted by c : E → N+. We call (s,D, d) a deadline set for G if
s ∈ V ,D ⊆ V \ {s}, and d : D→ N+. A vertex v ∈ D is called deadline vertex. A path (v0, v1, . . . , vn) satisfies the deadlines iff
s = v0 and, for all vi ∈ D, we have

∑i
j=1 c({vj−1, vj}) ≤ d(vi).

A cycle (v0, v1, . . . , vn, v0) satisfies the deadlines iff it contains a path (v0, v1, . . ., vn) satisfying the deadlines.

Definition 2.2. The problem∆-DlTSP is defined as follows:
Input: A complete weighted graph G = (V , E, c) with edge costs c : E → N+ satisfying the ∆-inequality, a deadline set
(s,D, d) for G, and a Hamiltonian cycle (of arbitrary cost) satisfying the deadlines.1
Problem: Find a minimum-cost Hamiltonian cycle satisfying all deadlines.
If |D| is a constant k, the resulting subproblem is k-∆-DlTSP.

For TSP with deadlines, at least two possible local modifications arise. Firstly, we can change the deadline of a deadline
vertex, which leads to the following problem:

Definition 2.3. The optimization problem lm(D)-DlTSP is defined as follows:
Input: A complete weighted graph G = (V , E, c), a deadline set O = (s,D, dO) for G with a minimal Hamiltonian cycle
satisfying the deadlines O, a new deadline set N = (s,D, dN) such that dO and dN differ in exactly one vertex, and a
Hamiltonian cycle (of arbitrary cost) satisfying N .
Problem: Find a minimum-cost Hamiltonian cycle satisfying N .
By lm(D)-k-DlTSP, lm(D)-∆-DlTSP and lm(D)-k-∆-DlTSP, we denote the canonical special cases of lm(D)-DlTSP.

The second local modification we consider here, is a change in the cost function for one edge.

1 Requiring a feasible Hamiltonian cycle as part of the input ensures that the problem is in NPO. Otherwise, it would even be a hard problem to find a
feasible solution. For details, see [5,4].



H.-J. Böckenhauer et al. / Theoretical Computer Science 410 (2009) 2241–2249 2243

Definition 2.4. The optimization problem lm(E)-DlTSP is defined as follows:
Input: A complete weighted graph GO = (V , E, cO), a deadline set (s,D, d) for G, with a minimum-cost Hamiltonian cycle
satisfying the deadlines, and a complete weighted graph GN = (V , E, cN) such that cO and cN differ in exactly one edge, and
a Hamiltonian cycle (of arbitrary cost) in GN satisfying the deadlines.
Problem: Find a minimum-cost Hamiltonian cycle in GN satisfying the deadlines.
By lm(E)-k-DlTSP, lm(E)-∆-DlTSP and lm(E)-k-∆-DlTSP, we denote the canonical special cases of lm(E)-DlTSP.

For our proofs, wewill need some reductions from the following two problems, which can easily be shown to beNP-hard
analogously to the proof of the NP-hardness of the restricted Hamiltonian cycle problem, as presented, e.g., in [10].

Definition 2.5. The restricted Hamiltonian path problem, RHP for short, is the following decision problem:
Input: A graph G = (V , E), two different vertices s, t ∈ V , and a given Hamiltonian path P from s to t .
Output: Yes if G contains a Hamiltonian path starting in s, but ending in some vertex v 6= t , No otherwise.

Definition 2.6. The restrictedHamiltonian path problemwith fixed endpoint, FRHP for short, is the followingdecisionproblem:
Input: A graph G = (V , E), three pairwise different vertices s, t, x ∈ V , and a given Hamiltonian path P from s to t .
Output: Yes if G contains a Hamiltonian path starting in s and ending in x, No otherwise.

3. Bounded number of deadline vertices

We start with the case where only few deadline vertices occur. Note that k-∆-DlTSP can be approximated within a ratio
of 2.5 [5,4]. Furthermore, a lower bound of 2− ε on the approximability, for every small ε > 0, can be proved [5,4]. We will
show that this lower bound also holds for lm(D)-k-∆-DlTSP, even for k = 4.
For the proofwewill distinguish two subproblems, namely increasing and decreasing the deadline of one deadline vertex.

We will start with the increasing case.

Lemma 3.1. Let ε > 0. There is no polynomial-time (2− ε)-approximation algorithm for the subproblem of lm(D)-2-∆-DlTSP
where one deadline is increased by ξ time units, 1 ≤ ξ < n, unless P = NP.

Proof. Bymeans of a reduction, we will show that such an approximation algorithm could be used to solve FRHP. Let ε > 0.
Let (G′, P) be an input instance for FRHPwhere G′ = (V ′, E ′), |V ′| = n+1, s′, t ′, x ∈ V ′, and P is a Hamiltonian path from

s′ to t ′. Pick a γ > 5n+3
2ε (which implies

4γ+n+1
2γ+3n+1 > 2− ε).

We construct a complete weighted graph G = (V , E, c) as part of an input for lm(D)-2-∆-DlTSP as shown in Fig. 1: We
set V := V ′∪̇{s,D1,D2}, and, for any edge e between two vertices v1, v2 ∈ V ′, let c(e) = 1 if e ∈ E ′ and c(e) = 2 otherwise.
All edges depicted in Fig. 1 have the indicated costs while non-depicted edges obtain maximal possible costs that do not
violate the triangle inequality. In particular, all vertices v′ ∈ G′ \ {s′, t ′, x} are connected to D1, D2, and s in the same way as
the depicted vertex v. We set the deadlines d(D1) = γ + n and d(D2) = 2γ + n+ 1.
For these deadlines, one optimal solution C is the cycle s,D1,D2, t ′, . . . , s′, s, which uses the Hamiltonian path P

backwards from t ′ to s′ in G′. It costs exactly γ + 1+ γ + γ + n+ γ = 4γ + n+ 1.
Visiting D1 and all vertices in G′ before D2 is impossible since it would violate the deadline at D2 or D1 in any case: On

the one hand, any solution starting with s,D1, v′, for some v′ ∈ G′, using some path in G′ from v′ to t ′ and then proceeding
to D2 can only satisfy the deadline at D2 if it leaves out some vertex in G′. On the other hand, any solution starting with s, s′
and some partial tour to x and then visiting D1 before returning to G′, also has to leave out some vertex from G′ in order to
obey the deadline at D2. This is due to the fact that including D1 in some tour through G′ incurs an extra cost of at least 2.
Visiting l still unvisited vertices in G′ after D2 incurs an additional cost of at least 2γ + l; thus, a solution of this type cannot
improve over C .
Now, we increase d(D1) by ξ . If G′ contains a Hamiltonian path P ′ from s′ to x, a new optimal solution is s, P ′,D1,D2, s,

and it costs γ + n+ 1+ γ + 2n = 2γ + 3n+ 1. If G′ does not contain such a path, it is not possible to visit all vertices in
G′ before reaching D1 and D2. As c({t ′,D1}) ≥ 2, we cannot follow the given Hamiltonian path P because this would violate
the deadline d(D2). As in the old instance, including D1 in some Hamiltonian path in G′ would violate the deadline at D2.
Similar arguments hold for every other possibility. Hence, C remains an optimal solution in this case. Thus, we could use
any approximation algorithm with an approximation guarantee better than

4γ + n+ 1
2γ + 3n+ 1

> 2− ε

to solve FRHP. This is why approximating this subproblem of lm(D)-2-∆-DlTSPwithin 2− ε is NP-hard. �

Lemma 3.2. Let ε > 0. There is no polynomial-time (2− ε)-approximation algorithm for the subproblem of lm(D)-4-∆-DlTSP
where one deadline is decreased by ξ time units, 1 ≤ ξ < n, unless P = NP.

Proof. Let ε > 0. For the proof, we will use a reduction from RHP.
Let (G′, P) be an input instance for RHPwhere G′ = (V ′, E ′), |V ′| = n+ 1, s′, t ′ ∈ V ′, and P is a Hamiltonian path from s′

to t ′. Pick some γ such that 4γ
2γ+8n > 2− ε.
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Fig. 1. Increasing a deadline. All vertices v′ ∈ V ′ \ {s′, t ′, x} are connected like v.

Fig. 2. Decreasing a deadline. All vertices v′ ∈ V ′ \ {s′, t ′} are connected like v.

We construct a complete weighted graph G = (V , E, c) as part of an input for lm(D)-4-∆-DlTSP as shown in Fig. 2: We
set V := V ′∪̇{s,D1,D2,D3,D4}, and, for any edge e between two vertices v1, v2 ∈ V ′, let c(e) = 1 if e ∈ E ′ and c(e) = 2
otherwise. All edges depicted in Fig. 2 have the indicated costs while non-depicted edges obtain maximal possible costs not
violating the triangle inequality.
The initial deadlines are depicted in Fig. 2. In this setting, an optimal solution is the cycle s,D2,D1, t ′, . . . , s′,D3,D4, s,

which contains the Hamiltonian path P from s′ to t ′. This path costs 2n+ γ − 1 on its way to G′, spends n on the path from
t ′ to s′, and reaches s at time 2γ + 8n− 1. Note that visiting D1 before D2 leads to an additional cost of at least 1 and is thus
not optimal.
Now, we decrease the deadline d(D1) by ξ , whereby the old optimal solution becomes infeasible. Any new solution must

visitD1 beforeD2. If we try to reuse theHamiltonian path from t ′ to s′, we have to spend 2n+γ+1 on theway to t ′. Therefore,
we cannot reach D3 if we follow the complete Hamiltonian path. Furthermore, we cannot visit any vertex v ∈ V ′ between
visiting D3 and D4 because D3 is not reached before 4n+ γ , going back to V ′ would cost another 2n, and the cheapest path
from V ′ to D4 costs more than γ . This is why any solution using a Hamiltonian path between s′ and t ′ violates one of the
deadlines d(D3), d(D4).
If G′ contains a Hamiltonian path P from s′ to some v 6= t ′, the new optimal solution contains this path in reverse on its

way to D3. The path s,D1,D2, P,D3,D4 visits all vertices in V ′ between v and s′ and reaches D3 at time γ + 5n. Therefore,
this new optimal solution costs 2γ + 8n.
If G′ does not contain such a Hamiltonian path, the optimal solution cannot visit all vertices in V ′ before reaching D3

or even D4, and consequently, it is more expensive than 4γ . Thus, we could use an approximation algorithm with an
approximation guarantee better than

4γ
2γ + 8n

> 2− ε

to solve RHP. Hence, approximating this subproblem of lm(D)-4-∆-DlTSPwithin 2− ε is NP-hard. �

Lemmas 3.1 and 3.2 directly imply our main result of this section.

Theorem 3.3. There is no polynomial-time (2− ε)-approximation algorithm for lm(D)-4-∆-DlTSP, unless P = NP. �

4. Unbounded number of deadline vertices

When the number of deadline vertices is unbounded, we are able to show a linear lower bound on the approximability
of lm(D)-∆-DlTSP. Our reduction from RHP involves two steps. A first construction will guarantee that an optimal path
becomes shorter by a constant factor if a Hamiltonian path exists in the RHP instance. A second construction inflates this
advantage. Tours which start at time X , in contrast to those that start between times X + g and X + 2g , may spend some
extra time to visit a group of vertices which, unless visited early, will cause belated tours to run k times zigzag across a huge
distance γ . Note that the construction will be such that tours starting after X + 2g will violate some deadline in any case.
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Fig. 3. The zigzag construction for the proof of Lemma 4.1. The left-hand side shows the optimal path if t is reached at time X . The right-hand side shows
the optimal solution if t is reached after X + g . We set d(Ei+1) := d(Ei)+ γ .

The following lemma describes the construction in detail. See Fig. 3 for an overview.

Lemma 4.1 (Zigzag Lemma). Let X, g, k, γ ∈ N such that k is even and γ ≥ g. Let G∗ = (V ∗, E∗) be a complete graph with
deadline set (s,D∗, d∗) such that any Hamiltonian path in G∗ respecting the deadlines ends in the same vertex t. Then, we can
construct a complete graph G ⊃ G∗ and deadlines (s,D, d) such that D ⊃ D∗, d|D∗ = d∗ and any path P in G∗ that reaches t in
time X can be extended to a Hamiltonian cycle C = PP ′s, where P ′ is a path visiting all vertices outside G∗, which costs at most

X + kg + 2γ ,

while any path that reaches t after X + g, but before X + 2g can only be extended to a Hamiltonian cycle which costs at least

X +
k+ 1
2
g + kγ .

Proof. We construct G = (V , E)with V = V ∗∪{E1, . . . Ek} and edge costs as depicted in Fig. 3. To all other edges, we assign
maximal possible costs that do not violate the triangle inequality. Note that the edge {t, E1} costs exactly the same as the
path Ek−1, Ek−3, . . . , E1.
We set the deadlines

d(E1) := X +
k+ 3
2
g and

d(Ei+1) := d(Ei)+ γ for all i ∈ {1, . . . , k− 1}.

If a path reaches t strictly after X + g , it must proceed immediately to E1. Note that it cannot use any other edge since
it would have to use an edge of an additional cost of at least 32g , then. Together with even the shortest path to E1, this
would violate this deadline. But then, it is forced to follow the sequence E2, E3, . . . , Ek to reach every deadline since even if
it visited E3 before E2, it would incur an extra cost of 32g , and this would violate the deadline of E2. Analogously, proceeding
from E1, E2 directly to E4 would necessarily violate the deadline of E3. Hence, the Hamiltonian cycle costs strictly more than
X + g + k−1

2 g + kγ .
A path that visits t before time X can visit Ek−1, Ek−3, . . . , E3 before E1 because this path to E1 costs at most

X +
3
2
g +

(
k
2
− 2

)
g +

3
2
g = X +

k+ 2
2
g ≤ d(E1).

Closing the cycle to s, we obtain a cost of at most

X +
k+ 2
2
g +

(
k
2
− 1

)
g + 2γ = X + kg + 2γ . �

We will now employ Lemma 4.1 to prove the desired lower bound. Again, we will consider the cases of increasing and
decreasing a deadline separately.

Lemma 4.2. Let ε > 0. There is no polynomial-time
(( 1
2 − ε

)
· |V |

)
-approximation algorithm for the subproblem of lm(D)-∆-

DlTSP where one deadline is increased by ξ for some 1 ≤ ξ < n, unless P = NP.
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Fig. 4. Increasing a deadline: If the deadline for the vertex D1 is increased, using a Hamiltonian path from s to v leads to a new optimal solution.

Proof. By means of a reduction, we will show that such an approximation algorithm could be used to solve RHP.
Let (G′, P) be an input instance for RHP, where G′ = (V ′, E ′), |V ′| = n+ 1, s, t ∈ V ′, and P is a Hamiltonian path from s

to t .
We construct a complete weighted graph G = (V , E, c) from G′ as part of the input for the lm(D)-∆-DlTSP instance as

follows. The graph G contains a subgraph G∗ as shown in Fig. 4 which is then complemented by the zigzag construction from
Lemma 4.1.
We set V ∗ = V ′ ∪ {D1, . . . ,D6} and, for any edge e between two vertices v1, v2 ∈ V ′, c(e) = 1, if e ∈ E ′, and c(e) = 2

otherwise. To the other edges, we assign costs as depicted in Fig. 4, and maximal possible costs not violating the triangle
inequality to the non-depicted edges; all edges from non-depicted vertices from G′ to D1 and D2 get the same costs as the
edges from v. We set the deadlines dO(Di) according to Fig. 4. In particular, the vertex D1 assumes a deadline of 3n − ξ for
some 1 ≤ ξ < n. Additionally, all vertices in G′ assume a deadline of 2n.
To construct the graph GO of our desired lm(D)-∆-DlTSP instance from G∗, we use the zigzag construction defined in

Lemma 4.1 with parameters X = 10n, g = 2n, k ≥ (n + 7) 1−ε
ε
, and γ ≥ 2kn+10n

ε
. This guarantees 2kn + 10n ≤ εγ and

k ≥ (1− ε)(k+ n+ 7) = (1− ε) · |V |.
The given optimal Hamiltonian tour C in G starts in s, uses the given Hamiltonian path P in G′ to t , and afterwards follows

the sequence D1,D2,D3, D4, D5, D6 before entering the zigzag part of G. Hence, it reaches D6 in time 13n. It is easy to see
that C is indeed optimal for the old deadline set: Any tour visiting D2 before D1 will violate the deadline at D1. Following the
zigzag construction, this leads to an overall cost of at least 10n+ k+1

2 g + kγ .
Note that any path alternating between the zigzag part of G and G∗ will necessarily violate the deadline of some yet-to-

be-visited vertex Ei for some i ∈ {2, . . . , k}.
In GN , we change the deadline for D1 from 3n − ξ to dN(D1) = 3n. The tour C remains a feasible solution. If G′

contains a Hamiltonian path from s to some vertex v 6= t , an optimal solution uses this path and follows the sequence
D2,D1,D3,D5,D4,D6. This solution reaches D6 in time 10n. By Lemma 4.1, this cycle has overall costs 10n+ kg + 2γ .
If G′ does not contain any Hamiltonian path to such a vertex v, then C remains the optimal solution. By Lemma 4.1, we

again obtain a cost of 10n+ k+1
2 g + kγ . Together with our choices of the parameters, this leads to a ratio of at least

10n+ k+1
2 · 2n+ kγ

10n+ k · 2n+ 2γ
>

kγ
2kn+ 10n+ 2γ

>
kγ

(2+ ε)γ
=

k
2+ ε

≥
1− ε
2+ ε

(k+ n+ 7) ≥
(
1
2
− ε

)
|V |.

Hence, a polynomial-time ( 12 − ε)|V |-approximation algorithm could be used to solve RHP. �

Lemma 4.3. Let ε > 0. There is no polynomial-time
(( 1
2 − ε

)
|V |
)
-approximation algorithm for the subproblem of lm(D)-∆-

DlTSP where one deadline is decreased by ξ ≥ 1 unless P = NP.

Proof. By means of a reduction, we will show that such an approximation algorithm could be used to solve the RHP. Let
(G′, P) be an input instance for RHP, where G′ = (V ′, E ′), |V ′| = n + 1, s, t ∈ V ′, and P is a Hamiltonian path from s to t .
We construct a complete weighted graph G = (V , E, c) as part of an input for the lm(D)-∆-DlTSP as as follows. The graph
G contains a subgraph G∗ as shown in Fig. 5 which is then complemented by the zigzag construction from Lemma 4.1.
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Fig. 5. Decreasing a deadline: If the deadline for the vertex D2 is decreased, the old optimal solution (depicted on the left side) is not feasible anymore. If G′
contains a Hamiltonian path from s to v, we obtain the depicted new optimal solution. If no such Hamiltonian path exists, the new optimal solution must
follow D2,D1,D3,D5,D4,D6 .

We set V ∗ = V ′ ∪ {D1, . . . ,D6} and, for any edge e between two vertices v1, v2 ∈ V ′, c(e) = 1, if e ∈ E ′, and c(e) = 2
otherwise. For the other edges, we assign the costs as depicted in Fig. 5, andmaximal possible costs not violating the triangle
inequality to the non-depicted edges, and we set the deadlines dO(Di) according to Fig. 5.
Again, we use Lemma 4.1 to extend the graph G∗, using the parameters X = 7n − 1, g = n, k ≥ (n + 7) 1−ε

ε
, and

γ ≥ (k+7)n
ε
. The given optimal solution C uses the Hamiltonian path from s to t and visits D1,D2,D3,D4,D5,D6 afterwards.

D6 is reached at time 7n− 1, therefore the optimal Hamiltonian cycle C costs at most 7n− 1+ kn+ 2γ .
Note that any path alternating between the zigzag part of G and G∗ will necessarily violate the deadline of some yet-to-

be-visited vertex Ei for some i ∈ {2, . . . , k}.
In GN , we change the deadline for D2 as follows: dN(D2) = 3n− ξ for some 1 ≤ ξ < n. The cycle C is no feasible solution

anymore since it visits D2 at time 3n. If G′ contains a Hamiltonian path from s to some vertex v 6= t , an optimal solution for
GN uses this path and follows the sequence D2,D1,D3,D4,D5,D6. It reaches D7 in time 7n. Hence, by Lemma 4.1, extending
it to a Hamiltonian cycle costs at most

7n+ kn+ 2γ .

If G′ does not contain a Hamiltonian path to any vertex v 6= t , an optimal solutionwill visit all vertices in V ′ and thenD2. This
vertex is not reached before 2n+ 1. Thus, following the cheap path D2,D1,D3,D4,D5, the deadline of vertex D5 is violated.
Hence the solution must visit the remaining vertices in the order given by D1,D3,D5,D4,D6. It does not reach D6 before
8n+ 1, hence by Lemma 4.1 the corresponding Hamiltonian cycle costs at least

7n+
k+ 1
2
n+ kγ .

We obtain the ratio

7n+ k+1
2 n+ kγ

7n+ kn+ 2γ
>

kγ
(7+ k)n+ 2γ

≥
kγ

(2+ ε)γ
=

k
2+ ε

≥
1− ε
2+ ε

(k+ n+ 7) =
1− ε
2+ ε

|V | ≥
(
1
2
− ε

)
|V |.

Hence, a polynomial-time ( 12 − ε)|V |-approximation algorithm could be used to solve RHP. �

From Lemmas 4.2 and 4.3 we can directly conclude the following:

Theorem 4.4. Let ε > 0. There is no polynomial-time
(
( 12 − ε)|V |

)
-approximation algorithm for lm(D)-∆-DlTSP, unless

P = NP. �

5. Modifying edge costs

In the previous sections, we have analyzed deadline modifications. In what follows, we will show similar results for local
modifications of edge costs. We start with the case of TSP with only a bounded number of deadlines.
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Fig. 6. Decreasing edge costs: If the cost of the edge {D2,D4} is decreased, using a Hamiltonian path from s to v leads to a new optimal solution.

Theorem 5.1. Let ε > 0. There is no polynomial-time (2 − ε)-approximation algorithm for lm(E)-2-∆-DlTSP even if only the
cost of one edge is changed, unless P = NP.

Proof. Let 1 ≤ α < n. In the case of increasing edge costs, we use the same construction as in Fig. 2. Decreasing the deadline
d(D1) by α can be simulated by increasing the edge cost of {s,D2} by α. Both approaches guarantee that the previous optimal
solution is not feasible anymore. The remainder of the proof is then identical to the proof of Lemma 3.2.
In the case of decreasing edge costs, we reuse the construction from Fig. 1. Here, the deadline d(D1) is set to γ + n+ 1,

the edge e = {D1,D2} now costs γ + 1. In this setting, an optimal solution is still s,D1,D2, t ′. . . . , s′, s. Decreasing the costs
of e by α admits the new optimal solution s, s′, . . . , x,D1,D2, s iff G′ contains a Hamiltonian path from s to x. The remainder
of the proof is identical to the proof of Lemma 3.1. �

Also, for an unbounded number of deadlines, we are able to establish the same lower bounds as for deadline
modifications.

Theorem 5.2. Let ε > 0. There is no polynomial-time
(
( 12 − ε)|V |

)
-approximation algorithm for lm(E)-∆-DlTSP even if only

the cost of one edge is changed by some ξ where 1 ≤ ξ < n, unless P = NP.

Proof. The case of increasing edge costs again is similar to decreasing a deadline. We use the left graph from Fig. 5. If the
costs of the edge {t,D1} increase by some ξ ≥ 1, the old optimal solution is not feasible anymore. Hence, the same argument
as in Lemma 4.3 can be applied.
In the case of decreasing edge costs, we will show, by means of a reduction, that such an approximation algorithm could

be used to solve the RHP. We use a similar construction as in the proofs before, see Fig. 6 for an overview. Let (G′, P) be an
input instance for RHP, where G′ = (V ′, E ′), |V ′| = n+ 1, s, t ∈ V ′, and P is a Hamiltonian path from s to t .
Any solution in the unmodified graphhas to visit the vertices inV ′,D2 andD3 before any other deadline. Note that the path

s, . . . , t,D2,D3,D4,D5 violates the deadline of D5. Therefore, an optimal solution starts with s, . . . , t,D2,D3, D5,D4,D6. It
reaches D6 in time 9n. Now, we decrease the costs of {D2,D4} by 1 ≤ ξ < n. Iff G′ contains a Hamiltonian path from s to
some other vertex v, a new optimal solution is s, . . . , v,D3,D2,D4,D5,D6 and costs 8n+ 1− ξ . Otherwise, a new optimal
solution has to visitD2 beforeD3, leading to the old path s, . . . , t,D2,D3,D5,D4,D6 with costs 9n. Applying the construction
from Lemma 4.1 with parameters X = 8n and g = n and choosing k and γ analogously to the previous proofs, we obtain
the desired gap between these two cases. �

6. Conclusion

In this work, we have shown that the concept of reusing optimal solutions when input instances are locally modified
cannot be used to reduce the complexity of TSP with deadlines. This problem is remarkably hard [5,4], and we have been
able to reestablish almost all known lower bounds on the approximability of its variants in the setting of local modifications.
As an open problem, we state the question how hard it is to approximate locally modified TSP with deadlines in the

near-metric case, where only the relaxed triangle inequality c(u, v) ≤ β(c(u, z) + c(z, v)) holds for any triple u, v, z of
vertices and for some β > 1.
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