
ELSEVIER Journal of Computational and Applied Mathematics 95 (1998) 13-27 

JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

An approach to solutions of systems of linear partial 
differential equations with applications 

H.I .  A b d e l - G a w a d  * 

Department of Mathematics, Faculty of Science, Cairo University, E,qypt 

Received 10 February 1997; received in revised form 10 February 1998 

Abstract 

Initial and boundary value problems governed by a system of linear partial differential equations can be solved by using 
the classical methods. This holds in solving problems which are governed by a unique system of equations over the whole 
region of interest. But if a problem is governed by a given system of equations over a region and by another system 
over the complementary one, classical methods may fail in treating this problem. A typical problem is that of evaluating 
the time-dependent electric field in the conductive half-space (the substratum) as a model in geophysical prospecting. 
The electric field in the air above the substratum is time independent. This problem has been solved numerically. Here, 
we solve it analytically. We proceed by presenting an approach for finding the solutions of systems of linear partial 
differential equations. Eigen operators and fractional powers of matrices of operators have been introduced. The formal 
solutions obtained are adequate for studying initial and boundary value problems whose solutions are anharmonic ones. 
They are used to solve the above-mentioned problem. @ 1998 Elsevier Science B.V. All rights reserved. 

Ke),words. Geophysical prospecting; System of partial differential equations; A method of solution 

I. Introduction 

The theory o f  fractional calculus has been developed remarkably in the last decade. The use o f  
fractional calculus in the applications has the advantage o f  easily tackling problems with complicated 
boundary conditions: For example in problems with discontinuous boundary conditions at the surface 
which separates two media [3]. Also, this holds in solving the problems where the boundary surface 
assumes an arbitrary geometry [4]. A third example is concerning the problems which have to be 
solved over a domain f2 and they are described by a set o f  partial differential equations PDE on 
f21 C (2 and by another set on ~ \(2 c. In this case, the use o f  fractional operators is more feasible. 
A typical example is the problem of  evaluating the electric field in the conductive half-space (the 
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substratum) as a model in geophysical prospecting. The details of  this problem is given in Section 4. 
In what follows we shall develop a method for solving a system of PDE. 

In a set of  papers [1, 2] the author has developed an approach for solving PDE in the form 

Otf (x ,  t) =L(x, t ) f ( x ,  t) + S(x, t), (1.1) 

where L(x, t ) =  ~i~1 ai(x, t)Oix and S is a source function. 
In these papers, we have used fractional power operators to obtain the formal solution of (1.1). 

The present work may be considered as a continuation of  the work done in [1, 2]. Here, we shall 
introduce the notions of  eigenoperators and fractional power of a matrix of operators. 

Now, we consider the system of  PDE 

~ u - _ ~ l u = S  in £2, (1.2) 

where u = (ul,u2 . . . .  ,urn) v, S = (&,S2 , . . .  ,Sin) T, U~ = U/(x,t), S~ = Sj(x, t);  x(xl,x2,x3); j = 1,2 . . . . .  m 
and f 2 = ~  3 × (0, T). In (1.2) 

]~/= (J~ij), J~Ii j Z _ k l s ~ k  l s = uij %, C3x2 C3x 3, 
k,l,s 

where _kls ui/ are constants and i , j  = 1,2, . . . ,m.  
We solve (1.2) when n = 1 and n i> 2 separately for initial value problems 

~37u(x,O)--f(x) ,  r = 0 , 1 , . . . , n - 1 ,  (1.3) 

where f / ( x ) = ( f / l ( X ) , . . . , f j m ( X ) )  r will be assumed to belong to C °~ NL1 on ~3. This condition is 
necessary to continue in finding the solution of (1.2). 

2, Solution of the Eq. (1.2) when n = 1 

In this case Eq. (1.2) becomes 

(•, - / h t ) u  = S in £2, (2.1) 

u(x ,O)=fo (x ) .  (2.2) 

The formal solution of (2.1-2) is [1, 2]. 

u = et/t)Co(X ) + e <'-t' )MS(x, tl ) dtl. (2.3) 

One can easily verify that (2.3) satisfies (2.1-2). To continue with (2.3), we assume that f0 ,S  E C ~ 
(~3) and that partial derivatives of all orders o f f 0  and S belong to L1(~3). Equivalently, f0 and 
S are assumed to belong to the Sobolov space H ~ .  We remark that the commutator [aT/i/,)~Qt ] 
vanishes. Now, we give the following definition: 

Definition 1. The operator L is an eigenoperator of  the matrix of operators M defined on H~(f2)  
such that 37/f# 0 V f c  H ~  if 

IM - Zll  = 6, (2.4) 
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where I is the identity matrix. We shall show that L preserves the properties of (M~j) namely 
[/~k,L~] = 0 and L~ " L l ( ~ 3 ) ~ ( ~  3) for all k,s= 1,2,...,m. 

To this end, we proceed by the following lemma: 

Lemma 2. Under the above assumptions ~I~jfo, I~I, jS  EL~(~ 3) and then 

~j~ and ~k :LI(~3)F__+LI(~)3, kEN.  

We define fractional power of-~/ij namely ~l~/~,0<fl< 1 as ]0i~ =(M~J)  -1 where 

f d2, (2.5) 

where, we bear in mind that the integral in (2.5) converges [7, pp. 5-21]. That is the eigenvalues 
of (M~j) (or their real parts) are all positive. In (2.5), the exponential operator is defined by 

e--~g" -- 2r~il f r  e-~(ZI  -/~7/iJ)-I dz, (2.6) 

where Z 1 -  A~/ij is the resolvant operator. The contour F is chosen with holes about the eigen values 
of ~/,j if they are discrete. But if they are continuous and positive, then F is taken with a semi-circle 
enclosing the positive eigenvalues of-~/ij. 

Lemma 3. Under the conditions in Lemma 1, 

(exp-)d~/ij and)Q/~):Ll(~3)~--~Ll(~3), 0</3<1.  

The proof of this lemma follows from (2.5-6). 

Theorem 4. I f  a matrix o f  operators (l~lij):Ll(~3)~--~Ll(~3), then so will be its eigenoperators 
Lk,S. 

Proof. Any eigenoperator L of (,Q/j) is functional in )Qij. By analogy to (2.5) it can be expressed 
as 

L = d 0 ( ~ )  + d,(Mij, 2) d2, (2.7) 

where G0 is linear in l/~/,j and G1 is expressed as a power series in IL=1 ll2/,kj~. The rest of the proof 
follows from (2.7) and Lemmas 2 and 3. Justification of formula (2.7) can be done by induction 
on m=2,3 ,  . . . .  

As a direct corollary of this theorem, it follows that L-1 "Ll(~ 3) ~ L I ( ~  3). We notice that any 
two eigenoperators commute. 
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We return to (2.3) and distinguish two cases: 
(a) When the eigenoperators of the matrix (/Qi/) are all distinct. In this case (2.3) becomes [9, 

pp. 155-165] (see Appendix) 

m I JO t ) u =  ~ I 2 1 i  d L f o ( x ) +  el~-~')LS(x, t l )d t l  , 
i=1 

(2.8) 

/4i = I I  (/I) - L f l ) ( L i  - L:)  '. (2.9) 
j#i 

By introducing the Fourier transform off0  and S, one can easily find that [1, 2] 

u =  /~ etL,~o(p) + e(t_t,)L,~(p, t l )dh e~p.~, dp (2.10) 
(2re) 3" 

in (2.1 1) (Li,~/)e ipx = Lg((pl, P2, P 3 ) , M ( P l ,  P2, P3))e irx. 
The domain D of the integral in (2.10) is determined such that L~(p~, P2, P3) are positive for all 

i =  l , . . . , m .  
It is important to notice that if all the eigenoperators of ~/ can be expressed in terms of G0 

only (cf. (2.7) then the condition on f0 and S is relaxed to f0, S E Ck(~R 3) N LI(~3), where k is the 
maximum order in (&cij). 

(b) When the eigenoperators of M are not all distinct. We assume that, for simplicity, only one 
eigenoperator, namely LI, is degenerate with degree of degeneracy k. The remaining eigenoperators 
are Lk+l . . . .  ,Lm. In this case, we have 

e t~t = e tL' ~ tr-lgr -- e ^ / ,  
r=l j=k+l 

(2.11) 

where / f j  and B, are given by 

t t l  

~ .  = (2(4 - L, T ) (L ,  - Ls) -k I-I(1(4 - Ls l ) (L ,  - L/) - l ,  
i#j 

(2.12) 

B,=/- ZL, 
j=k+l 

(2.13) 

I!B~ = ( M - L , : ) +  ~ (L, - Lj)Rj, 
j=k+l 

( k -  1)!Bk = ( M -  L,:¢-' + ( - 1 )  k ~ (Z, - Z/)k-'L. 
j=k+ 1 

When substituting (2.11-15) into (2.3), we obtain formulae similar to (2.8-10). 

(2.14) 

(2.15) 
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3. Solution of Eq. (1.2) when n ~> 2 

First, we consider the case n = 2 and S = 0, so that Eq. (1.2) becomes 

( a )  - M ) u  = 0, ( 3 . 1 )  

we rewrite (3.1) in the form 

(0  t __ / ~  1,,'2 )((~t @ j~[I/2 )U = 0. (3.2) 

in (3.2) h)/1'2 =hk/(iQl"2), where 

L f/-i.:2 _ 1 e-}~t21'2 d2. (3.3) 

Again, we bear in mind that the integral in (3.3) converges and exp(-)Lf/)  is defined as in 
Section 2. 

Here, we shall assume that the eigenvalues of  the eigenoperators are all positive. By this assump- 
tion, the convergence of  the integral in (3.3) is guaranteed. 

By using (3.3), the results of  Section 2, and by assuming that the eigenoperators of /Q are distinct, 
we find (see also [9, pp. 155-165]) 

m 

/1)/-''2 = Z Li-'/2/t,, (3.4) 
i = 1  

where /t,. is given by (2.9). Now, we have 

~)/-,..2 = ~I)/(.A)/-,.,2)= ~ [L-,/2(~)/_ Lfl)/~, + L]'2/~,]. (3.5) 
i = I  

By using the Cayley-Hamilton theorem in the linear algebra [9], the first term in (3.5) vanishes. 
In the previous section, we have shown that Li assumes the same properties as (Mij) .  By a similar 

way, we can show that LI ''2 assumes the same properties as L~. Now, the solution of (3.2) is 

uh = e t~' :~k0 + e - t~ '  201" (3.6) 

To continue with (3.6), we distingu!sh two cases: 
(a) When the eigenoperators of M are all distinct. In this case, we use the following theorem: 

Theorem 5. I r A  is a m a t r i x  o f  real  n u m b e r s  (an)  , i , j =  1,2 . . . . .  m and  its e iyenva lues  2, are all  
I , ' 2  

pos i t i ve  and  dist inct ,  then the e igenvalues  o f  A ~/2 are .~ , i =- 1,2 . . . . .  m. 

The proof of  this theorem is direct when m = 2 .  This is done by using the result A~:2= 
(v/-~ + v~: ) (A + ~ I ) .  The generalization for all m E N is immediate. 

I Ill 
As a corollary of this theorem the eigenvalues of A ~'" are /~s' , i = 1,2, . . . ,m. 
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We remark that, Theorem 4 holds for a matrix of operators A~/ if the eigenvalues of its eigen- 
operators are all positive. By using Theorem 4 and the results of the previous section (3.6) it 
becomes 

uh : Z eb~L'2 I2Ii~,tk' (3.7) 
k:0 i=1 

where/4i  is defined by (2.9) and bk satisfies b 2 = 1. 
Thus, for n ~> 2 we have the following theorem: 

Theorem 6. The solution o f  the Eq. (07-~Vl)u=O for &itial functions which are in C°~(~ 3) ALI(~ 3) 
is 

U : ' i ~ k  ( ~ 1 3 '  b k = 1, (3 .81 
k=0 i=1 

where D is determined such that the eigenvalues L/, s are all positive. The proof of  this theorem 
follows from above and the mathematical induction. 

We notice that the arbitrary functions Ok are determined in terms of the initial functions. So that 
they are also in C~(R 3) ALI(R 3) and then (3.8) holds in view of the definition of fractional operator 
and the work in [1, 2]. 

We mention that the case S # 0 can be treated as in Theorem 2 of  [2] 
(b) When the eigenoperators of  A~/ are not distinct, we show that Theorem 4 also holds in this 

case. The continuation in the derivation is done as in (a). 
In the next section, we give an application to the approach developed here. We study the problem 

of evaluating the electric field in the conductive half-space as a model in geophysical prospecting. 

4. Applications 

A formulation of  Maxwell's equations in a conductive medium is used in mining and petroleum 
prospecting [5, 6, 8]. The aim is to identify quantities specifying the electromagnetic properties of 
the substratum from the measuring electric field at the surface. The technique consists of  applying an 
electric current flowing between two electrodes located at the surface and of  measuring the induced 
field in the whole space, which is composed of the substratum and the air above. 

The electric field in a conductive medium is governed by the equation 

c2 , +/~a*~?t +cur l (cur l )  E+l~?J* = 0  in ~C~3 X ( 0 , 0 0 ) ,  (4.1) 

E(x, O )= ~oo (X ). (4.2) 

Eq. (4.1) arises from coupling Maxwell's equations and Ohm's  law. In (4.1), E(x, t) is the electric 
field, J*(x,t)  is the source current and o-*(x) is the electric conductivity. We notice that 

o.,(x) _ J" 0, z > 0 ,  (4.3) 
ao(X), z <O 
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and # is the magnetic permeability. In (4.1), one finds that the first term in bracket describes a 
propagative effect with time scale as zo ~L/c ,  where L is a characteristic length for the electric 
field to vary significantly. That is E vanishes merely for Ix I >L. The second term describes a 
diffusive effect. The corresponding time scale is ~1 ~L/~o'. Thus z0<<Zl and consequently diffusive 
effect persists for long time. Accordingly, we can neglect the first term in (4.1). By writing 

(E+,0,0),  z > 0 ,  (4.4) 
(E, ELL*)= (E-,E0,S), z<0. 

It has been shown that problem (4.1,2) is equivalent to the problem (see [5] Eq. (3.9)]) 

Curl Curl E + = 0, (4.5) 

OJ 
(#ao~t + curl(curl))E- = - / ~ - ,  (4.6) 

E- (x ,O)=Eo(x ) ,  (4.7) 

E+(z  = O) = E - ( z  = 0 ) ,  ( 4 . 8 )  

~E+ (z = O) = OE- --~-z (z = 0). (4.9) ~z 

We notice that the last two equations in (3.9) in [6] are replaced here by (4.8,9). The solution of 
Eq. (4.6) can be written in the form [4] 

1 * -  E**- / E - = E ~ v  + Effv + I (E  ~ + ~ ,, (4.10) 

where E w (Effv) is the part of the solution which corresponds to the initial (boundary) value problem. 
The third term in (4.10) corresponds to the presence of the source term in (4.6). It is decomposed 
into two parts E*-  and E**- .  They may be interpreted as due to mixing of the presence of a source 
and the initial (or boundary) conditions. To go further in the calculations, first, we assume that o0 
is const and #tr0--tr and set E----* E -  - E o ( x ) ,  then (4.6) becomes 

#J* 
(/~tr0dt + curl(curl))E- -- - / t  Ot ' (4.1 1) 

where 

J*(x,  t) = J(x, t ) - t  ~4Eo(x), A~/= (3~/ij) = curl(curl). (4.12) 
# 

where ~/11 =)(/xx :-(~32y + 02) and )(/lxy =O~3y,..., etc. The initial condition (4.7) is then the zero 
condition. Thus, we have 

Elv = 0  

and E*-  is given by 

/o' E~*--  I~ e(,_t,)MOt, j . ( X ,  tl)dtj ' (4.13) 
0" 
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In order to use the approach developed here, we determine the eigenoperators of the matrix of 
operators /~ which are 6 , -  V "2, - ]17 2 and V "2 is the Laplacian in ~3. Thus, the eigenoperators are 
degenerate and we make use of  (4.12-16) to obtain 

e,M = {(1{72)-2(/~ q_ 1~721)2 + e,V-'2/~r { t ( / ~  + ~721) 

--(~72)-1(/~ -at- ~721)2t + i - -  ( - - ~ 7 2 ) - - 2 ( J ~  -] - ~72I) 2 } } .  (4.14) 

By a direct calculation, one finds that 

(1~3/-[- ~72I) 2 = ] 7 2 ( M  ~- I~72I). (4.]5) 

When using (4.15) into (4.14) and after a set of manipulations, (4.14) simplifies to 

e t~t = [[ + ~1(V '2 ) - I ( i  _ eWe/~)]. (4.16) 

Finally, we have 

/0' E*-  - --~ [/~ + ~ / ( V : ) - ' ( i  - e(H')v'-/~)]St, Y* (x , t , ) d t , .  (4.17) 
• - -  O -  

To find E~-v, we notice that the boundary conditions (4.8,9) are given at z = 0. It is convenient to 
rewrite (4.6) as 

[A82 - BSz - C] = Effv = 0, (4.18) 

where (,oo) (o o 
A =  0 1 0 , B =  0 1 .v , 

0 0 0 8x 8>, 

~7= I ~;Sx ~a, Za: 0 ] , 
0 a S , -  V f  

where 2 _  V2 2 v ' ; -  -c~. 

(4.19) 

We remark that the matrix A is singular and not semisimple as its eigenvalues are 1,1 and 0. In 
this case, it is necessary to restrict the vector E to a subspace of ~R 3. Indeed, we solve (4.18) for 
E1 and E2. The component E3 is given accordingly by 

E3 = - C f '  &(OxE,  + ~ E 2 ) ,  (4.20) 

where Cz = a t g , -  V'. 2 and Cz I is defined as in (2.5) when [3= 1. The components Ej and E2 are 
governed by the following equation: 

*_ 6~t -- ~2 y O2xy * 
Cz (~xy (~2ZEBv = 2 2 EBV, (4.21) 

^-J 2 ^-I 2 8y x a 8 , - 8  x C z Oy x 1 + C z 8y 
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where E* v = (El,E2). We operate by the inverse of the matrix of operators in the left-hand side of  
(4.21) to obtain 

2 ~ ^ * -  0.EBv = CzEBv . (4.22) 

We notice that the inverse of a matrix of operators can be defined also as in (2.5) when fi = 1. 
Eq. (4.22) solves to 

AI2 :~ ^ 1 2  

E,*- = e  :c: tko(X,y,t) + e -zc: ck*(x,y,t). (4.23) 

For the reason of finiteness, we set ~* = 0. Finally, we have 

E~v = Ko(t) - K0(0), (4.24) 

Ko( t ) = e "~d~ : d~o(X, y, t ), (4.25) 

where 4~0 = (qS01, ~b02, ~b03), E~-v = (E1,Ez,E3) and by using (4.20), we find 

~)03 ~- - C z  1 (~z(~xq~01 -}- ~y(]~02). ( 4 . 2 6 )  

We remark that Eq. (4.24) satisfies the zero initial condition. 
In a similar way, we have 

E,**- = K,(t)  - K,(O), (4.27) 

K~(t)= -U foZ ( fo~' e'z-Zz'+z'~'e~20,1*(x, y, zz, t)dz,) dz2. (4.28) 

We remark, also, that Eq. (4.27) satisfies the zero initial condition. 
Thus, the solution of  (4.6) is given by (4.10), (4.18), (4.24)-(4.28). The solution of  (4.5) can 

be obtained as by (4.25) but rr = 0, namely, 

E + = e -'t r'~)' :4~(xl ,x2). (4.29) 

To continue with the calculations in view of (4.18), we assume that J and its partial derivatives up 
to second order are in L1(~3). Also, we assume that E0 ELl(N3). The Fourier transforms of Eo,,I 
and E are introduced in view of (4.4). Our aim now is to find the arbitrary vector functions 4~0 and 
~b by using the conditions (4.7-9). The use of these conditions gives rise to 

-ff S-I ~(p l ,  P2)=C~o(pl, p2,s ) -- ~ I2I(pl, P2, P3,S))*(p,s)dp3,  (4.30) 
O 0  

p ± s - ' ~ = C ~ / 2 ~ - i ~  f ~ I Y I ' * p 3 d D 3 ,  (4.31) 

and/-) is given by 

I2I = [S(rS q- p2)]-I 

P~ PIP2 PIP3 

P2PI P~ P2P3 ) , 

P3Pl P3P2 P~ 

where p =  IPl, P = ( P , ,  P2, P3), p2 = p~ + p~, d/~3 = dp3/2~. 

(4.32) 
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Equations (4.29-32) determine the functions 4) and ~b 0 in terms of E0 and J*.  
By solving Eqs. (4.30) and (4.31) for q~0 we find 

/? ~ =  - # s  (1 - ip3)/-1J* @3. (4.33) 
20-(C~-  p±) ~ 

By substituting (4.33) into (4.25) and (4.24)-(4.28) into (4.10) and maintaining only the dominant 
contribution, we have 

H I E *  E**-  # /C+icx~ / [ O'~ /~] J (p , s )  
E -  = ~ (  s - "-~ ) =  2--~ d c - i ~  s p~ ~_ C3 

× e i~x+st d/~ dg, (4.34) 

where fI(p,s)  is given by (4.32), d/~=dp/(2n) 3 and dg--ds/27fi. 
By substituting for J(p,s) and carrying out the integrals in the p space and the s-plane, we obtain 

E, = fo' f *  G(x,t;Xo, to)J,*( Xo, to)dxodto, 

t :~ 

E2=fo f G(x,t;Xo, to)J2*(Xo, to)dxodto, (4.35) 

E3 --= G*( x,t;Xo, to)J*( xo, to)dxodto, 

~ d o where f*  dx0 = dx0 Y0 dz0 and 

G = 3 # 0 3 / 4  e - Q  
to)7/4MT/4,1/4(2Q) - G*, (4.36) 16n3/2 R3/2( t 

G* = 3#0-3/2 e-ZQ 

167~3/2(t - -  t0)5/2' 

Q = (R20-/8(t - to)), R = Ix - x0[ (4.37) 

and Mr, s(z) is the Whittaker function. 
In (4.35), the function G is the Green function which corresponds to the solution of the problem 

in the presence of a current source located at the point (xo, Yo,Zo), and at time to. If x0 = 0, we 
find that the solution (4.35-37) is quasi-Gaussian and symmetric in x and y. The results (4.35-37) 
are displayed in Figs. 1 and 2. Calculations have been carried out for # = 1, 0- = 0.1, E0 = 0 and 
J(x,  t )= Jof(X)f(y)f(z). In Fig. 1, the values of E* = 32rc3/20-Ej3Jo are displayed versus y, z = 0 
and for t = 1,3. It is assumed that J0 = (0,J0,0) and all variables are dimensionless. The results of 
this figure verify the condition (4.8). As the electric field depends on the variable o-It and from the 
results of Fig. 1, we may conclude that it depends weakly on the time and the conductivity. But, it 
depends significantly on o-It. In Fig. 2, a 3D plot with contour lines is done for E*. The results of 
Figs. 1 and 2 agree qualitatively with the numerical results found in [6] (cf. Figs. 5 and 6). 
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Fig. 1. The electric field (normalized) E* is displayed against y when x = z  = 0 and for tr = 0.1. We use the symmetry 
of the results for the electric field in x and y and the parity in y. The solid curve corresponds to the value t = 1 and the 
doted one corresponds to the value t = 3. 

Fig. 2. The electric field E* is displayed against y and - z  for tr = 0.1 and t = 1. 

W e  assume in wha t  fo l lows that the electric conduc t iv i ty  o. is space dependent  and it depends  

only  weak ly  on the depth z. So that, we  can consider  (o-(")/6)<< 1; n~>3, and (o.,/0.)2<< 1, where  

o. '= do./dz. The electric field in the subst ra tum is g iven by  

e :  E?v + Gv + ½( E* + Es ). (4 .38)  

In (4.38) ,  we  have used  the same notat ions  as in case (a).  N o w ,  we  have the same formal  results for  

E *  and E * -  as g iven  b y  (4 .13)  and (4 .17) ,  respect ively,  but  o. = o.(z). To  find Effv , we  combined  

(4 .20)  and (4 .21)  bear ing in mind  that o. depends  on z, we  have  

(,iaz ~ + aaz + ~ )E*¢  = 6 (4 .39)  

( -  1 - ax ~ - a~  + ez '  ] 
(4 .40 )  
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B =  x 
(4.41) 

(4.42) 

where EB*-=(El,E2).  If o-' =0 ,  then (4.39) reduces to (4.22). We multiply Eq. (4.39) from the left 
by A-l to obtain 

(c?~ + ~i-~ J~ctz + .i  -1 ~7)E* v = 0, (4.43) 

where ~ - i  is evaluated according to the definition (2.5) and is given by 

A-I=(lY~t)-I( dz-~-~2~ --~2v ) (4.44) 
-q., " 

After a set of manipulation, we find that 

A - ' d  -d  j ,  A-'B - d :  = = ~ Cz/~. (4.45) 
o" 

For obtaining the above equations, we have used that ~?xC71 = CT~?x and 

~ . j - ,  = _~;2~1~?, + ~.j-, C3z. (4.46) 

We claim that the solution of (4.43) can be written in the form 

EB*- =exp ( /o~ )3(z,, O,, ~tx, ~,. ) dz, ) qKx, y, t ). (4.47) 

It is worth noticing that )3 depends on z as a parameter through the electric conductivity a which 
does not depend either on x or on y. Consequently, the commutator [)3(zl ), )3(z2)] vanishes. So that, 
we have 

&exp( fo~)3dz,)= )3exp( fZ)3dz,). (4.48) 

By substituting (4.47) into (4.43), we find that the operator )3 satisfies the equation 

0 " t  ^ ^ 

&)3I + )321 - Cj-'--BC~)3 = CzI. (4.49) a 
Since the dependence of a on z is not explicitly known, we solve (4.49) approximately in terms of 
the small parameter (a'/a). 

To this end, we make use of the expansion 

)3 = )30 + ~-Y~ + )32 + ' " ,  (4.50) 
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where we look for 330 as the solution of (4.49) as if o- is independent of z. Thus, we have 332 = ~.,  
or 330 = ~,~/2 where the minus sign is discarded for the reason of finiteness. By substituting (4.50) 
into (4.49) and maintaining only terms up to first order in (cr'/o-), we find 

O-it 
0z33  + 733  +233,330 = 6. (4.51) 

It is worth noticing that the third term in (4.47) is of order (a ' / a )  2. Now, equation (4.51) solves to 

Yl-- a'exp(2 fz P0 dz,) • (4.52) 

Finally, the solution of (4.43) is given by 

+ - - e  2 330dz2 dzl 0" .  (4.53) O" 

When bearing in mind Eq. (4.20), the solution E~- v = (EI,Ez,E3) is determined by 

E~v _~ exp (f0-" C~/2 d z , ) ~  [1 + 0 (@)21 .  (4.54) 

In the same way, we have 

E~**- ~ - fo~" .fo~' exp [ ~T C~/2 ds - ~>_~' C~/2 ds] 

xa(z2)c~J*(x,y,z>t)dzzdzl 1 + 0  , (4.55) 

where C: = ~(z)Ot - d~ - ~?~. 
To continue with (4.55) and (4.17) beating in mind that a depends on z, we use the Fourier 

Laplace transform of the vector function J* (  x, t). Then, we have to evaluate the following exp/~e ipx, 
where the operator/q =/-)(a(z),  ~x, ~y) is equal to either ( t / a (z ) )~  2 or to that in the exponential in 
(4.55). By using the assumptions on ~(z) and the results of Ref. [1], we obtain 

exp gr2 eip.x ,,~ e,p.x- ~-r~_, +0{-a-, ) " (4.56) 

We remark that, when substituting (4.56) into (4.17), we obtain mainly the same result for E * -  as 
before. 

Returning to (4.55), as the operator in the exponential is free of 0z, we have directly the result of 

exp(foZCl/2dz'~e i(p'x+p~y)+st ([  dZl) 0z< 2 

ei~ p, x+p:))+st, (4.57) 

where C- = a(z)s + p2 + p2. 
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Fig. 3. The electric field E* is displayed against - z  for x = y = 0 and t = 1. The solid curve corresponds to tr = 0.1 and 
the dotted one corresponds to cr = 0.1 (1 ÷ 0.1 expz). 

In fact as the dependence of  o- on z is implicit, we cannot progress in the calculation. However, 
the results (4.55-57) suggest that we may adopt the formal results (4.35-37) for the electric field 
to hold also when o depends on z. Estimated corrections to these results are of  the order (a'/a):. 
Accordingly, we have evaluated the electric field under the same conditions as in Figs. 1 and 2 by 
taking a = const. = 0.1 and cr varies with z as 0.1(1 + 0.1 expz), z < 0 .  The results are shown in 
Fig. 3. They confirm our theoretical predictions that weak dependence on the depth leads to a small 
correction. 

5. Conclusions 

We have developed an approach for solving systems of  linear PDE. This approach is more adequate 
for finding the (anharmonic) solution of  a given system of  PDE. This situation is produced in 
problems with anharmonic source term. It occurs also in problems where the source term is harmonic 
but is set at a specific value of  time. The present approach can be applied as well for solving 
the problems with complicated initial and boundary conditions. In what concerns the problem of 
evaluating the electric field in the air and substratum as a model in geophysical prospecting, our 
results are in a qualitative agreement with the numerical ones. An important result is that if the 
conductivity depends weakly on the depth then the values of  the electric field deviate from these 
found when tr = const by a small correction. This can be shown after Fig. 3. 
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