View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Linear Algebra and its Applications 430 (2009) 795-799

Contents lists available at ScienceDirect

Linear Algebra and its Applications Abpiications

journalhomepage: www.elsevier.com/locate/laa

Some operator monotone functions

Frank Hansen
Department of Economics, University of Copenhagen, Studiestraede 6, DK-1455 Copenhagen K, Denmark

ARTICLE INFO ABSTRACT

Article history: We prove that the functions t — (t9 — 1)(t? — 1)~ are operator

Received 21 July 2008 monotone in the positive half-axis for 0 < p < q < 1, and we cal-

Accepted 18 September 2008 culate the two associated canonical representation formulae. The
result is used to find new monotone metrics (quantum Fisher

Submitted by R.A. Brualdi information) on the state space of quantum systems.

© 2008 Elsevier Inc. All rights reserved.
Dedicated to Professor Jun Tomiyama on his

77th birthday with respect and affection.

Keywords:
Operator monotone function
Morozova-Chentsov function

1. Introduction

We consider the functions

poO10 t50 t#1
t: q th_1° ’ y _l
f® {1, (1 (1)

for positive exponents p and q.
Theorem 1. The function f in (1) is operator monotone for0 <p < q < 1.
Proof. By an elementary calculation we may write

1
f = [ WP +1 — )@-P/Pgy.
0
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For3z>0and 0 <A <1 wehaveO < arg(Az? + 1 — 1) < pn. Thus
0<arg(z’ +1 -0 PP - (q—pyx < 7.

This shows that the integrand function and hence f is operator monotone [9,5,3]. [

Let z = rel withr > 0and 0 < 6 < =. Then the imaginary part
p rPTasin(q — p) —rdsingd + rP sinpd

) ==
V@ q r2p — 2rP cospd + 1

and since f is operator monotone and non-constant, we thus have
rP*9sin(q — p)0 —r9singd + rPsinpo > 0 (2)

forr > 0and 0 < 6 < . We need this result later in the paper.

In the first version of the paper we proved (2) directly to obtain operator monotonicity of f. Then
Furuta gave an elementary proof using the techniques developed in [6, Proposition 3.1]. Finally, Ando
gave the above proof which is the shortest known to the author.

2. Integral representations

Theorem 2. The function f in (1) has the canonical representation
Ft) = Q+B/°° t . AP+ sin(g — p)ymr — Adsingnm + AP sinpr
q qJo At+H) 7(A2P —2AP cospr + 1)
forO<p<qg<1.

dx

Proof. The representing measure of the operator monotone function f is calculated by first considering
the analytic extension f(z) to the upper complex half-plane, cf. [5]. If z = re! approaches areal » < 0
from the upper complex half-plane, thenr — — and  — =. Consequently, the imaginary part

@) — p (=nP*sin(g — p)yw — (=1)9singr + (~»)P sinpx
N q (=22 — 2(=1)P cospr + 1 ’

If z = re' approaches zero from the upper complex half-plane, then 6 is indeterminate but r — 0 and
3f(z) — 0. The representing measure [5, Chapter I, Lemma 1] is thus given by

AP*asin(q — p)yr — A9singr + AP sinpr
duoy="2. q-p q p

dx.
q T(A2P —2)P cospr + 1)

Since f is both positive and operator monotone it is necessarily of the form
o0
t
t) =at+f(0) + f ———du),
f(®©) =at +f(0) Yy 7409
where o > 0 and the representing measure y satisfies

00 1
/ A2+ 1) ldun) <o and / Al du) < oo.
0 0

Finally, since the growth of f(t) is smaller than the growth of t in infinity we obtain « = 0, and the
statement follows.

Theorem 3. Let 0 < p < q < 1. The function f in (1) has the canonical exponential representation

2\ 172
_p(lzcosaz /‘” L_L)
fm_q(l—cosp’;) P f oz ot h)d2,

where
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AP+ sin(q — p)yr — A9singr + AP sinpr
AP+d cos(q — p)mr — Adcosqm — AP cospr + 1

h(n) = %arctan A > 0. (3)

(Notice that 0 < h(x) < 1/2 for every A > 0).

Proof. The exponential representation of f is obtained by considering the operator monotone function
log f (t). The analytic continuation log f (z) to the upper complex half-plane has positive imaginary part
bounded by r, cf. [1,5,7]. The representing measure of log f (t) is therefore absolutely continuous with
respect to Lebesgue measure with Radon-Nikodym derivative bounded by one. We calculate and
obtain the expression

N 1 (r9ei%® — 1)(rPe~1P? — 1)
Slogf(z) = 2i log (rPeiPd — 1)(rde—iq0 — 1)

1y { a+ib ]2
=2 %% (2P — 2rP cospd + 1)1/2(r24 — 2rdcosqo + 1H1/2 | '

where

a=rPtcos(q—p)o —ricosqd —rPcospo +1,
b = rP*9sin(q — p)é — r?sinqd + rP sin pe.
We recognize from (2) that b > 0, and since the imaginary part of (a + ib)? is positive, we obtain that

also a > 0. The expression inside the square is thus a complex number of modulus one in the first
quadrant of the complex plane. It is of the form expi¢(z) for some ¢ (z) with 0 < ¢(z) < /2, where

rPH4sin(q — p)d — rdsin g6 + rP sin pd
rP+d cos(q — p)d —ricosqd — rP cos pd + 1

¢(2) = arctan

and 3 logf(z) = ¢(z). We let z = re?? approach a real A < 0 from the upper complex half-plane and
obtain
(—=A)PHsin(@ — p)r — (—1)9singr + (—A)P sinpr

Slogf () — arctan e @~ Pyr — (C)Tcosqr — (AP cospr 417

The representing measure is thus given by the weight function

APHsin(q — p)r — A9singm + AP sinpr

A >0,
AP+d cos(q — p)mr — A9 cosqr — AP cospr + 1 ~

1
h(n) = — arctan
T
and we obtain the exponential representation

o A 1
fo=ep s+ [ (5 - g ) o]

where g = 9% logf (i). By a tedious calculation we obtain

1 1-cosq%
ﬁ_logp—logq+§logm

and the statement is proved. []

3. Applications to quantum information theory
Definition 4. We denote by %, the set of functions f: R, — Ry satisfying
(i) f is operator monotone,

(i) f(t) = tf (¢~ 1) forall t > 0,
(iii) f(1) = 1.
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The following result was proved in [2, Theorem 2.1].

Theorem 5. A function f € Zp admits a canonical representation

1+¢ T a2-1a-o?

)= ——ex h()da, 4

f® 2 P 0 A+ +At)(1 + 1)2 @) )

where the weight function h : [0, 1] — [0, 1] is measurable. The equivalence class containing h is uniquely
determined by f. Any function on the given form is in .

In addition, for z = re®® with r > 0 and 0 < 6 < =, the weight function h in the above theorem
appears as

hoy =+ lim 3logf@)
T Z—>—A

for almost all » € (0, 1]. Notice thatr — »and ¢ — 7 whenz — —A.
Amonotone metricisamap p — K, (4, B) from the set .4, of positive definite n x ndensity matrices
to sesquilinear forms K, (A, B) defined on M;(C) satisfying:

1. K,(A,A) > 0, and equality holds if and only if A = 0.

2. K,(A,B) = K,(B*,A*) for all p € .4 and all A, B € M(C).

3. p — K,(A,A) is continuous on ., for every A € My(C).

4. K1(,)(T(A), TA)) < K,(A,A) for every p € .4y, every A € Mp(C) and every stochastic mapping
T : Mp(C) — Mpy(C).

A mapping T : M, (C) — Mn(C) is said to be stochastic if it is completely positive and trace preserv-
ing. A monotone metric [4,10] is given on the form
K,(A,B) = Tr A*c(L,,R,)B, (5)

where c is a so called Morozova-Chentsov function and c(L,,R,) is the function taken in the pair of
commuting left and right multiplication operators (denoted L, and R,, respectively) by p. The Moroz-
ova-Chentsov functions are of the form

cx.y) Xy >0, (6)

1
gy’
where g € Zp.

There is an involution f — f# on the set of positive operator monotone functions f defined in the
positive half-axis given by

ffo=te™, t>0,

cf. [8]. It plays a role in the following result.

Theorem 6. The function
_9 oy
XY = Ty
is a Morozova-Chentsov function for 0 < p < q < 1. The generating operator monotone function g in (6)
has the exponential representation
1+t Toer-na-o? (1—q+p
)= ——ex
&0 Pl Groarana+nz 7 2

(Xy)—(l—q+p>/2, xy>0

. + h(A)) d.,

where the weight function h is the restriction to the unit interval of the function given in (3).

Proof. We first notice that the function
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_P -1 i gip2
g(t)—a‘ﬁt , t>0 (7)

generates c(x,y) according to (6). We thus have to prove that g € %, for 0 < p < g < 1. Choosing the
function f as defined in (1), we obtain

) = t1-9Pf(t), t>0.

Since obviously the function

VEOft ) =t P2ft), >0

is a fix-point under the involution # and the geometric mean is operator monotone, we obtain g € Fap
as desired. We have thus proved the first part of the theorem. Setting z = re! forr > 0and0 < ¢ <«
we calculate that

1-q+
Jlogg2) = %

The result now follows by Theorem 5 and the remarks below. []

0+ 3logf(z).
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