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We prove that the functions t → (tq − 1)(tp − 1)−1 are operator

monotone in the positive half-axis for 0 < p � q � 1, and we cal-

culate the two associated canonical representation formulae. The

result is used to find new monotone metrics (quantum Fisher

information) on the state space of quantum systems.
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1. Introduction

We consider the functions

f (t) =
{

p
q · tq−1

tp−1
, t > 0, t /= 1,

1, t = 1
(1)

for positive exponents p and q.

Theorem 1. The function f in (1) is operator monotone for 0 < p � q � 1.

Proof. By an elementary calculation we may write

f (t) =
∫ 1

0
(λtp + 1 − λ)(q−p)/pdλ.
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For �z > 0 and 0 < λ < 1 we have 0 < arg(λzp + 1 − λ) < pπ . Thus

0 < arg(λzp + 1 − λ)(q−p)/p < (q − p)π � π.

This shows that the integrand function and hence f is operator monotone [9,5,3]. �

Let z = reiθ with r > 0 and 0 < θ < π . Then the imaginary part

�f (z) = p

q
· r

p+q sin(q − p)θ − rq sin qθ + rp sin pθ

r2p − 2rp cos pθ + 1

and since f is operator monotone and non-constant, we thus have

rp+q sin(q − p)θ − rq sin qθ + rp sin pθ > 0 (2)

for r > 0 and 0 < θ < π . We need this result later in the paper.

In the first version of the paper we proved (2) directly to obtain operator monotonicity of f . Then

Furuta gave an elementary proof using the techniques developed in [6, Proposition 3.1]. Finally, Ando

gave the above proof which is the shortest known to the author.

2. Integral representations

Theorem 2. The function f in (1) has the canonical representation

f (t) = p

q
+ p

q

∫ ∞

0

t

λ(t + λ)
· λp+q sin(q − p)π − λq sin qπ + λp sin pπ

π(λ2p − 2λp cos pπ + 1)
dλ

for 0 < p � q � 1.

Proof. The representingmeasure of the operatormonotone function f is calculated byfirst considering

the analytic extension f (z) to the upper complex half-plane, cf. [5]. If z = reiθ approaches a real λ < 0

from the upper complex half-plane, then r → −λ and θ → π . Consequently, the imaginary part

�f (z) → p

q
· (−λ)p+q sin(q − p)π − (−λ)q sin qπ + (−λ)p sin pπ

(−λ)2p − 2(−λ)p cos pπ + 1
.

If z = reiθ approaches zero from the upper complex half-plane, then θ is indeterminate but r → 0 and

�f (z) → 0. The representing measure [5, Chapter II, Lemma 1] is thus given by

dμ(λ) = p

q
· λp+q sin(q − p)π − λq sin qπ + λp sin pπ

π(λ2p − 2λp cos pπ + 1)
dλ.

Since f is both positive and operator monotone it is necessarily of the form

f (t) = αt + f (0) +
∫ ∞

0

t

λ(t + λ)
dμ(λ),

where α � 0 and the representing measure μ satisfies∫ ∞

0
(λ2 + 1)−1dμ(λ) < ∞ and

∫ 1

0
λ−1dμ(λ) < ∞.

Finally, since the growth of f (t) is smaller than the growth of t in infinity we obtain α = 0, and the

statement follows.

Theorem 3. Let 0 < p � q � 1. The function f in (1) has the canonical exponential representation

f (t) = p

q

(
1 − cos q π

2

1 − cos p π
2

)1/2

exp

∫ ∞

0

(
λ

λ2 + 1
− 1

λ + t

)
h(λ)dλ,

where
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h(λ) = 1

π
arctan

λp+q sin(q − p)π − λq sin qπ + λp sin pπ

λp+q cos(q − p)π − λq cos qπ − λp cos pπ + 1
λ > 0. (3)

(Notice that 0 � h(λ) � 1/2 for every λ > 0).

Proof. The exponential representation of f is obtained by considering the operatormonotone function

log f (t). The analytic continuation log f (z) to the upper complex half-plane has positive imaginary part

bounded by π , cf. [1,5,7]. The representing measure of log f (t) is therefore absolutely continuous with

respect to Lebesgue measure with Radon–Nikodym derivative bounded by one. We calculate and

obtain the expression

� log f (z) = 1

2i
log

(rqeiqθ − 1)(rpe−ipθ − 1)

(rpeipθ − 1)(rqe−iqθ − 1)

= 1

2i
log

[
a + ib

(r2p − 2rp cos pθ + 1)1/2(r2q − 2rq cos qθ + 1)1/2

]2
,

where

a = rp+q cos(q − p)θ − rq cos qθ − rp cos pθ + 1,

b = rp+q sin(q − p)θ − rq sin qθ + rp sin pθ.

We recognize from (2) that b > 0, and since the imaginary part of (a + ib)2 is positive, we obtain that

also a > 0. The expression inside the square is thus a complex number of modulus one in the first

quadrant of the complex plane. It is of the form exp iφ(z) for some φ(z) with 0 < φ(z) < π/2, where

φ(z) = arctan
rp+q sin(q − p)θ − rq sin qθ + rp sin pθ

rp+q cos(q − p)θ − rq cos qθ − rp cos pθ + 1

and � log f (z) = φ(z). We let z = reiθ approach a real λ < 0 from the upper complex half-plane and

obtain

� log f (z) → arctan
(−λ)p+q sin(q − p)π − (−λ)q sin qπ + (−λ)p sin pπ

(−λ)p+q cos(q − p)π − (−λ)q cos qπ − (−λ)p cos pπ + 1
.

The representing measure is thus given by the weight function

h(λ) = 1

π
arctan

λp+q sin(q − p)π − λq sin qπ + λp sin pπ

λp+q cos(q − p)π − λq cos qπ − λp cos pπ + 1
λ > 0,

and we obtain the exponential representation

f (t) = exp

[
β +

∫ ∞

0

(
λ

λ2 + 1
− 1

λ + t

)
h(λ)dλ

]
,

where β = � log f (i). By a tedious calculation we obtain

β = log p − log q + 1

2
log

1 − cos q π
2

1 − cos p π
2

and the statement is proved. �

3. Applications to quantum information theory

Definition 4. We denote byFop the set of functions f :R+ → R+ satisfying

(i) f is operator monotone,

(ii) f (t) = tf (t−1) for all t > 0,

(iii) f (1) = 1.
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The following result was proved in [2, Theorem 2.1].

Theorem 5. A function f ∈ Fop admits a canonical representation

f (t) = 1 + t

2
exp

∫ 1

0

(λ2 − 1)(1 − t)2

(λ + t)(1 + λt)(1 + λ)2
h(λ)dλ, (4)

where the weight function h : [0, 1] → [0, 1] is measurable. The equivalence class containing h is uniquely

determined by f . Any function on the given form is inFop.

In addition, for z = reiθ with r > 0 and 0 < θ < π , the weight function h in the above theorem

appears as

h(λ) = 1

π
lim
z→−λ

� log f (z)

for almost all λ ∈ (0, 1]. Notice that r → λ and θ → π when z → −λ.

Amonotonemetric is amapρ → Kρ(A,B) from the setMn of positivedefiniten × ndensitymatrices

to sesquilinear forms Kρ(A,B) defined on Mn(C) satisfying:

1. Kρ(A,A) � 0, and equality holds if and only if A = 0.

2. Kρ(A,B) = Kρ(B∗,A∗) for all ρ ∈ Mn and all A,B ∈ Mn(C).

3. ρ → Kρ(A,A) is continuous onMn for every A ∈ Mn(C).

4. KT(ρ)(T(A), T(A)) � Kρ(A,A) for every ρ ∈ Mn, every A ∈ Mn(C) and every stochastic mapping

T : Mn(C) → Mm(C).

A mapping T : Mn(C) → Mm(C) is said to be stochastic if it is completely positive and trace preserv-

ing. A monotone metric [4,10] is given on the form

Kρ(A,B) = Tr A∗c(Lρ ,Rρ)B, (5)

where c is a so called Morozova–Chentsov function and c(Lρ ,Rρ) is the function taken in the pair of

commuting left and right multiplication operators (denoted Lρ and Rρ , respectively) by ρ. The Moroz-

ova–Chentsov functions are of the form

c(x, y) = 1

yg(xy−1)
, x, y > 0, (6)

where g ∈ Fop.

There is an involution f → f # on the set of positive operator monotone functions f defined in the

positive half-axis given by

f #(t) = tf (t−1), t > 0,

cf. [8]. It plays a role in the following result.

Theorem 6. The function

c(x, y) = q

p
· x

p − yp

xq − yq
(xy)−(1−q+p)/2, x, y > 0

is a Morozova–Chentsov function for 0 < p � q � 1. The generating operator monotone function g in (6)

has the exponential representation

g(t) = 1 + t

2
exp

∫ 1

0

(λ2 − 1)(1 − t)2

(λ + t)(1 + λt)(1 + λ)2

(
1 − q + p

2
+ h(λ)

)
dλ,

where the weight function h is the restriction to the unit interval of the function given in (3).

Proof. We first notice that the function
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g(t) = p

q
· t

q − 1

tp − 1
t(1−q+p)/2, t > 0 (7)

generates c(x, y) according to (6). We thus have to prove that g ∈ Fop for 0 < p � q � 1. Choosing the

function f as defined in (1), we obtain

f #(t) = t1−q+pf (t), t > 0.

Since obviously the function√
f (t)f #(t) = t(1−q+p)/2f (t), t > 0

is a fix-point under the involution # and the geometric mean is operator monotone, we obtain g ∈ Fop

as desired. We have thus proved the first part of the theorem. Setting z = reiθ for r > 0 and 0 < θ < π

we calculate that

� log g(z) = 1 − q + p

2
θ + � log f (z).

The result now follows by Theorem 5 and the remarks below. �
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