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Effective online processing of electroencephalogram (EEG) signals is a prerequisite of brain computer
interfacing (BCI). In this paper, we propose a hybrid method consisting of multivariate empirical mode
decomposition (MEMD) and short time Fourier transform (STFT) to identify left and right hand imaginary
movements from EEG signals. Experiments are carried out using the publicly available benchmark BCI
competition II Graz motor imagery data base. The EEG epochs are decomposed into multiple intrinsic
mode functions (IMFs) by applying MEMD. The most significant mode is subjected to the short time
Fourier transform; the peak of the magnitude spectrum is used as feature representing the corresponding
epoch. The efficacy of the proposed feature extraction scheme is demonstrated by intuitive, statistical and
graphical analyses. The performance of the proposed feature extraction scheme is investigated for various
choices of classifiers. Our findings suggest that k-Nearest Neighbor (kNN) emerges as the best classifica-
tion model yielding 90.71% accuracy. The performance of our method is also compared to that of existing
works in the literature. Experimental outcomes backed by statistical validation manifest that the perfor-
mance of the proposed method is comparable or better than many of the state-of-the-art algorithms.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Brain computer interfacing allows to control and operate com-
puter aided systems by intent alone. The major objective of BCI is
to assist disable people for their rehabilitation. BCI involves detec-
tion, analysis and classification of different types of motor imagery
movements to implement real time control and communication.
Electroencephalogram (EEG) signals are often used for BCI purpose
since it can be implemented as a non-invasive system [1].

There are several categories of EEG-based BCI such as limb
motor imagery classification [2], continuous arm movements
direction detection [3], individual finger movement decoding [4],
forward–backward hand movement prediction [5], P300 evoked
potential based character recognition [6] etc. One major category
of BCI is the detection of motor imagery movements such as left
and right hand movements [7]. Various methods have been devel-
oped in the literature for classifying different types of arm move-
ments. A wavelet-based common spatial pattern (CSP) algorithm
using low frequency features and Fisher linear discriminant classi-
fier is developed to classify fast and slow hand movements in [8].
In [9], filter bank common spatial pattern (FBCSP) is implemented
with mutual information based feature selection and for the iden-
tification task, Naive Bayesian Parzen Window (NBPW) classifier is
used. Wrist movement classification has been done by extracting
gamma band features from wavelet packet transform and employ-
ing radial basis function (RBF) classifier in [10]. Separability of EEG
signals using adaptive auto regressive parameters is proposed in
[11]. Time–frequency optimization and linear discriminant analy-
sis is performed to classify left and right hand movements with
reduced electrodes in [12].

Since EEG data for research purpose can be acquired with vary-
ing experimental setup and conditions, BCI competition was held
providing standard data sets to evaluate and compare different
algorithms. The standard data sets are proved to be representative
in motor imagery and are suitable for BCI research. Different
approaches have been studied to classify motor imagery move-
ments in BCI competition II Graz motor imagery data set. Band
passed EEG signals and power spectral density based linear dis-
criminant analysis (LDA) is proposed in [13]. A Hidden Markov
Model (HMM) based method is presented in [14] by the same
author. Adaptive Auto Regressive (AAR) model based features are
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Fig. 1. (a) Timing scheme of the experiment; (b) electrode positions.
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used with Bayesian Graphical Network (BGN) and Multi Layer Per-
ceptron classifiers in [15,16]. Morlet wavelet is used to extract fea-
tures from mu rhythms that are used in Bayes quadratic classifiers
in [17]. Wavelet coefficient based statistical features and fuzzy
support vector machine (FSVM) classifier is described in [18]. Dis-
crete wavelet transform (DWT) along with autoregressive (AR)
model is used to classify hand movements in [19]. In [20], higher
order statistical features based on bi-spectrum of EEG signals are
extracted to classify mental tasks. Multiple auto-correlation based
feature extraction method along with learning vector quantization
(LVQ) is proposed in [21]. Most recently, discriminative area selec-
tion (DAS) method is implemented with fuzzy Hopfield neural net-
work (FHNN) classifier in [22].

To the best of authors’ knowledge, a hybrid of multivariate EMD
and short time Fourier transform is applied for the first time in EEG
signal processing. The objective of this work is to identify imagery
hand movements by extracting suitable features from EEG signals.
Since EEG signal is invariably nonlinear and non-stationary [23],
fixed linear orthogonal basis functions are not suitable for real life
EEGdata. The underlyingdynamics of EEG signals is spread over var-
ious sub-bands in the frequency domain and particularly for motor
imagery analysis, mu (8–12 Hz) and beta (18–25 Hz) rhythms have
significant importance inneurophysiological context [24]. Empirical
mode decomposition (EMD) has been successfully utilized in the
processing of EEG signals [25,26]. It requires no pre-defined basis
functions as in Fourier or traditional time–frequency transforms.
However, EEG signals are usually multi-channel type whereas the
EMD is applied on a single-channel basis; thus it ignores cross-
channel dependence. Recently, the multivariate EMD (MEMD) has
been introduced which can capture the cross-channel dependency
and can be applied directly to all the EEG channels. Thus, in this
paper the multi-channel EEG signal is decomposed into various
intrinsic mode functions (IMFs) using MEMD. In addition, the 3rd
IMF is shown to bemost significant in terms of energy. Furthermore,
in order to obtain localized information, the most significant intrin-
sic mode function is subjected to STFT and the peaks of the magni-
tude spectrum are used as features. The justification of the
extracted features by this hybridmethod is provided through statis-
tical analysis (ANOVA and Kruskal–Wallis test) and graphical repre-
sentations such as scatter plots, box plots and histograms. The
features are then employed in the kNN classifier to discriminate left
and right hand imagery movements. The performance of the pro-
posed method is extensively studied for different classifiers and
compared with that of other existing techniques.
2. Description of the EEG database

BCI competition II data set (GRAZ motor imagery III) provided
by Technical University of Graz is used in this paper. The data is
acquired from a normal subject while the subject is sitting in a
chair with armrests. The subject is trying to control a feedback
bar by making imagery movements of left or right hands. Left
and right cues are in random order [27]. 7 runs are used with 40
trials for each run. During each trial at 2 s, an acoustic stimulus
indicates the beginning of the trial and a cross ‘+’ is displayed for
1 s. After this an arrow (left or right) is displayed at 3 s as the
cue. At the same time the subject is asked to move a bar into the
direction of the cue which is controlled by adaptive auto-
regressive parameters of channel C3 and C4. The EEG signal is fil-
tered between 0.5 and 30 Hz while the sampling rate is 128 Hz.
The data set has both training and testing trial sets (containing
140 trials in each set) which are randomly selected to prevent
any systematic effect due to feedback. The 140 train trials are
provided with labels using which the test labels are to be
determined. Fig. 1(a) shows the timing scheme of the experimental
procedure while Fig. 1(b) presents the electrodes position of the
EEG signal acquisition system. A detail description of the data set
can be found in [28].
3. Multivariate empirical mode decomposition

Empirical mode decomposition (EMD) is a data driven tech-
nique to decompose a signal into a finite set of band limited basis
functions called intrinsic mode functions (IMFs) [29]. The multi-
variate empirical mode decomposition (MEMD) is recently devel-
oped, where instead of computing the local mean using the
average of upper and lower envelopes like conventional EMD, the
multiple n dimensional envelopes are generated by projecting
the signal along every directions in n variate spaces in MEMD.
These projections are averaged to obtain the local mean.

Let a multivariate signal with n components is denoted by n

dimensional vectors fvðtÞgTt¼1 ¼ fv1ðtÞ;v2ðtÞ; . . . ;vnðtÞg where
xhk ¼ xk1; x

k
2; . . . ; x

k
n denotes a set of direction vectors along the

directions given by angles hk ¼ fhk1; hk2; . . . ; hkðn�1Þg on an ðn� 1Þ
sphere. The steps to compute MEMD is given below [30]:

1. Select suitable points for sampling on an ðn� 1Þ sphere.
2. Calculate projection fphkðtÞgTt¼1 along the direction vector xhk of

the input signal fvðtÞgTt¼1 for all k resulting fphkðtÞgKk¼1 as the
projection set.

3. Find the time instants fthki g corresponding to the maxima of

fphkðtÞgKk¼1.

4. Interpolate ½thki ;vðthki Þ� to obtain multivariate envelope curves

fehk ðtÞgKk¼1.
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5. Calculate the meanmðtÞ of the envelopes for K direction vectors
as
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Fig. 3. 8 IMFs of EEG signal from (a) C3 channel, (b) Cz channel and (c) C4 channel,
respectively.
mðtÞ ¼ 1
K

XK
k¼1

ehkðtÞ: ð1Þ

6. Extract the detail dðtÞ using dðtÞ ¼ xðtÞ �mðtÞ. If dðtÞ fulfills the
stoppage criterion for the IMF, apply the procedure to
xðtÞ � dðtÞ, else apply it to dðtÞ.

Fig. 2 shows the original EEG signals collected from C3, Cz and
C4 channels, respectively. In Fig. 3, 8 IMFs for each channel gener-
ated from MEMD are presented where Fig. 3(a)–(c) show the IMFs
corresponding to C3, C4 and Cz channels, respectively.

4. Analysis in multivariate EMD domain

The multivariate EMD of the EEG signal leads to multiple intrin-
sic mode functions (IMFs). In this study eight IMFs have been
extracted from EEG signal. However, since all IMFs do not change
equally during the two specific movements, they do not have equal
energy. As a result, not all the IMFs are equally significant in the
detection of left and right hand imagery movements. To select
the most significant IMF, we have analyzed the energy variation
of the corresponding IMFs in the same channel during left and right
hand movements. Fig. 4(a) shows that the energy of the third IMF
is significantly greater than any other IMF for left and right hand
movements. Fig. 4(b) shows the energy variation in 8 IMFs during
two imagery movements for all the train data base. It is seen that
energy of the third IMF changes significantly during the two speci-
fic motor imagery movements while for the other seven IMFs, the
change is not appreciable. Since the third IMF has maximum
energy and most significant energy variation, it is selected for fur-
ther analysis.

The selection of the third IMF has two advantages. First, it
enables to reduce the feature dimension by selecting only one
IMF out of eight. Second, by selecting the IMF corresponding to lar-
gest energy variation for the two specific movements as well as
maximum energy, the features extracted from this IMF are
expected to have better discriminating ability.

4.1. Feature extraction from the IMFs

Fig. 5(a) shows the third IMF of MEMD for the two specific
movements. The activation of brain signals for left and right hand
differs in time frequency scale in the IMF and from Fig. 5(a), it is
clear that two signals do not have same range of oscillations at
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Fig. 2. Original EEG signals: collected from (a) C3 channel, (b) Cz channel and (c) C4
channel, respectively.
the same time indicating the signals are effective in different times.
To separate them by extracting suitable features, we need to look
for the ‘‘activated” frequency components of these signals. For ana-
lyzing the activated frequency components, power spectral density
(PSD) is obtained for these two signals. One can see from Fig. 5(b)
that PSD of left and right hand imagery movements are quite sim-
ilar. It indicates that these signals do not have distinguishing fea-
tures in the Fourier domain. To extract effective features for
separating these, we need to perform time frequency analysis to
know in which time what frequency components are more acti-
vate. For analyzing the time frequency property, well established
short time Fourier transform (STFT) is used which gives the oppor-
tunity to view signal spectrum at different time frames or
windows.

Short time Fourier transform is a process to observe how the
frequency content of a signal changes over time [31]. It is calcu-
lated by dividing the long signal into shorter time segments and
then computing the spectrum of each segments or frames. If the
signal xðtÞ is pre-windowed around a time instant t and the Fourier
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transform is calculated at each time instant t, then the STFT of the
signal xðtÞ is expressed as,

STFTðt; f Þ ¼
Z þ1

�1
xðsÞhðs� tÞe�ifs ds ð2Þ

where hðtÞ is the window function [32].
In this work, the STFT is applied to the 3rd IMF for 8 frames

where the Fourier transform is calculated in each frame of the
IMF. Let ‘‘SNðcÞ” denotes the STFT outputs where N indicates the
frame number and c is the channel index (i.e., C3 or C4). For exam-
ple, S1ðC4Þ indicates first frame of the STFT for C4 channel. Fig. 6
(a)–(c) represent the magnitude spectrum of S2ðC3Þ; S3ðC3Þ and
S4ðC3Þ of the third IMF, respectively. From those figures it is easily
visible that the magnitude spectrum of S2ðC3Þ; S3ðC3Þ and S4ðC3Þ of
the third IMF is clearly distinguishable for left and right hand ima-
gery movements and in particular, the peak values for left hand
movements are much higher than for right hand imagery move-
ments in these three frames (i.e., second, third and fourth frames).
As a result, the sum of these three peaks has been used as the fea-
ture. Instead of using three peaks separately as features, the sum
provides extra advantages. It gives emphasis to all three peak val-
ues and not particularly one. Moreover, using the sum as feature,
the feature dimension for a single channel is reduced to one from
three compared to separately using the three peaks.

If FT indicates the feature vector, then it can be expressed as

FT ¼ ½FðC3Þ; FðC4Þ�T ð3Þ
where FðC3Þ and FðC4Þ are the sum of the peak values of the mag-
nitude spectra for C3 and C4 channels from second to fourth frame,
respectively and can be expressed as
FðC3Þ ¼
X4
N¼2

max ðabs ðSNðC3ÞÞÞ

FðC4Þ ¼
X4
N¼2

max ðabs ðSNðC4ÞÞÞ
ð4Þ

here, max indicates the maximum value while abs signifies the
absolute value of SNðcÞ, also known as the magnitude spectrum of
the STFT.

The feature quality of FT has been statistically justified using
one way analysis of variance (ANOVA) and Kruskal–Wallis [33]
p-values. The p-values of ANOVA and Kruskal–Wallis hypothesis
testing for left and right hand imagery movements on train data
set have been given in Table 1. The hypothesis about the
p-values is that the value, p < 0:05 indicates that at least one sam-
ple mean is significantly different than the other sample means
statistically [34]. From Table 1, it is clear that the p-values are very
small. Hence it can be concluded that the features have good
distinguishable property statistically.

In Table 2, we have given p-values of the features for both
ANOVA and Kruskal–Wallis methods if one step analysis is per-
formed. Single step features include maximum of IMF3 (for only
MEMDmethod) and maximum of absolute value of STFT 4th frame
(for only STFT method which is directly performed on original EEG
epochs without MEMD). The two steps hybrid features show
smaller p-values than the single step features which justifies the
proposed ones as superior features.

Apart from ANOVA and Kruskal–Wallis p-values, scatter plots,
box plots and histograms are provided to further illustrate the clas-
sification property of the extracted features. Fig. 7 represents the
scatter plots of FðC3Þ and FðC4Þ features. In Fig. 7, blue circles
and green squares indicate feature values during left and right
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Fig. 6. Magnitude spectrum of the STFT of (a) 2nd, (b) 3rd and (c) 4th frame,
respectively.

Table 1
p-Values of the features.

Analysis name Features p-Values

One way ANOVA F(C3) 8.2750e�08
F(C4) 1.2687e�08

Kruskal–Wallis method F(C3) 6.5038e�06
F(C4) 6.6207e�08

Table 2
Comparison of p-values for different methods.

Analysis name Features p-Values for different methods

MEMD STFT Hybrid

One-way ANOVA F(C3) 0.1253 2.5656e�04 8.2750e�08
F(C4) 0.0680 0.6989e�05 1.2687e�08

Kruskal–Wallis method F(C4) 0.0387 6.2259e�04 6.5038e�06
F(C3) 0.0613 2.1142e�04 6.6207e�08
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hand imagery movements, respectively. Here, the green and blue
markers have significantly different values which indicate the vari-
ation during different imagery hand movements and as a result,
they can be regarded as good separable features to be used in
classifiers.

Fig. 8(a) and (b) show the box plots of FðC3Þ and FðC4Þ, respec-
tively for left and right hand imagery movements on the train data
set. The box plots have non overlapping notches which indicates
that the features have distinct values for the two specific
movements.
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Table 3
Confusion matrix of left and right hand movements classification.

Predicted labels

Ground truth Left Right Sensitivity
Left 60 10 85.71%
Right 3 67 95.71%
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Fig. 9 presents the histograms of FðC3Þ and FðC4Þ during left and
right hand imagery movements on training data where red and
green color indicate left and right hand, respectively. From the his-
tograms, it can be concluded that the corresponding histograms
have peaks in different regions which is the evidence that the fea-
tures show different values during two specified motor imagery
movements. For example, FðC4Þ has peak around 5 for left hand
imagery movements while for right hand imagery movements, it
has sort of uniform distribution in 0–20 region.

The scatter plots, box plots, histograms and the p-values of one
way ANOVA as well as Kruskal–Wallis analysis justify both graph-
ically and statistically that the extracted features (i.e., FðC3Þ and
FðC4Þ) have significantly distinguishable values for left and right
hand motor imagery movements. In other words, the features have
good between-class distance and small within-class variance in the
feature vector space [35] and as a result, they can be used as suit-
able features to classify two hand movements.

4.2. Classification using the kNN classifier

For any classification problem, there are twomain parts – feature
extraction and classification. Feature extraction is the method of
calculating any measure which can represent the observed signal
[36]. If suitable features can be extracted, then a simple classifier
can provide the desired outcome. Among different classifiers, kNN
classifier performs best in our study. k-Nearest Neighbors algorithm
(kNN) is a non-parametric learning algorithmmethod used for clas-
sification. Among the various methods of supervised statistical pat-
tern recognition, the Nearest Neighbor rule achieves consistently
high performance, without a priori assumptions about the distribu-
tions from which the training examples are drawn [37]. In order to
classify a sample trial vector X which has unknown class, kNN
classifier ranks the sample trial’s neighbors among the training trial
vectors and uses the class labels of the K most similar neighbors to
predict the class of the new test trial [38]. The classes of these neigh-
bors are then weighted according to the similarity of each neighbor
where the similarity index is the cosine value between two sample
vectors of Euclidean distance. The cosine similarity index is defined
as

simðX;DjÞ ¼
P

ti2ðX\DjÞxi � dij

jjXjj2 � jjDjjj2
ð5Þ
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Fig. 9. (a), (b) Histograms of FðC3Þ for left and right hand imagery movements,
respectively; (c), (d) histograms of FðC4Þ for left and right hand imagery
movements, respectively.
where X is the test or unknown trial; Dj is the jth training trial; ti is
shared by both X and Dj;dij is the weight for ti in training sample Dj

whereas xi is the weight for ti in X. The l2 norm of X is defined as

jjXjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23 þ � � �

q
ð6Þ

The number ‘‘K” decides how many neighbors influence the classi-
fication. If k ¼ 1, then the algorithm is simply called the nearest
neighbor algorithm.
5. Experimental analysis

The BCI competition II Graz motor imagery EEG data set has 140
trials each for left and right hand (total 280 trials) of 9 s length.
Table 4
Performance Evaluation of different classifiers.

Classifier name Parameter Classification
accuracy (%)

Discriminant
analysis

Linear distance 85.71

Diaglinear distance 85.00
Quadratic distance 85.71
Diagquadratic distance 85.00
Mahalanobis distance 85.71

Naive Bayes Normal distribution 85.00

SVM Linear kernel 86.43
Radial basis 87.14

PNN Radial basis network 87.14
GRNN Radial basis network 87.14

ANFIS Subtractive clustering (‘‘hybrid”) 85.71
Subtractive clustering (back
propagation)

86.43

C-means clustering (‘‘hybrid”) 86.43
C-means clustering (back
propagation)

86.43

kNN Euclidean distance 85.71
Cityblock distance 85.71
Correlation distance 89.29
Cosine distance 90.71



Table 5
Comparison of classification accuracy of different methods.

Method Proposed by Classifier Classification accuracy (%)

PSD Solhjoo et al. [13] Mahalanobis distance 63.1
Gaussian classifiers 65.4
LDA 65.6

AAR Tavakolian et al. [16] Bayes quadratic 82.86
BGN 83.57
MLP 84.29

Morlet wavelet Lemm et al. [17] Bayes quadratic 89.29
Wavelet based features Xu et al. [18] FSVM 87.86
DWT and AR model Xu et al. [19] LDA 90.00

Higher order features Zhou et al. [20] LDA 89.29
Neural network 90.00

Multiple auto correlation Wang et al. [21] LVQ 90.00
Discriminative area selection Hsu [22] FHNN 83.10
Proposed method (MEMD + STFT) kNN 90.71
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Since the cue was given at t ¼ 3 s, data segment after 3 s from C3
and C4 channels are used for classification. So each data segment
for a single channel has a duration of 6 s with 6� 128 ¼ 768 data
points since the sampling frequency is 128 Hz. We have used one
feature from each channel. So the number of feature element is
two per epoch. Thus both the train and test feature matrices have
dimension of 140� 2 which is fed to kNN classifier. kNN classifier
has been trained with the train data set and after training, the label
of the test data set has been determined. These predicted test
labels are compared with ground truth provided by BCI II orga-
nizer. It is to be noted here that all the analysis have been per-
formed only on the train data set to determine the feature
quality and for the training stage of the classifier, only the train
data set has been used. The experiments are carried out using
MATLAB 2013b [34] on Windows-7 32 bit platform having 1 GB
RAM and 2.93 GHz Intel Core 2 Duo processor. Since the feature
dimension is only two, the classification complexity is very low
and using the abovementioned computer setup, it requires only
2 ms for each test trial classification. kNN classifier has two param-
eters to tune: the distance parameter and the ‘‘K” value. The dis-
tance parameter is selected as ‘‘cosine” which means one minus
the cosine of the included angle between points [34]. Another
parameter of kNN classifier is the value of ‘‘K”. For choosing the
optimum ‘‘K” value, we have varied the value of ‘‘K” and it is noted
that for our classification problem, K ¼ 4 gives the highest accu-
racy of 90.71%. Fig. 10 shows the variation of ‘‘Classification accu-
racy (%)” for different ‘‘K” values. From the figure it is clear that for
K ¼ 4, the classifier provides highest accuracy. The classification
accuracy has been calculated as follows:

Classification accuracy ¼ Correctly classified test trials
Total test trials

� 100%

ð7Þ

In some literature, misclassification rate or error rate is calculated
which can be measured by error rate = 100%-classification accuracy
(%).

Table 3 shows the confusion matrix of the two way classifica-
tion problem of left and right hand imagery movements detection
where ‘‘predicted labels” are the output of the kNN classifier while
‘‘ground truth” are the test label provided by the BCI II organizer.
From the confusion matrix, it can be seen that right hand classifi-
cation accuracy is better than left hand. Among 70 trials for right
hand, 67 are classified correctly while for left hand the correctly
detected movements are 60 out of 70.

In this paper, we have also conducted performance comparison
of existing classifiers employing the extracted features in the Graz
motor imagery data set. The classifiers considered includes
probabilistic neural network (PNN), support vector machine
(SVM), generalized regression neural network (GRNN), adaptive
neuro fuzzy inference system (ANFIS), discriminant analysis (DA),
Naive Bayes [39] and k-Nearest Neighbor (kNN) with various
parameters. Table 4 provides the outcomes of different classifiers.
It is seen that kNN classifier with ‘‘cosine” distance gives better
classification accuracy than other classifiers with varying parame-
ters (for ANFIS, ‘‘hybrid” indicates the combination of least squares
with back propagation).

Finally, Table 5 compares the classification accuracy of the pro-
posed method with those of the several other existing methods. It
is observed that using simple kNN classifier, the proposed method
provides better classification accuracy in detecting left and right
hand motor imagery movements than others methods. Another
very positive outcome of our method is that, the feature vector
dimension is only two which reduces the complexity of the classifica-
tion scheme.

6. Conclusions

In this work, the problem of distinguishing left and right hand
imagery movements from EEG signals has been solved by obtain-
ing localized information in the multivariate empirical mode
decomposition and short time Fourier transform based hybrid
domain. The superiority of the algorithm has been confirmed by
statistical hypothesis testing and graphical analysis. The extracted
features have been implemented using various learning algorithms
to study the general performances of the classifiers in EEG based
brain computer interfacing. The accuracy of the classification
scheme is promising and the proposed algorithm has been
evaluated against previously published works yielding satisfactory
outcome. The computational complexity of the classification task is
also practical due to low dimensional feature space. We thus come
into a conclusion, as the experimental results and analysis suggest,
the devised scheme is simple, yet effective and efficient.
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