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KEY WORDS Abstract In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase
(AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although

Genistein derivatives;
they differ in structure by a single methyl group, the inhibitory effect of G1 (ICsp=264 nmol/L) on AChE was

Acetylcholinesterase

(AChE); 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and
Kinetics analysis; molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this
Molecular docking; difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic
Molecular dynamics active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated
simulation; by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the
MM/GBSA experimental data. The analysis of the individual energy terms suggested that a difference between the net

electrostatic contributions (AEg.+AGgg) was responsible for the binding affinities of these two inhibitors.
Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the
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difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE.
In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of
AChE by these structurally related compounds.

© 2014 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license

1. Introduction

Alzheimer's disease (AD), a progressively degenerative disorder of
the brain, is believed to be a multifactorial syndrome with several
target proteins contributing to its etiology'. AD is characterized by a
loss of basal forebrain neurons and reduced cortical and hippocampal
levels of acetylcholine (ACh). The relation between the observed
cholinergic dysfunction and AD severity provides a rationale for the
therapeutic use of acetylcholinesterase inhibitors (AChEISs)”.

The inhibition of acetylcholinesterase (AChE, E.C. 3.1.1.7),
which is responsible for the breakdown of ACh, has been proven
as a successful way to relieve some cognitive and behavioral
symptoms of AD**. So far, several AChE inhibitors (Fig. 1), such
as tacrine’, galanthamine®, huperzine A’ and donepezil® have been
used mainly for the clinical treatment of AD, all of which slow
down neurodegeneration in AD patients to some extent.

The three-dimensional structure of AChE, as determined by X-ray
crystallography for a large number of enzyme-ligand complexes” ",
reveals two main binding sites: the catalytic active site (CAS),
comprising the Ser-His-Glu catalytic triad, and the peripheral anionic
site (PAS), connected by a deep, hydrophobic gorge.

Tacrine is the first AChE inhibitor permitted by the FDA. The co-
crystal structure of AChE (protein data bank entry:1ACJ) from
Torpedo californica complexed with tacrine showed that tacrine only
interacted with the CAS of AChE'?. However, due to its adverse
effects such as acute liver toxicity and increased rates of syncope,
tacrine has been gradually withdrawn from market. Since then,
pharmaceutical chemistry scientists have become interested searching
for AChE inhibitors able to simultaneously bind to their CAS and
PAS. Several types of dual-binding-site AChE inhibitors have been
developed by connecting the two interacting units through a suitable
linker, which were generally derived from known AChE inhibitors
either commercialized or under development'* >,

To date, donepezil (PDB entry: 4EY7) is the only dual binding
site AChE inhibitor approved for the treatment of AD**. The latest
X-ray crystallographic structure of the complex between recombi-
nant human AChE and donepezil reveals that the elongated
structure of donepezil spans the entire length of the enzyme-
active-site gorge™. It has a unique orientation along the active-site
gorge, extending from the CAS, at the bottom near Trp86, to the
PAS at the top near Trp286. This provides a more accurate
platform for further design of next-generation derivatives.

In the current work, two genistein derivatives (G1 and G2) have
been discovered with strong or moderate activity against both AChE
and butyrylcholinesterase (BuChE). Although G1 and G2 (Fig. 1) have
quite similar structures, experimental data in this study show that the
inhibitory effect of G1 against AChE was almost 80 times greater than
that of G2. Since their inhibitory mechanisms against AChE are still
unclear, it is of great interest to investigate why these two analogs have
differing inhibitory potencies and to reveal the molecular basis for their
binding to AChE. Thus, the binding mechanisms of these two
inhibitors were studied by multiple approaches consisting of enzyme-
kinetic analysis, molecular docking and molecular dynamics (MD)
simulation®*™'. This study provides a molecular basis for under-
standing how different configurations influence their binding affinities.

2. Materials and methods
2.1.  In vitro inhibition studies on AChE and BuChE

AChE (E.C. 3.1.1.7) was extracted from rat cortex (Sprague
Dawley). BuChE (E.C. 3.1.1.8) was obtained from human plasma
(purchased from Beijing Red Cross Blood Center). 5,5 -dithiobis-
(2-nitrobenzoic acid) (Ellman's reagent, DTNB), acetylthiocholine
iodide (S-ACh), S-butyrylthiocholine chloride (BuSCh), donepezil

3-(4-methoxyphenyl)-7-(2-(piperidin-1-
yl)ethoxy)-4H-chromen-4-one

(S)-3-(4-methoxyphenyl)-7-(2-(2-methylpiperidin-
1-yl)ethoxy)-4H-chromen-4-one

Figure 1 The structures of AChE inhibitors.


http://creativecommons.org/licenses/by-nc-nd/3.0/

432

Jiansong Fang et al.

hydrochloride and tetraisopropyl pyrophosphoramide (iso-OMPA)
were purchased from Sigma-Aldrich. The AChE/BuChE activity
was evaluated by detecting the hydrolysis product of the substrate
following the method of Ellman*’. Five serial dilutions of Gl1, G2
and the reference compounds were utilized during the inhibition of
AChE/BuChE activity.

In the AChE reaction system, the inhibition assay was carried
out in 96-well plates using a Spectra Max MS5 microplate reader
(Molecular Devices, Sunnyvale, CA, USA). Donepezil hydro-
chloride was chosen as the reference compound. The reaction
system consisted of 10 pL of test compounds, 30 pL of 0.05 mol/L
PBS, 20 pL of AChE, 60 pL of 3.75 mmol/L of substrate S-ACh
and 80 pL of 0.25 mg/mL. DTNB. The assay mixture was
incubated at 37 °C for 60 min and the absorbance was measured
at 412 nm. Each concentration was analyzed in triplicate, and ICsq
values were determined graphically from log concentration—
inhibition curves.

In vitro BuChE assay was similar to the method described
above. is0-OMPA served as the reference compound. The assay
solution consisted of 10 pL of test compounds, 40 pL. of BuChE,
70 pL of 7.5 mmol/L of substrate (BuSCh) and 80 pL of 0.25 mg/mL
DTNB.

2.2.  Kinetic characterization of AChE inhibition

The kinetic studies of G1 against AChE were performed using rat
cortex homogenate as an AChE source. Enzyme activities were
determined at 37 °C wusing five concentrations (50 pmol/L,
100 pmol/L, 200 pmol/L, 300 pmol/L and 500 pmol/L) of ACh
in the presence or absence of three concentrations (110 nmol/L,
330 nmol/L. and 1000 nmol/L) of G1. Kinetic characterization of
the hydrolysis of Ach catalyzed by AChE was performed spectro-
metrically at 412 nm. The OD value was read for 50 min at 2-min
intervals. Then the data were plotted on a Lineweaver—Burk
diagram to reveal the mechanism of inhibition.

2.3. Molecular docking

The crystal structure of recombinant human AChE in complex
with donepezil at a resolution of 2.35 A was downloaded from the
PDB (PDB entry: 4EY7), and was used as the initial 3D model. To
obtain the docking—binding models for AChE in complexes with
Gl and G2, the molecular modeling program MOE 2010
(Chemical Computing Group. Inc., Canada) was used to perform
the docking process. At first, crystallographic water molecules
were removed from 4EY7, while the active site pocket was defined
by the ligand of donepezil. The detailed parameters were set as
follows: the placement method, the first scoring function rescoring
1, and the saved poses were set to Triangle Matcher, London dG,
and 30, respectively. In addition, the refinement, the second
refinement scoring function rescoring 2, and the saved poses were
set to forcefield, none, and 10, respectively.

After the docking parameters were set, the crystal pose of
donepezil was first re-docked into the binding site pocket of
AChE, and the root-mean-square deviation (RMSD) values
between the docking and initial poses were calculated. Two
systems were then prepared. System 1, named AChE/G1 complex,
was AChE in complex with G1, whereas system 2, called AChE/
G2, was AChE in complex with G2.

2.4.  MD simulations

The AMBER 12 software was used to perform all the MD
simulations in this study®. The inhibitors were minimized using
the HF/6-31G™ optimization in Gaussian 09**, and the atom partial
charges were obtained by fitting the electrostatic potentials derived
by Gaussian via the RESP fitting technique in AMBER 12*°. The
antechamber and tleap modules were used to assign the General-
ized Amber Force Field (GAFF) parameters to the two systems.
Ff12SB force field was assigned to the receptors*’. The complexes
were neutralized by adding 10 sodium counterions, and were
surrounded by a periodic box of TIP3P water molecules extended
8 A between the box edges and solute surface™®. Simulations were
performed using PMEMD.CUDA in AMBER 12*. Periodic
boundary conditions were applied to avoid the edge effect. The
Particle Mesh Ewald (PME) method was used to calculate long-
range electrostatic interactions*”. The hydrogen bonds were
constrained using SHAKE algorithm™. For the non-bonded
interactions, a residue-based cutoff of 10 A was used.

The two complexes were energy-minimized to remove possible
steric stress. At first, the solvent molecules and counter ions were
relaxed during a 2000-step minimization. The first 1200 steps were
carried out using the steepest descent algorithm, and the remaining
800 steps were performed with a conjugate gradient algorithm. In
addition, the backbone atoms of each system were fixed for 3000
cycles before 8000 cycles of fully relaxed energy minimization.
The system was then slowly heated from O to 300 K within 50 ps.
After the heating process, a further 1000 ps of equilibration at
300 K was carried out to obtain a stable density. Afterward, an
unconstrained production phase was initiated and continued for
10 ns in an NPT ensemble at 1 atm and 300 K. The time step used
for the MD simulations was set to 2.0 fs and the trajectory files
were collected every 1ps for the subsequent analysis. All
trajectory analysis was done with the Ptraj module in AMBER
12 and examined visually using the VMD software.

2.5.  MM/GBSA binding-free-energy calculations

Binding free energies were calculated using the molecular
mechanics generalized-born surface area (MM/GBSA) algorithms
implemented in the AMBER 12. The total binding free energy can
be calculated according to the equation:

AGying = AGgas + AGsoy —TAS

= AEyMm + Ggs + AGsa —TAS
= AE‘vdw + Ec]e + GGB + AGSA —TAS (1)

where AEy denotes the gas-phase interaction energy between
receptor and ligand (including van der Waals energy contribution
(AE,q4y) and electrostatic energy contribution (AE,.)); AGgg and
AGgp stand for the polar and nonpolar components of the
desolvation free energy, respectively; TAS represents the con-
formational entropy contribution at temperature 7. Here, AGgp
was determined by the Generalized-Born approximation model,
while AGs was estimated based on the solvent accessible surface
area (SASA) model by LCPO method: AGsx=0.0072 x SASA’".

In general, due to the relatively high computational demand of
calculation of entropy in AMBER 12 and the error that may
introduce significant uncertainty in the results, as well as the slight
variation of substitution in genistein derivatives, the conforma-
tional entropy was not considered.
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Table 1  The inhibitory effect of G1, G2 and the reference compounds on AChE and BuChE activities.
Compound ICs( (nmol/L)* Selectivity (AChE/BuChE)
AChE BuChE
Gl 264 +24 5746 + 144 21.8
G2 21,210+4965 25,846 £7,040 12
Donepezil5 & 26+6 - -
ISO-OMPA>’ - 2440+ 170 -

“Note: Data are expressed as mean+SD, n=3.

The interaction between inhibitors and each residue was
computed using the MM/GBSA decomposition procedure in
AMBER 12. The binding interaction of each ligand-residue pair
includes three terms: AFE,4,, AFEe, and solvation contribution
(AGgp+AGsa). AGgp (the polar part) was calculated using the
Generalized-Born model,”” while AGg, (the non-polar part) was
determined with the ICOSA method.

All energy components were computed by using the same 100
snapshots extracted from 5 to 10 ns. The free energy decomposi-
tion calculation could give insight into the mechanisms of
inhibition of AChE by genistein derivatives and clarify the
molecular basis for their different binding affinities.

3. Results and discussion

3.1.  Inhibitory effect of G1 and G2 towards cholinesterase
activities

As given in Table 1, donepezil hydrochloride has an ICs, value of
26 nmol/L on AChE, which is approximately equal to that of
32 nmol/L reported in the literature™. G1 is a highly potent inhibitor
of AChE with an ICsy value of 264 nmol/L, while G2 shows a
moderate inhibitory effect toward AChE with an ICsy value of
21,210 nmol/L.. Thus, the inhibitory potency of GI1 is almost 80
times stronger that of G2 on AChE. To compare the selectivity
of Gl and G2, an in vitro BuChE assay was also performed.
The reference compound iso-OMPA exhibits an ICsy value of
2440 nmol/L  with BuChE, which is comparable to that of
980 nmol/L reported in the literature™. The results (Table 1) suggest
both G1 (IC57=5746 nmol/L) and G2 (IC5,=25,846 nmol/L) can
inhibit BuChE activity moderately, while G1 (selectivity=21.8)
possesses better selectivity than G2 (selectivity =1.2).

3.2.  Kinetic study results

Graphical analysis of the Lineweaver—Burk plot gives information
about the binding mode. As shown in Fig. 2, the lines cross the
third quadrant in the same point, and V,,, decreases as the
concentration of G1 increases. The Lineweaver—Burk plot reveals
that G1 is a typically mixed AChE inhibitor which is similar to
that of donepezil®~°. The result shows that G1 is able to interact
with both CAS and PAS of AChE.

3.3.  Validation of molecular docking and molecular dynamics
simulation methods

To validate whether the docking software MOE was reliable for
the AChE (PDB code: 4EY7) system, the crystal pose of donepezil

—e— Control

80 - —a— (.11 pmol/L
—+— (.33 pmol/L
< 60 1 umol/L
g
=]
s 40 o
'E 20 4
r T T
: ~10 10 20
20 1 [ACH]' (L/mmol)
-40 -

Figure 2 Steady state inhibition by G1 of AChE hydrolysis of ACh;
reciprocal plots of initial velocity with substrate concentration: the
plots show mixed-type inhibition for G1.

was initially re-docked into the binding site of AChE with specific
docking parameters and scoring functions. The 10 generated
conformations were then compared with the crystal pose. Docking
was considered acceptable if the average RMSD value of the
docking poses was less than a given threshold of 2.0 A from the
crystal pose. In this study, the average RMSD value of donepezil
between the docking poses and the crystal conformation was
1.53 A. This implied that MOE could reproduce the crystal-
binding model and was suitable for the AChE system. Afterward,
G1 and G2 were docked into the same binding site pocket of
AChE by use of the same optimum docking conditions above to
obtain the starting models for subsequent MD simulations.

To explore the dynamic stability of the two AChE/inhibitor
complexes and to ensure the rationality of the sampling strategy, the
time-dependent RMSD values of the complex backbone atoms were
calculated from the X-ray crystal structure of AChE during MD
trajectories of 10ns. The RMSD plot (Fig. 3) indicates that the
conformations of the AChE/G1 complex achieve equilibrium around
3200 ps and fluctuate around 1.3 A. However, for the AChE/G2
complex, the equilibrium time is around 5000 ps and the conformations
fluctuate around 1.6 A. Both trajectories are stable after 5000 ps, so it is
reasonable to do the binding free energy calculation and free energy
decomposition based on the snapshots extracted from 5 to 10 ns.

For better understanding on how G1 and G2 influence the binding
mode with AChE, the structural changes of two complexes were
examined. To visualize the result clearly, 10 structures (snapshots) were
overlaid during the MD simulations, of which coordinates were saved
after every 1ns from 1 to 10ns. As shown in Fig. 4a, the 10
conformations of G1 undergo little movement, which means that G1 is
stable throughout the MD simulation. On the other hand, in Fig. 4b, the
10 conformations of G2 undergo a large amount of movement during
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the MD simulations. Therefore, this analysis suggests that AChE/G1
complex is more stable than AChE/G2 complex.

3.4. Binding free energies calculation

In MM/GBSA calculations, the affinity of one inhibitor binding to
the receptor could be estimated using the snapshots from a
trajectory of the complex. The AG.,, was estimated by the
equation AGey, & RT In(ICsp). These values, with the values of
absolute binding free energies of G1 and G2, obtained using the
MM/GBSA technique, are given in Table 2. The descending trend
in AGpreq for AChE/G2 and AChE/G1 complexes is consistent
with that in AGeyy,.

To get a better view of which energy term has more impact on
the binding affinity, the four individual energy components
(AE 4w, AE¢e, AGgp and AGgp) were carefully compared. From
Table 2, it is evident that the AE,q4, is dominant in AGpeq. The
AE, 4y of AChE/G1 (—54.8 kcal/mol) complex is equal to AChE/
G2 (—54.8 kcal/mol). Obviously, the AE4,, part cannot account

— AChE/G1
— AChE/G2

RMSD (A)

0 2000 4000 6000 8000 10000
Times (ps)

Figure 3 Root-mean-square deviation (RMSD) of the backbone
atoms (CA, N, C) of the AChE/G1 and AChE/G2 complexes.

Figure 4 The superposition of 10 snapshots from 1 to 10 ns for
AChE/G1 complex (a) and AChE/G2 complex (b).

Table 2
MM/GBSA method.

for the activity difference between G1 and G2. However, the AE.
of AChE/G1 complex (—11.6 kcal/mol) is stronger than that of
AChE/G2 (—3.9 kcal/mol). Considering the negative effect gen-
erated by AGgg, the net electrostatic contributions (AEq.+AGgg)
of AChE/G1 and AChE/G2 complexes are 17.5 and 22.1 kcal/mol,
respectively, which is unfavorable for binding in the two com-
plexes. Furthermore, the difference in the net electrostatic con-
tribution (AE..+AGgg) between G1 and G2 is —4.6 kcal/mol. In
addition, both of AGgy for the two complexes (— 6.6 kcal/mol and
— 6.2 kcal/mol) are approximately equivalent. Therefore, the net
electrostatic contributions (AE..+AGgg) play the most important
role in differentiating the activity between G1 and G2.

3.5.  Residue-based-energy decomposition using the MM/GBSA
method

To further delineate the detailed mechanism of the AChE/inhibitor
interactions, residue-based-energy decomposition was performed
to evaluate the effects of energy on the contributions of each
residue in the binding site pocket by using the MM/GBSA
method. Fig. 5 shows the energy decomposition values for key
residues in the two complexes.

Generally, if the interaction energy between a residue and a
ligand is lower than — 0.8 kcal/mol, the residue is regarded as an
important residue in the molecular recognition of that ligand. In
the AChE/G1 complex, the major favorable energy contributions
(—3.02 to —0.94 kcal/mol) originate predominately from Tyr124
(—3.02), Trp341 (—2.18), Trp286 (—2.08), Glu292 (—1.49),
Val294 (—1.28), Phe338 (—1.04) and Tyr72 (—0.94). In the
AChE/G2 complex, the residues which give the most negative
binding free energies (kcal/mol) are Trp286 (—2.79), Tyr341
(—2.43), Thr83 (—1.23), GIn291 (—0.93), Trp86 (—0.92),
Tyr124 (—0.90) and Glu292 (—0.88). As shown in Fig. 5, the
two inhibitors have similar interaction patterns, which means
strong or moderate interactions with residue Tyrl124, Trp286,
Glu292 and Try341. Comparison between G1 and G2 shows that
the interactions of G1 with Tyr124, Glu292, Val294 and Phe338
(—3.02, —1.49, —1.28 and —1.04 kcal/mol) are stronger than
those of G2 (—0.90, —0.88, —0.20 and —0.36 kcal/mol).
Therefore, it is conceivable that the difference between the
inhibitory effect of G1 and G2 originates from these key residues
(Tyr124, Glu292, Val294 and Phe338).

Since AE\q, is dominant in the total binding free energy (AGpyeq), it
is of interest to determine if van der Waals interactions determine the
different biological activities between G1 and G2. As shown in
Supplementary Fig. 1, the differences in the van der Waals interactions
between Gl and G2 were reported for the amino acids Trp286,
Val294, Phe338 and Tyr341. The van der Waals interactions of G1
with Val294 and Phe338 (—0.97 and — 1.93 kcal/mol) are stronger
than those of G2 (—0.09 and —0.64 kcal/mol). However, the
interactions of G1 with Trp286 and Tyr341 are weaker (—3.48 and
—2.81 kcal/mol) than those of G2 (—4.28 and — 3.68 kcal/mol),

The components of the binding free energy (kcal/mol) for the AChE complexes with G1 or G2, determined by using the

Inhibitor AE,qy AE. AGag AGsa AGiprea AGeyp
Gl —54.8+28 —11.6+22 291422 —6.6+02 —43.9429 —9.0
G2 —54.8+24 —39+32 26.0+2.8 —62402 —38.9+26 —6.4
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which compensates for the differences made by van der Waals
interactions.

As presented in Supplementary Fig. 2, electrostatic interactions
(AE,.) between the inhibitors and the important residues were
investigated to explain the different inhibitory activities between
Gl and G2. It is obvious that the AE,. of Gl with Tyrl24,
Glu292, Phe338 and Tyr341 (—1.97, 0.06, —0.21 and —0.44
kcal/mol) is much stronger than those of G2 (—0.94, 0.66, 0.39
and 0.33 kcal/mol). Therefore, the differences obtained from
electrostatic interactions can explain the significant difference
between G1 and G2.

As shown in Supplementary Fig. 3, the polar contributions of
desolvation (AGgg) were also determined. The interaction is almost
opposite to the electrostatic interaction. On the whole, the net
electrostatic interaction (AE..+AGgg) opposes binding, which is
consistent with the discussion in the section on binding free energies
calculation.

3.6. Binding mode of the AChE/GI and AChE/G2 complexes

Results above proposed an explanation as to why G1 was more
active than G2 in terms of free energy. In fact, the energy was
decided by the structure. Therefore, we analyzed whether slight
structural modifications on G1 could influence the binding and
eventually change the interaction with AChE. Here the average
structure was based on the 100 snapshots (from 5 to 10 ns)
obtained, and the binding modes in the active site pocket of AChE
with G1 and G2 are displayed in Fig. 6.

As shown in Fig. 6a, Gl extends deeply into the two main
binding sites of AChE. The CAS and PAS are connected by a deep,

BGl
G2
ODifference

GIn291
Glu292

Tyr341

Inhibitor-residue interactions (kcal/mol)

Tyrl24 1P286

Figure 5 The inhibitor—residue interaction spectrum for AChE/G1
and AChE/G2 complexes.

hydrophobic gorge. The piperidine ring of G1 enables hydrophobic/
van der Waals interactions with Trp86 and Phe338 in the CAS,
while the flavone ring of G1 stacks against Trp286 and Tyr341 in the
PAS; thus GI1 is sandwiched between the rings of Trp286 and
Tyr341. Meanwhile, the oxygen atom at C7 in flavone ring can form
a strong hydrogen bond of 2.8 A with the —OH of Tyr124, which is
consistent with decomposition analysis of the electrostatic interac-
tion. Moreover, G1 can also make hydrophobic/van der Waals
interactions with Tyr72, Glu292 and Val294.

As shown in Fig. 6b, G2 has a similar binding pattern to G1
except for some key differences. The flavone ring of G2 can also
stack against Trp286 and Tyr341 in the PAS and make a
hydrophobic/van der Waals interaction with Trp86 in the CAS.
Because of the long distance (3.5 A) between the oxygen atom at
C7 and the —OH of Tyr124, they could not form a hydrogen-
bonding interaction. In order to clearly observe the differences
between the two binding modes, the two complexes were super-
imposed. As presented in Fig. 7, compared with G1, the methyl
group substitution at C16 induces a large movement of the
piperidine ring of G2 as demonstrated by MD. Therefore, some
hydrophobic/van der Waals interactions (such as Tyr72, Val294
and Phe338) have disappeared.

4. Conclusions

Two genistein derivatives (G1 and G2) have been discovered as
inhibitors of AChE and BuChE in this investigation. The absence
(G1) or presence (G2) of a methyl group resulted in a distinct
difference in their inhibitory activity toward AChE. The present
study provided insights into the two inhibitor-bound structures of
AChE. We analyzed the binding mechanisms of both inhibitors to
AChE using multiple approaches including enzyme-kinetics analysis,
molecular docking and MD simulation.

The results obtained by the kinetic study revealed that G1 was
able to interact with both the CAS and PAS of AChE. MM/GBSA
calculations predicted binding free energies of —43.9 kcal/mol (G1)
and —38.9 kcal/mol (G2), which were consistent with our experi-
mental results. It was observed that AEq., AE,qy and AGsa were
the main driving forces for inhibitor binding, whereas the net
electrostatic contribution (AE..+AGgg) difference was the leading
reason for distinguishing the binding affinities of these two
inhibitors.

The structure analysis revealed that the flavone rings of the two
inhibitors could stack against Trp286 and Tyr341 in the PAS, and
their piperidine rings could enable hydrophobic/van der Waals
interaction with Trp86 in the CAS. This may explain why

Tyr124

Figure 6 The binding modes of AChE/GI1 (a) and AChE/G2 (b) complexes.
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Val294

Figure 7 The superposition of AChE/G1 (yellow) complex over AChE/
G2 (cyan) counterparts. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

genistein derivatives with a piperidine ring exhibit inhibition of
AChE. In the binding mode of G1, van der Waals and electro-
static/H-bond interactions are the driving forces for AChE
recognition. Unlike G1, the oxygen atom at C7 in G2 could not
form a hydrogen bond with the —OH of Tyrl24, and some
hydrophobic/van der Waals' interactions (such as Tyr72, Glu292,
Val294 and Phe338) had disappeared, making the inhibitory
potency of G1 80 times higher than that of G2.

In summary, all the results indicated that enzyme-kinetic
analysis, molecular docking and MD simulation could provide
an alternative way to reveal the molecular mechanism of inhibition
of AChE by genistein derivatives, and thus contribute to a better
understanding of the therapeutic potential of the two inhibitors.
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