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Abstract The nature of the electrostatic barrier for proton
transport in aquaporins is analyzed by semimacroscopic and
microscopic models. It is found that the barrier is associated with
the loss of the generalized solvation energy upon moving from the
bulk solvent to the center of the channel. It is clarified that our
solvation concept includes the effect of the protein polar groups
and ionized residues. The nature of the contributions to the
solvation barrier is examined by using the linear response
approximation. It is found that the residues in the NPA region
contribute much less than what would be deduced from calcu-
lations that do not consider the protein reorganization. It is
clarified that the contributions of different structural or electro-
static elements to the solvation barrier can be established by
removing these elements and examining the corresponding effect
on the barrier height. Using this definition and ‘‘mutating’’ the
NPA residues to their non-polar analogues establishes that these
residues do not provide the major contribution to the solvation
barrier.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
1. Introduction

Aquaporins are membrane proteins that allow efficient

transfer of water molecules through cell membrane [1,12],

while preventing the transport of protons. The origin of this

water/proton selectivity is a subject of a major current interest

[45] both as a special feature of aquaporin and as a possible

clue and guide for studies of the general issue of proton

translocations (PTR) in biological systems (for a reviews on

general studies of biological PTR, see [11]). Early studies (e.g.,

[9,37]) suggested that the barrier for PTR in aquaporin may be

due to orientational effects that disrupt the structure of the

water chain from the optimal arrangement needed presumably

for an efficient proton transport. Such proposals were inspired

by the major role played by the so-called Grotthuss mechanism

in PTR in bulk water [8,13,39,46] and by the proposal that

such mechanisms also control biological PTR [29]. However,

recent works [6,7,10,17,18] appear to conclude that this is due

to the electrostatic barrier of the transferring proton, in

agreement with the earlier general proposal [31,40] which ar-

gued that PTR in proteins is controlled by electrostatic bar-

riers. What remains somewhat controversial, however, is the

origin of the electrostatic barrier and its magnitude. Some
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workers have attributed the barrier to special structural ele-

ments [10,18], and in particular to the so-called NPA motif

[17,18,45]. On the other hand, Burykin and Warshel [6] con-

cluded that although the electrostatic barrier reflects all the

electrostatic contributions of the channel (polar and non-

polar) the barrier will remain very high even when these con-

tributions are removed.

A part of the problem in analyzing the origin of the barrier

might be due to the use of different methods, including some

that have not been validated in studies of known electrostatic

contributions and pKa calculations. The problem also reflects

the fact that most of the reported studies have not examined

the actual contributions of different residues by removing these

residues.

The validation of different proposals has been perhaps slo-

wed because of the implicit assumption that PTR processes in

proteins are mainly controlled by the orientation of the water

molecules (e.g., [29]) rather than by electrostatic energy of the

transferred proton. However, now when the empirical valence

bond (EVB) and other models demonstrated that the PTR

profile follows the electrostatic profile (at least in aquaporin); it

is possible to focus on the nature of the electrostatic barrier.

This paper will report the results of two complimentary ap-

proaches and will quantify the origin of the activation barrier.

The paper will also clarify some misunderstandings about the

concept of ‘‘solvation’’ by the protein and the ways to examine

group contributions.
2. Materials and methods

Accepting, at least for the purpose of this paper, the idea that
the PTR profile follows the electrostatic profile of the transferred
proton when the barrier is relatively high (for quantitative dem-
onstration see [5]), we can focus on the electrostatic profile. In
fact, since we are interested in a proton transfer process we should
focus on the electrostatic contributions to the protonation energies
(and the corresponding pKa values) of the different proton-
ation sites, which are nevertheless determined by the electrostatic
profile.
Now, in searching for accurate models for evaluation of pKa values

in heterogeneous and sometimes highly charged protein environments,
it is important to realize that some formally rigorous methods may not
provide converging results, and it is useful to choose methods that have
been validated extensively. Thus, we will use here two approaches, the
semimacroscopic PDLD/S-linear response approximation (LRA) ap-
proach and the microscopic LRA approach [23,32]. These approaches
will be briefly described below.
One of the most rigorous ways of evaluating electrostatic free en-

ergies is the so-called free-energy perturbation (FEP) method [38,47].
The FEP method evaluates the free energy associated with the change
of the potential surface from U1 to U2 by gradually changing the po-
tential surface using the relationship (e.g. [44]):
ation of European Biochemical Societies.
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Um kmð Þ ¼ U1 1ð � kmÞ þ U2km ð1Þ

where km is a parameter that changes between (06 km 6 1). The free-
energy increment, associated with the change of Um, can be obtained
by [38]

exp f � dG kmð ! km0 Þbg ¼ exp fh � Um0ð � UmÞbgim ð2Þ

where h im indicates that the given average is evaluated by propagating
trajectories over Um. The overall free-energy change is now obtained by
changing km in n equal increments and evaluating the sum of the
corresponding dG:

DG U1ð ! U2Þ ¼
Xn�1

m¼0

dG kmð ! kmþ1Þ ð3Þ

The FEP approach was introduced to studies of electrostatic energies
in proteins in [44] and has been used extensively in studies of free
energies of biological systems (e.g., [21,35]).
In many cases, it is very hard to perform converging FEP calcula-

tions (e.g., binding of large ligands). In such cases, it is extremely useful
to estimate the free energy of biological processes by an equation de-
rived by [23] and used in studies of ligand binding to proteins [14,32].
This equation expresses the free energy associated with changing the
potential of the system from U1 to U2 by

DG U1ð ! U2Þ ¼ 1
2

U2h
�

� U1i1 þ U2h � U1i2
�

ð4Þ

The derivation of this equation was based on the assumption that the
LRA is valid. Namely, the protein and solvent environments respond
linearly to the force associated with the given process. This assumption
is, in fact, the basis of macroscopic theory where the free energy of
charging an ion of a charge Q0 is given by the well-known expression

DGðQ ¼ 0 ! Q ¼ Q0Þ ¼ 1=2 UðQ0Þh iQ0
ð5Þ

where U is the electrostatic potential of the given charge [42]. This
expression corresponds to the first term of Eq. (4) and gives an ex-
cellent approximation for the solvation energy of ions in water. The
second term of Eq. (4) becomes important in the heterogeneous envi-
ronment of proteins.
Although it is somehow hard to accept that the LRA can provide a

reliable way of describing the energetics of macromolecules or of re-
alistic molecular systems, it was found by simulation studies that it is a
reasonable approximation, in particular for processes that depend on
electrostatic effects [3,15,22].
The use of the LRA offers the unique ability to decompose elec-

trostatic free energies of proteins to their individual additive contri-
butions [27]. Such a treatment cannot be accomplished by FEP
approaches due to their non-additive nature. The individual LRA
contribution of the ith group is given by:

DGi U1ð ! U2Þ ¼ 1
2

Ui
2

��
� Ui

1

�
1
þ Ui

2

�
� Ui

1

�
2

�
ð6Þ

While the LRA contribution gives the correct additive components of
the total free energy, they do not relate to the corresponding mutational
effects. That is, the effect of mutating a given residue should be obtained
by performing LRA analysis for the native and mutant form of this
residue. Furthermore, the LRA results should be compared to the cor-
responding results in water (as is done in the PDLD/S-LRA approach
discussed below). A reasonable estimate of the effects of mutations can
be obtainedby using an effective dielectric constant and scaling down the
interactions with ionized residues by �20–40 while scaling down inter-
actions with polar residues by �2–4 (see [26,28] for discussion).
Despite the formal rigor of the FEP and LRA methods, it was found

frequently that such methods are subjected to major convergence
problems when one deals with electrostatic effects in protein interiors,
and that semimacroscopic models can sometimes give more reliable
results. This is true in particular with regards to the PDLD/S-LRA
method [24,33] that provides a direct link between the microscopic and
macroscopic concepts. This method evaluates the change in solvation
free energies upon transfer of a given ligand (H3O

þ in our case) to the
protein by using the effective potential [24]

DUw!p
sol;l ¼

h
� DGw

q;l þ DGw
p qð ¼ qlÞ � DGw

p qð ¼ 0Þ
i 1

ep

�
� 1

ew

�

þ DUql
1

ep
ð7Þ
where DGw
sol;l is the free energy of solvation of the ligand in water (the

self-energy in water), DGw
p ðq ¼ qlÞ and DGw

p ðq ¼ 0Þ are the free energies
of solvation of the entire protein in water with actual fractional charges
on the atoms of the ligand (‘‘the charged state’’) and with fractional
charges on the atoms of the ligand set to zero (‘‘the uncharged state’’),
respectively. DUql is the vacuum interaction between the atomic
charges on the ligand and the permanent dipoles of the protein (rep-
resented by the residual atomic charges), ew is the dielectric constant of
water, and ep is the dielectric constant of the protein, which is basically
a semimacroscopic scaling factor that accounts for the interactions
that are not considered explicitly. This factor is quite different than the
actual protein dielectric constant (see [30]).
To capture the physics of the reorganization of the protein dipoles

in the charging process, it is necessary to relax the protein structure in
the relevant charged and uncharged states. Moreover, for accurate
free-energy differences, several protein configurations should be av-
eraged. The configurational space can be adequately sampled by
utilizing Monte Carlo or molecular dynamics (MD) techniques [2]. In
this study, we use a MD approach in the LRA framework described
above. This approach approximates the free energy associated with a
transformation between the charged and uncharged states by aver-
aging the potential difference between the initial and final states over
trajectories propagated on these two states. Using the PDLD/S free
energy that corresponds to each protein structure as an effective po-
tential in the PDLD/S-LRA method, the free energy of solvation is
given by

DDGw!p
sol;i ¼ 1

2
DUw!p

sol;i

D E
q¼qi

�
þ DUw!p

sol;i

D E
q¼0

�
ð8Þ

where the DUw!p
sol;i is the PDLD/S effective potential of Eq. (7), the h iq¼qi

and h iq¼0 terms designate an average over protein configurations
generated in the charged and uncharged state of the given group, re-
spectively. Although this approach takes into account the reorgani-
zation of the environment explicitly, it may not fully account for some
effects such as the complete water penetration and protein reorgani-
zation. These factors and the effect of induced dipoles are implicitly
included in the model, which lead to the use of ep in this semimacro-
scopic treatment (e.g., see [30]).
The basic PDLD/S-LRA calculations are performed by starting with

all the protein groups in their neutral form. The effect of ionizing these
groups is then evaluated macroscopically by finding their ionization
state in a self-consistent way [33] and then evaluating the effect (in kcal/
mol) of these groups using

DGqqðrÞ ¼ 332=ðreeffðrÞÞ ð9Þ

where r is the distance between the interacting groups and eeff is an
effective dielectric constant whose value is determined by a distance-
dependent function [24,43]. The justification of this approximation is
discussed in detail elsewhere [24,30,33]. Basically, e for charge–charge
interaction reflects the compensation of the gas phase Coulomb in-
teraction between the charges by the solvation effect of the protein plus
solvent system. This compensation has been found to be unexpectedly
large even for charge–charge interaction in the protein interior, leading
to a large effective eeff (between 20 and 40). This fact has been estab-
lished repeatedly by both theoretical and experimental studies (e.g.,
[19,34]). It is also important to realize that eeff is not equal (and typi-
cally much larger) than the dielectric constant ep, that determines
DDGw!p

sol (see [30] and discussion below).
The present study was performed on the AQP1 aquaporin water

channel (pdb entry 1J4N, see [36]) considering the simulation system
shown in Figs. 1 and 2(A). The construction of this system is described
in [6] and here we only provide some key details and mention that the
PDLD/S-LRA calculations considered two water molecules (on each
side of the H3O

þ ion) in an explicit way.
The PDLD/S-LRA calculations involved as usual two steps (e.g.,

[33]), first running microscopic MD simulations to generate protein
configurations for the charged and uncharged states, and then aver-
aging the PDLD/S results for the generated configurations. The MD
runs were performed with the polarizable ENZYMIX force field [24].
All the PDLD/S-LRA calculations were performed by the automated
procedure of the MOLARIS program [24], where we generated typi-
cally 10 configurations for the charged and uncharged states, using
MD simulations of 2 ps, with a 1 fs time step, for each configuration.
The calculations were done using the surface constraint all atom sol-
vent (SCAAS) model [20] and the local reaction field (LRF) long range



Fig. 1. The all-atom simulation system (spherical boundary condi-
tions). The aquaporin monomer is embedded in a grid of 30� 20� 20
�A size and 2.5 �A spacing of carbon-like atoms that represent the low
dielectric membrane. An H3O

þ ion (shown in yellow) is placed in the
center of the channel at the NPA region. The water clusters on both
sides of the channel represent the SCAAS sphere used in the simula-
tions.
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treatment [25].The microscopic LRA calculations were obtained in an
automated way from the MD simulations used to generate the PDLD/
S configurations.
Fig. 2. (A) Simplified representation of AQP1 water channel. The
protein and the NPA residues are shown using ‘‘cartoon’’ and ‘‘lico-
rice’’ representations, respectively. (B) The PDLD/S-LRA profile for
transferring an H3O

þ ion along the aquaporin pore both with (solid
line) and without (dotted line) the effect of the ionizable residues. The Z
axis corresponds to the channel axis (according to Fig. 2(A)) where
Z ¼ 0 �A corresponds to the center of the channel.
3. Results

As a starting point, we evaluated the overall PDLD/S-LRA

electrostatic barrier for the transfer of an H3O
þ ion through

AQP1. The results of the calculations, which are depicted in

Fig. 2(B), indicate, as was found before [6], that there is a high

barrier of about 17 kcal/mol at the center of the channel. Our

task is now to determine the origin of this high barrier.

The examination of the nature of the barrier was performed

by both the PDLD/S-LRA and the microscopic LRA ap-

proaches. The results of the PDLD/S-LRA calculations are

summarized in Tables 1 and 2 as well as in Fig. 3. The PDLD/

S-LRA results of Table 1 are given relative to water. As seen

from the table the difference between the energy in the center

of the channel and near the entrance is due mainly to the DGw
p

term that reflects the solvation of the charge by the bulk water

and by the explicit water molecules, excluding the two water

molecules on both sides of the H3O
þ ion. Obviously an H3O

þ

in the center is not solvated significantly by the bulk solvent

while the salvation of an H3O
þ at the entrance of the channel

has a significant contribution from the bulk solvent. Interest-

ingly, the effect of the protein dipoles (the DUql contribution)

is not large. This point will be discussed below.

Another way to look at our results is to examine the mi-

croscopic (all atom) LRA calculations of Table 2. This table

provides the absolute solvation energy in water and in the

protein sites. Here, we see the same trend as in Table 1 but

without the scaling by ep. A part of this compensating effect is
provided by the energy of the induced dipoles (DGind). The

difference between the barrier heights obtained by both ap-

proaches will be discussed below.

The results of the LRA analysis are also displayed in a

graphical way in Fig. 3. Here, again we see the overwhelming

effect of the solvation by the surrounding water and the fact

that the overall ‘‘solvation’’ in the protein is significantly

smaller than in water. This is due to the fact that the sum of the

different contributions does not provide as much stabilization

as water does. The implication of this desolvation effect is of

significant interest, because it is quite different from the per-

ception [45] that the NPA region leads to a large repulsion of

the positive charge. That is, the present work has found that

the overall effect of the protein permanent dipoles inside the

channel (the DGðiiÞ
ql of Table 2) does not provide enough sol-

vation to compensate for the lose of solvation by the bulk

solvent (DGw
sol). However, it was also found that the DGðiiÞ

ql does

not lead to a significant electrostatic repulsion (i.e., large po-

sitive DUql). The finding that the channel does not provide a

large positive DGðiiÞ
ql is very different from the results obtained

from calculations that do not allow the protein dipoles to re-

arrange themselves upon charge penetration. In such a case,



Table 1
PDLD/S-LRA free-energy contributions (in kcal/mol) at selected points along the AQP1 channela

Site DGp
w=ep hU ðiÞ

ql i=ep hU ðiiÞ
ql i=ep DGqq � DGw

sol=ep
� �

DDGsol

Protein, z ¼ 0 �A )5.7 )4.8 )0.5 2.0 26.8 17.8
Protein, z ¼ 23 �A )20.3 )2.0 )0.4 )1.0 26.9 3.2
a The different free-energy contributions are designated according to the notation used for the corresponding effective potential of Eq. (7). DGqq is
evaluated by Eq. (9) for the corresponding contribution to DUw!p. The designated sites are depicted in Fig. 3. The contributions to the DUql are
divided into the contribution from the two explicit water molecules in front and after the H3O

þ ion (DU ðiÞ
ql ) and to the contribution from the protein

polar groups (DU ðiiÞ
ql ).

Table 2
Microscopic LRA free-energy contributions (in kcal/mol) at selected points along the AQP1 channel and in water (see also Fig. 3)a

Site DGðiÞ
ql DGðiiÞ

ql DGind DGw
sol DGvdw DGqq DGsol

Protein, z ¼ 0 �A )21.2 )2.1 )28.7 )11.2 )5.1 2.0 )66.3
Protein, z ¼ 23 �A )10.0 )0.6 )1.7 )85.5 )0.8 )1.0 )99.6
Water )99.3 0.0 )0.2 )99.3 )1.5 0.0 )101.0
a The contributions to the total LRA solvation energy for several points along the channel axis and in water. DGql, DGind, DGw

sol and DGvdw are the
change in the free energies for, respectively, the ion-permanent dipoles, ion-induced dipoles, ion-water dipoles and van der Waals interaction terms.
DGql is divided into the two contributions in the same way as in Table 1.
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one gets indeed a large repulsion (see below), but once the

protein is allowed (as it should be) to rearrange its polar

groups, it tries to stabilize the ion.

A more detailed analysis of the effect of the NPA motif is

reported in Table 3, where we examine the effects of the dif-

ferent terms in the LRA equation (the contributions from the

simulation with and without the proton charge) and the results

obtained when the protein is not allowed to reorganize. We

also present the effect of mutating the NPA residues to their

non-polar analogues.

Comparing the second and the fifth columns of the table

illustrates the crucial effect of the protein reorganization. That

is, as seen from the table, calculations that do not allow the

NPA to relax upon charge formation drastically overestimate

the effects of these residues (34 kcal/mol instead of about 7

kcal/mol). Here, it is important to emphasize here that this
Fig. 3. Microscopic (all-atom) electrostatic contribution for the sol-
vation of an H3O

þ ion at different sites along the channel pore ob-
tained by the LRA method. The Z axis corresponds to the channel axis
in Fig. 2(A). The figure displays the total solvation energy (DGsol), and
its components (DGw

sol, DG
ðiÞ
ql and DGind); see also Table 2.
contribution (7 kcal/mol) does not provide half of the total

barrier, since all other polar groups compensate the NPA

contribution and the combined effect of all the polar groups at

the top of the barrier (the DGðiiÞ
ql of Table 3) is even negative.

In this respect, it is instructive to see how the �22 kcal/mol

unrelaxed contribution of Asn78 is reduced to around 1 kcal/

mol when the protein is allowed to relax. This establishes the

fact that the unrelaxed interaction strength cannot be used in

estimating group contributions. Further inspection of the table

shows that the replacement of the NPA residues by non-polar

residues reduces the barrier by only )3.6 kcal/mol (the barrier

changes from around 17 kcal/mol to approximately 12 kcal/

mol). Similarly mutating Asn78 to its non-polar analogue

changes the barrier by only 0.3 kcal/mol.

These results indicate that the NPA motif is not the primary

reason for the barrier. In fact, in order for a given motif to be

the reason for the barrier, it is essential that the removal of this

motif will eliminate the barrier.

While the general trend of the calculation is qualitatively

correct, we should still address several issues concerning the

quantitative level of the different methods used. The first issue

is the fact that the microscopic LRA gives a higher barrier than

the semimacroscopic PDLD/S-LRA approach. This brings us

to an interesting dilemma, which has not been widely discussed

in the literature. That is, in principle one should obtain the

same results for the PDLD/S-LRA and the microscopic LRA

with ep ¼ 2, but this requires a full convergence of water

penetration and related effects [26]. Usually ep ¼ 4 gives opti-

mal results in proteins reflecting this incomplete water pene-

tration upon charging. However, in the case of narrow

channels where we already have a single file of water mole-

cules, it is reasonable to assume that the water penetration is

complete. Thus, we would obtain better agreement between the

microscopic and semimacroscopic results with ep between 2

and 3. With this in mind we believe that the actual barrier

should be close to its microscopic estimate of 30� 6 kcal/mol

than to the semimacroscopic estimate obtained with ep ¼ 4. It

is important to note that we also perform full free-energy

perturbation (FEP) calculations for the solvation of the H3O
þ

ion in the NPA region. This calculation gave a barrier of �26

kcal/mol.



Table 4
Approximate group contributions (in kcal/mol) to the electrostatic free energy of an H3O

þ at the NPA sitea

Residue DG Residue DG Residue DG Residue DG

GLU17 )1.8 LEU65 0.5 ALA110 0.3 PRO195 0.3
PHE18 )0.4 HIS76 )0.5 GLU144 )1.2 ALA196 0.7
ALA20 )0.5 LEU77 )4.7 ARG161 0.4 ARG197 1.6
MET21 )3.1 ASN78 1.0 ARG163 0.4 SER198 0.5
PHE24 )0.7 PRO79 0.4 ILE174 )0.4 PHE199 0.4
SER28 0.5 ALA80 0.7 VAL178 0.3 GLY200 0.4
ASP50 )0.5 VAL81 0.8 HIS182 0.8 ASP210 )0.5
SER55 )0.5 LEU83 0.4 GLY192 )0.8 HIS211 )0.5
PHE58 )0.7 ARG95 0.3 ILE193 )0.6 ASP230 )0.4
THR64 0.5 GLN103 )0.6 ASN194 3.7 ARG236 0.4
a The table lists the largest contributions. The contributions for polar residues were obtained from the corresponding hDUqli=ep. The contributions
for ionized residues were obtained using Eq. (9).

Table 3
The energetics (in kcal/mol) of the different residues in the NPA region with different approximationsa

Group ðDUq¼q0 Þunrelaxed hDUiq¼0 hDUiq¼q0
ðDGqlÞrelaxed DGpolar!non-polar

Asn78 21.9 1.7 0.2 1.0 )0.3
Pro89 0.8 0.4 0.4 0.4 )1.28
Ala80 1.8 0.8 0.5 0.7 )0.11
Asn194 7.5 4.9 2.4 3.7 )1.02
Pro195 0.6 0.3 0.2 0.3 )0.55
Ala196 1.3 0.7 0.6 0.7 )0.94
Total NPA 33.9 8.8 4.3 6.6 )3.6
All other polar groups )2.8 )1.1 )11.5 )7.7 –
Total polar groups 31.1 7.7 )7.2 )1.1 –
a ðDUq¼q0 Þunrelaxed corresponds to the group contributions obtained using the unrelaxed protein structure. hDUiq¼q0 , hDUiq¼0 and DGql are, re-
spectively, the contributions of the two terms in Eq. (6) and DGql is the corresponding free-energy contribution of the indicated group.
DGpolar!non-polar designates the overall free-energy obtained by mutating the given group to an identical non-polar group where all the residual
charges were set to zero.
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Finally, we provide in Table 4 the contributions from dif-

ferent protein residues to the barrier at the NPA region. This

qualitative result is obtained from the PDLD/S-LRA contri-

butions for the polar groups and from Eq. (9) for ionized

residues. This table can be used as a rough guide for mutating

different residues to non-polar residues. Predicting the effect

of mutation to a polar or ionized residue requires similar

calculations.
4. Concluding remarks

This work examined the origin of the barrier for the trans-

port of protons through the aquaporin channel. Considering

our finding that the barrier for PTR follows the electrostatic

profile we focus on the origin of the electrostatic barrier. It was

found that the barrier is due to the fact that the absolute value

of the ‘‘solvation’’ of the charge is smaller in the channel than

in water. It should be clarified in this respect that the solvation

of the charge reflects all the electrostatic components including

the effect of the protein polar groups and ionized residues

[4,41,42].

Although early structural studies (e.g., [36]) have assumed

that the Grotthuss mechanism will overcome the electrostatic

barrier, they provided a reasonable qualitative discussion of

the factors that control the barrier for ion transport. However,

such structure-based analysis is not sufficiently quantitative to

provide a consistent analysis. Here, it is important to use

electrostatic calculations that convert the structural informa-
tion to energetics, while considering the protein reorganization

effects.

As to the effect of specific residues, we emphasize that such

effects cannot be determined computationally by just evaluat-

ing the protein–ion electrostatic interaction at a fixed protein

structure. Such effects can be evaluated qualitatively by the

LRA formulation, which takes the protein reorganization into

account and in a more quantitative way by ‘‘mutating’’ the

given residue. Both approaches indicated that the NPA region

destabilizes the H3O
þ ion, but this effect is much smaller than

the corresponding effect of water dipoles in the reference bulk

system. It is also demonstrated that the NPA effect is quite

small since the replacement of this residue by other residues

does not change the barrier in a drastic way. Thus we predict

that mutations of the NPA region will not lead to proton

penetration through the aquaporin channel (unless the folding

of the channel is completely destroyed). We also would like to

clarify once more what must be meant by the argument that

the barrier is ‘‘due’’ to the NPA motif. Such a proposal means

that a removal of the NPA will reduce the barrier in a drastic

way. If the removal of the NPA does not remove the barrier,

the barrier is not due to this motif.

The assumption that the NPA motif plays a major role in the

water/protein selectivity seems to overlook several important

points about what is required from an ion (or proton) channel.

In general, it is rather trivial to create a channel that will not

conduct protons. All that is needed is a relatively hydrophobic

interior. Even a mildly polar interior is not sufficient for al-

lowing proton transfer since the protons will be less stable than
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in water. Similarly, it is not difficult to design a channel that

will allow a moderate transport of water, since the solvation

energy of water is not large. The true biological challenge is the

construction of a channel that will have the correct polarity to

allow proton transport.

Although this paper seems to send a ‘‘negative’’ message

with regards to the prediction that simple mutation experi-

ments will not be successful (see related prediction in [16]), it

does not mean that the situation is hopeless. In principle, if it

was possible to keep the channel folded while performing ar-

bitrary mutations, it should be possible to increase the proton

conductance. For example, lining the NPA region with serines

would drastically reduce the barrier at this point. It would be

challenging to provide conclusive predictions for such muta-

tions, since they would require simultaneous calculations of

protein stability and proton binding for different mutants,

which would inevitably help the experimental progress in the

field.
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