Steady N onlinear D ouble-D iffusive Convection in a Porous M edium Based upon the Brinkman-F orchheimer M odel

P. N. K aloni and Jianlin Guo
tadata, citation and similar papers at core.ac.uk
Communicatea by Ftraaus E. Uawaata
R eceived J une 21, 1995

Abstract

A theoretical study of the problem of steady nonlinear double-diffusive convection through a porous medium is presented. The Brinkman-Forchheimer model is used to represent the porous medium. A variational formulation is given to deal with the weak solution and the existence, regularity, and uniqueness results are discussed. © 1996 A cademic Press, Inc.

1. INTRODUCTION

During the last three decades, the phenomenon of double-diffusive convection, in which two scalar fields, such as heat and salinity concentration, affect the density distribution in a fluid, has become increasingly important. The interesting effects in such problems arise from the fact that one substance diffuses more rapidly than the other and can thus modify the transport process considerably. While most studies deal primarily with the heat and mass transfer problem in a clear fluid layer, a new field, dealing with heat and mass transfer research in a fluid-saturated porous medium, has recently imerged. The review article by Trevisan and Bejan [14] covers the latest developments in this area of research. A s it is pointed out in this article and in Murray and Chen [10], such studies have applications in geophysics, astrophysics, oceanography, and energy technology.

M uch of the research in porous medium, however, has been concerned with the use of Darcy's law as a suitable model for the porous medium. This model takes into account the friction offered by the solid particles to
the fluid and gives satisfactory results only when the porous medium is closely packed and the domain of consideration is infinite. Darcy's law, however, cannot account for the no-slip boundary conditions at an interface of a porous medium with solid boundary and the continuity of a porous medium in contact with a viscous fluid. It is believed that for the flow of a high porosity porous medium the Brinkman equation [3] removes some of the above deficiencies and gives preferrable results. Support for the use of the Brinkman equation, with appropriate care, over D arcy's law, may be found in the works of Tam [12], Lundgren [9], Slattery [11], and V afai and Tien [15]. We also wish to mention the work of Allaire [1, 2] which indicates when the Brinkman equation or Darcy's law can be more effective, depending upon the length scale of the microstructure.

One of the basic questions which should be answered concerning any applied problem is whether it is well set, that is, whether the solutions exist and whether they are unique. In the present paper, we employ the Brinkman-Forchheimer model to discuss the existence, regularity, and uniqueness of weak solutions, via a variational formulation, for steady double-diffusive convection in a porous medium. Following the lead of several investigations, Givler and Altobelli [5] have recently determined experimentally the effective viscosity for the Brinkman-F orchheimer model for steady flow through a wall-bounded porous medium. R ecognizing that this model will soon become popular, we employ it here along with the equations of energy and concentration statements. The method we employ to handle these equations is similar to the methods expounded in Ladyzhenskaya [7] and Temam [13] for Navier-Stokes equations. In addition we also take recourse to some of the ideas and results of Hopf [6], Lions [8], and Gilbarg and Trudinger [4].

We conclude this section with the remark that the BrinkmanForchheimer model is not a universally valid model for the flow through a porous media. In fact, it is useful for sparsely packed porous media and situations when the flow velocity is quite high so that fluid inertia cannot be neglected. For fine grained (high density) materials and for slow flows such as the flow through natural rocks and clays, etc., the above model has severe limitations.

2. THE GOVERNING EQUATIONS

We consider the problem of steady double-diffusive convection in a fluid saturated porous medium. We assume that the porous medium is in local thermal equilibrium and the Boussinesq approximation is applicable. Let Ω be an open bounded set in \mathbf{R}^{n} ($n=2$ or 3) with boundary $\partial \Omega$ of class
C^{2}. The governing equations are

$$
\begin{gather*}
\boldsymbol{\nabla} \cdot \mathbf{v}=0 \quad \text { in } \Omega, \tag{1}\\
c_{0} \rho_{0} k^{-1 / 2}|\mathbf{v}| \mathbf{v}= \\
-\boldsymbol{\nabla} P+\rho_{0}\left[1-\alpha_{T}\left(T-T_{R}\right)+\alpha_{S}\left(S-S_{R}\right)\right] \mathbf{g} \tag{2}\\
+\tilde{\mu} \Delta \mathbf{v}-\mu \mathbf{M} \mathbf{v} \quad \text { in } \Omega, \tag{3}\\
\mathbf{v} \cdot \boldsymbol{\nabla} T=\boldsymbol{\nabla} \cdot(\mathbf{N} \boldsymbol{\nabla} T) \quad \text { in } \Omega, \tag{4}\\
\mathbf{v} \cdot \boldsymbol{\nabla} S=\boldsymbol{\nabla} \cdot(\mathbf{Q} \boldsymbol{\nabla} S) \quad \text { in } \Omega,
\end{gather*}
$$

where $\mathbf{v}, P, T, S, k, \rho_{0}, \mu, \tilde{\mu}, \alpha_{T}, \alpha_{S}, T_{R}, S_{R}$ are, respectively, the filtration velocity vector, pressure, temperature, concentration, permeability, density, viscosity, effective viscosity, thermal expansion coefficient, concentration expansion coefficient, reference temperature, and reference concentration, and c_{0} is a constant coefficient. Also \mathbf{g} is the potential type gravitational acceleration, $\mathbf{M}^{-1}=\mathbf{k}$ is the positive symmetric constant tensor of permeability, \mathbf{N} is the positive constant tensor of thermal diffusion, and \mathbf{Q} is the positive constant tensor of concentration diffusion.

The boundary conditions are

$$
\begin{array}{ll}
\mathbf{v}=\mathbf{a} & \text { on } \partial \Omega, \\
T=\xi & \text { on } \partial \Omega, \\
S=\eta & \text { on } \partial \Omega . \tag{7}
\end{array}
$$

Suppose that a can be extended inside Ω in the form $\mathbf{a}=$ curl \mathbf{b} with $\mathbf{b} \in H^{2}(\Omega)$ and ξ and η can also be extended inside Ω such that $\xi, \eta \in H^{1}(\Omega)$.

We denote p by $p=P-\sum_{i=1}^{n} \rho_{0} g_{i} x_{i}$ and introduce the following dimensionless variables,

$$
\begin{align*}
& \mathbf{x}^{*}=L^{-1} \mathbf{x}, \quad \mathbf{v}^{*}=\left(\alpha_{T} T_{0} \rho_{0} g\right)^{-1} \mu m_{1} \mathbf{v}, \quad \mathbf{a}^{*}=\left(\alpha_{T} T_{0} \rho_{0} g\right)^{-1} \mu m_{1} \mathbf{a}, \\
& p^{*}=\left(\alpha_{T} T_{0} \rho_{0} g L\right)^{-1} p, \quad T^{*}=T_{0}^{-1} T, \quad T_{R}^{*}=T_{0}^{-1} T_{R}, \\
& S^{*}=S_{0}^{-1} S, \quad S_{R}^{*}=S_{0}^{-1} S_{R}, \\
& \mathbf{M}^{*}=m_{1}^{-1} \mathbf{M}, \quad \mathbf{N}^{*}=n_{1}^{-1} \mathbf{N}, \quad \mathbf{Q}^{*}=q_{1}^{-1} \mathbf{Q}, \quad \mathbf{g}^{*}=g^{-1} \mathbf{g}, \tag{8}
\end{align*}
$$

where L is the length of edge of the n -cube in which Ω can be contained, $T_{0}>0$ is the constant temperature, $S_{0}>0$ is the constant concentration, $g=|\mathbf{g}|$, and m_{1}, n_{1}, q_{1} are, respectively, the smallest eigenvalues of $\mathbf{M}, \mathbf{N}, \mathbf{Q}$.

O mitting the stars, Eqs. (1) to (7) are dimensionalized as

$$
\begin{gather*}
\nabla \cdot \mathbf{v}=0 \quad \text { in } \Omega, \tag{9}\\
\sigma D_{a} R_{T}|\mathbf{v}| \mathbf{v}+\boldsymbol{\nabla} p-\mu_{0} D_{a} \Delta \mathbf{v}+\mathbf{M} \mathbf{v}+\left(T-T_{R}\right) \mathbf{g} \\
-\frac{1}{\tau}\left(S-S_{R}\right) \mathbf{g}=0 \quad \text { in } \Omega, \tag{10}\\
R_{T} \mathbf{v} \cdot \boldsymbol{\nabla} T-\boldsymbol{\nabla} \cdot(\mathbf{N} \nabla T)=0 \quad \text { in } \Omega, \tag{11}\\
\tau R_{S} \mathbf{v} \cdot \boldsymbol{\nabla} S-\boldsymbol{\nabla} \cdot(\mathbf{Q} \nabla S)=0 \quad \text { in } \Omega, \tag{12}\\
\mathbf{v}=\mathbf{a} \quad \text { on } \partial \Omega, \tag{13}\\
T=\xi \quad \text { on } \partial \Omega, \tag{14}\\
S=\eta \quad \text { on } \partial \Omega, \tag{15}
\end{gather*}
$$

where $R_{T}=\alpha_{T} T_{0} \rho_{0} g L /\left(\mu m_{1} n_{1}\right)$ and $R_{S}=\alpha_{S} S_{0} \rho_{0} g L /\left(\mu m_{1} q_{1}\right)$ are, respectively, the thermal R ayleigh number and the solute R ayleigh number, $D_{a}=\left(L^{2} m_{1}\right)^{-1}$ is the Darcy number, and $\sigma=\rho_{0} n_{1} L c_{0} /\left(\mu k^{1 / 2}\right)$, $\tau=\alpha_{T} T_{0} /\left(\alpha_{S} S_{0}\right), \mu_{0}=\tilde{\mu} / \mu$.

Remark. We can assume $\tau \geq 1$. Since if $\tau<1$, we replace $\alpha_{T} T_{0} \rho_{0} g$ by $\alpha_{S} S_{0} \rho_{0} g$ in introducing the dimensionless variables, and Eqs. (10) to (12) take the form

$$
\begin{align*}
& \sigma_{1} D_{a} R_{S}|\mathbf{v}| \mathbf{v}+\boldsymbol{\nabla} p-\mu_{0} D_{a} \Delta \mathbf{v}+\mathbf{M} \mathbf{v}+\tau\left(T-T_{R}\right) \mathbf{g} \\
& \quad-\left(S-S_{R}\right) \mathbf{g}=0 \quad \text { in } \Omega, \tag{10.1}\\
& \frac{R_{T}}{\tau} \mathbf{v} \cdot \boldsymbol{\nabla} T-\boldsymbol{\nabla} \cdot(\mathbf{N} \nabla T)=0 \quad \text { in } \Omega, \tag{11.1}\\
& R_{S} \mathbf{v} \cdot \boldsymbol{\nabla} S-\boldsymbol{\nabla} \cdot(\mathbf{Q} \boldsymbol{\nabla} S)=0 \quad \text { in } \Omega, \tag{12.1}
\end{align*}
$$

where $\sigma_{1}=\rho_{0} q_{1} L c_{0} /\left(\mu k^{1 / 2}\right)$.
With (10)-(12) replaced by (10.1) to (12.1), the entire procedure that follows can be carried through.

3. VARIATIONAL PROBLEM

We first list some function spaces which will be used later. Let $D(\Omega)$ be the space of C^{∞} functions with compact support contained in Ω and \mathbf{V} be defined as

$$
\begin{equation*}
\mathbf{V}=\{\mathbf{u} \in D(\Omega): \boldsymbol{\nabla} \cdot \mathbf{u}=0\} \tag{16}
\end{equation*}
$$

The closures of \mathbf{V} in $\mathbf{L}^{2}(\Omega)$ and $\mathbf{H}_{0}^{1}(\Omega)$ are two basic spaces in the study of the present problem. The characterizations of these two spaces are

$$
\begin{equation*}
\mathbf{H}=\left\{\mathbf{u} \in \mathbf{L}^{2}(\Omega): \boldsymbol{\nabla} \cdot \mathbf{u}=0 \text { in } \Omega, \quad \mathbf{u} \cdot \mathbf{n}=0 \text { on } \partial \Omega\right\}, \tag{17}
\end{equation*}
$$

where $\left.\mathbf{u} \cdot \mathbf{n}\right|_{\partial \Omega}$ should be understood as $\left.\mathbf{u} \cdot \mathbf{n}\right|_{\partial \Omega}=\left.\lim _{m \rightarrow \infty} \mathbf{u _ { m }} \cdot \mathbf{n}\right|_{\partial \Omega}=0$, if $\mathbf{u}=\lim _{m \rightarrow \infty} \mathbf{u}_{m}$ in $\mathbf{L}^{2}(\Omega)$ for $\mathbf{u}_{m} \in \mathbf{V}$, and

$$
\begin{equation*}
\tilde{\mathbf{V}}=\left\{\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega): \boldsymbol{\nabla} \cdot \mathbf{u}=0 \text { in } \Omega\right\} . \tag{18}
\end{equation*}
$$

The scalar products and norms in $L^{2}(\Omega)$ and $H^{m}(\Omega)$ are, respectively, denoted by

$$
\begin{aligned}
(u, v) & =\int_{\Omega} u v d x, \quad\|u\|_{L^{2}(\Omega)}=(u, u)^{1 / 2}, \\
((u, v))_{H^{m}(\Omega)} & =\sum_{|j| \leq m}\left(D^{j} u, D^{j} v\right), \quad\|u\|_{H^{m}(\Omega)}=(u, u)^{1 / 2},
\end{aligned}
$$

with

$$
D^{j}=\frac{\partial^{|j|}}{\partial x_{1}^{j_{1}} \cdots \partial x_{n}^{j_{n}}}, \quad|j|=j_{1}+j_{2}+\cdots+j_{n}
$$

The norms in Banach spaces $L^{p}(\Omega)$ and $W^{m, p}(\Omega)$ are denoted by

$$
\begin{gathered}
\|u\|_{L^{p}(\Omega)}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}, \\
\|u\|_{W^{m, p}(\Omega)}=\left(\sum_{|j| \leq m}\left\|D^{j} u\right\|_{L^{p}(\Omega)}\right)^{1 / p} .
\end{gathered}
$$

In the Hilbert space $H_{0}^{1}(\Omega)$, we choose an equivalent norm

$$
\begin{equation*}
\|u\|_{H_{0}^{1}(\Omega)}=\left(\sum_{i=1}^{n}\left\|D_{i} u\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}, \tag{19}
\end{equation*}
$$

where $D_{i}=\partial / \partial x_{i}$.
The product Hilbert space $\tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ is equipped with the usual scalar product,

$$
\begin{equation*}
((\mathbf{u}, T, S),(\mathbf{v}, t, s))=(\mathbf{u}, \mathbf{v})_{\mathbf{H}_{0}^{1}(\Omega)}+(T, t)_{H_{0}^{1}(\Omega)}+(S, s)_{H_{0}^{1}(\Omega)} \tag{20}
\end{equation*}
$$

where $H_{0}^{1}(\Omega)^{2}=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$.
We also need the function which was introduced by Hopf [6] over fifty years ago. That is, for any $\epsilon>0$, as $\partial \Omega$ is of class C^{2}, there exists a
function $\theta_{\epsilon} \in C^{2}(\bar{\Omega})$ such that
(i) $\theta_{\epsilon}=1$ in some neighbourhood of $\partial \Omega$ (which depends on ϵ),
(ii) $\theta_{\epsilon}=0$ if $\rho(x) \geq 2 \exp (-1 / \epsilon)$,
(iii) $\left|\partial \theta_{\epsilon} / \partial x_{k}\right| \leq \epsilon / \rho(x)$ if $\rho(x)<2 \exp (-1 / \epsilon), \quad k=1,2, \ldots, n$, where $\rho(x)=\operatorname{dist}(x, \partial \Omega)$.

We now define $\mathbf{a}_{\epsilon}, \xi_{\epsilon}, \eta_{\epsilon}$, respectively, as

$$
\begin{equation*}
\mathbf{a}_{\epsilon}=\operatorname{curl}\left(\theta_{\epsilon} \mathbf{b}\right), \quad \xi_{\epsilon}=\theta_{\epsilon} \xi, \quad \eta_{\epsilon}=\theta_{\epsilon} \eta \tag{21}
\end{equation*}
$$

and let

$$
\begin{equation*}
\mathbf{u}=\mathbf{v}-\mathbf{a}_{\epsilon}, \quad \theta=T-\xi_{\epsilon}, \quad \gamma=S-\eta_{\epsilon}, \tag{22}
\end{equation*}
$$

with $\mathbf{u} \in \tilde{\mathbf{V}}, \theta, \gamma \in H_{0}^{1}(\Omega)$.
It is straightforward to verify that (9)-(15) hold provided that \mathbf{u}, p, θ, and γ satisfy

$$
\begin{gather*}
\nabla \cdot \mathbf{u}=0, \tag{23}\\
\sigma D_{a} R_{T}\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right|\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right)+\boldsymbol{\nabla} p-\mu_{0} D_{a} \Delta\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right)+\mathbf{M}\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \\
+\left(\theta+\psi_{\epsilon}\right) \mathbf{g}-\frac{1}{\tau}\left(\gamma+\beta_{\epsilon}\right) \mathbf{g}=0, \tag{24}\\
R_{T}\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\theta+\psi_{\epsilon}\right)-\boldsymbol{\nabla} \cdot\left(\mathbf{N} \boldsymbol{\nabla}\left(\theta+\psi_{\epsilon}\right)\right)=0, \tag{25}\\
\tau R_{S}\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\gamma+\beta_{\epsilon}\right)-\boldsymbol{\nabla} \cdot\left(\mathbf{Q} \boldsymbol{\nabla}\left(\gamma+\beta_{\epsilon}\right)\right)=0, \tag{26}\\
\mathbf{u}=0, \quad \theta=0, \quad \gamma=0 \text { on } \partial \Omega, \tag{27}
\end{gather*}
$$

where $\psi_{\epsilon}=\xi_{\epsilon}-T_{R}, \beta_{\epsilon}=\eta_{\epsilon}-S_{R}$.
To motivate the variational problem, we assume that the smooth solutions $\mathbf{u}, p, \theta, \gamma$ exist for (23)-(27) and that $\mathbf{a}_{\epsilon}, \psi_{\epsilon}, \beta_{\epsilon}$ are also smooth. On taking scalar products of (24), (25), (26) with the functions $\mathbf{w} \in \mathbf{V}, t \in D(\Omega)$, $s \in D(\Omega)$, respectively, and integrating by parts, we obtain

$$
\begin{align*}
& \sigma D_{a} R_{T}\left(\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right|\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right), \mathbf{w}\right)+\mu_{0} D_{a}\left(\boldsymbol{\nabla}\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right), \boldsymbol{\nabla} \mathbf{w}\right)+\left(\mathbf{M}\left(\mathbf{u}+{ }_{\epsilon}\right), \mathbf{w}\right) \\
& + \tag{28}\\
& +\left(\left(\theta+\psi_{\epsilon}\right) \mathbf{g}, \mathbf{w}\right)-\frac{1}{\tau}\left(\left(\gamma+\beta_{\epsilon}\right) \mathbf{g}, \mathbf{w}\right)=0, \tag{29}\\
& \tag{30}\\
& R_{T}\left(\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\theta+\psi_{\epsilon}\right), t\right)+\left(\mathbf{N} \boldsymbol{\nabla}\left(\theta+\psi_{\epsilon}\right), \boldsymbol{\nabla} t\right)=0, \\
& \tau R_{S}\left(\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\gamma+\beta_{\epsilon}\right), s\right)+\left(\mathbf{Q} \boldsymbol{\nabla}\left(\gamma+\beta_{\epsilon}\right), \boldsymbol{\nabla} s\right)=0 .
\end{align*}
$$

Since \mathbf{V} is dense in $\tilde{\mathbf{V}}$ and $D(\Omega)$ is dense in $H_{0}^{1}(\Omega)$, a continuity argument shows that (28)-(30) still hold if $(\mathbf{u}, \theta, \gamma) \in \mathbf{V} \times H_{0}^{1}(\Omega)^{2}, \mathbf{a}_{\epsilon} \in$ $\mathbf{H}^{1}(\Omega), \psi_{\epsilon}, \beta_{\epsilon} \in H^{1}(\Omega)$ and for $(\mathbf{w}, t, s) \in \tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$.

We define a mapping $G(\cdot, \cdot, \cdot)$ from $\tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ into itself by

$$
\begin{align*}
&\langle G(\mathbf{u}, \theta, \gamma),(\mathbf{w}, t, s)\rangle \\
&= \sigma D_{a} R_{T}\left(\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right|\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right), \mathbf{w}\right)+\mu_{0} D_{a}\left(\nabla\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right), \nabla \mathbf{w}\right) \\
&+\left(\mathbf{M}\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right), \mathbf{w}\right)+\left(\left(\theta+\psi_{\epsilon}\right) \mathbf{g}, \mathbf{w}\right)-\frac{1}{\tau}\left(\left(\gamma+\beta_{\epsilon}\right) \mathbf{g}, \mathbf{w}\right) \\
&+R_{T}\left(\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\theta+\psi_{\epsilon}\right), t\right)+\left(\mathbf{N} \nabla\left(\theta+\psi_{\epsilon}\right), \boldsymbol{\nabla} t\right) \\
&+\tau R_{S}\left(\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\gamma+\beta_{\epsilon}\right), s\right)+\left(\mathbf{Q} \nabla\left(\gamma+\beta_{\epsilon}\right), \nabla s\right) . \tag{31}
\end{align*}
$$

Thus the variational problem associated with (23)-(27) is to find $(\mathbf{u}, \theta, \gamma) \in \tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ such that

$$
\begin{equation*}
\langle G(\mathbf{u}, \theta, \gamma),(\mathbf{w}, t, s)\rangle=0 \quad \forall(\mathbf{w}, t, s) \in \tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2} . \tag{32}
\end{equation*}
$$

Conversely, if $(\mathbf{u}, \theta, \gamma) \in \tilde{\mathbf{v}} \times H_{0}^{1}(\Omega)^{2}$ satisfies (32), then (28), (29), and (30) hold for any $\mathbf{w} \in \mathbf{V}, t \in H_{0}^{1}(\Omega)$, and $s \in H_{0}^{1}(\Omega)$ by choosing $t=0$, $s=0$ or $\mathbf{w}=0, s=0$ or $\mathbf{w}=0, t=0$ in (32), respectively.

Propositions 1.1 and 1.2 in Temam [13, Chap. 1] assert that for $\mathbf{f}=$ $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ with $f_{i} \in D^{\prime}(\Omega)(i=1,2, \ldots, n)$ the following results are true:
(i) A necessary and sufficient condition that $\mathbf{f}=\boldsymbol{\nabla} p$ for some $p \in$ $D^{\prime}(\Omega)$ is that $(\mathbf{f}, \mathbf{w})=0 \forall \mathbf{w} \in \mathbf{V}$.
(ii) Let Ω be a bounded Lipschitz open set in \mathbf{R}^{n}. If a distribution p has all its first derivatives $D_{i} p(1 \leq i \leq n)$ in $H^{-1}(\Omega)$, then $p \in L^{2}(\Omega)$.

It follows from (28) that there exists a distribution $p \in L^{2}(\Omega)$ such that (24) holds in the distribution sense in Ω. A lso, (29) and (30) imply that (25) and (26) are true in the distribution sense in Ω and (23), (27) are satisfied in the distribution sense in Ω and in the trace sense on $\partial \Omega$, respectively.

4. THE EXISTENCE OF SOLUTIONS

With the use of above argument we now prove the existence of solutions of (9)-(15). To do so, we note that it is enough to show that variational problem (32) has a solution in $\tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$.

We first prove the following lemma.

Lemma 1. If G is a mapping from $\tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ into itself defined by (31), then
(i) G is continuous,
(ii) there exists a $r>0$ such that

$$
\langle G(\mathbf{Y}), \mathbf{Y}\rangle>0 \quad \forall \mathbf{Y} \in \tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2} \text { with }\|\mathbf{Y}\|_{\tilde{\mathbf{v}} \times H_{0}^{1}(\Omega)^{2}}=r
$$

Proof. Let $\left(\mathbf{u}^{k}, \theta^{k}, \gamma^{k}\right) \rightarrow(\mathbf{u}, \theta, \gamma)$ strongly in $\tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ as $k \rightarrow \infty$ and m_{l}, n_{l}, q_{l} be the largest eigenvalues of matrices $\mathbf{M}, \mathbf{N}, \mathbf{Q}$, respectively. Then for any (\mathbf{w}, t, s) $\in \mathbf{V} \times H_{0}^{1}(\Omega)^{2}$ we have

$$
\begin{align*}
\mid\left\langleG \left(\mathbf{u}^{k},\right.\right. & \left.\left.\theta^{k}, \gamma^{k}\right)-G(\mathbf{u}, \theta, \gamma),(\mathbf{w}, t, s)\right\rangle \mid \\
\leq & \sigma D_{a} R_{T}\left\{\left|\left(\left|\mathbf{u}^{k}+\mathbf{a}_{\epsilon}\right|\left(\mathbf{u}^{k}-\mathbf{u}\right), \mathbf{w}\right)\right|\right. \\
& \left.\quad+\left|\left(\left(\left|\mathbf{u}^{k}+\mathbf{a}_{\epsilon}\right|-\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right|\right)\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right), \mathbf{w}\right)\right|\right\} \\
& +\mu_{0} D_{a}\left|\left(\nabla\left(\mathbf{u}^{k}-\mathbf{u}\right), \boldsymbol{\nabla} \mathbf{w}\right)\right|+\left|\left(\mathbf{M}\left(\mathbf{u}^{k}-\mathbf{u}\right), \mathbf{w}\right)\right|+\left|\left(\left(\theta^{k}-\theta\right) \mathbf{g}, \mathbf{w}\right)\right| \\
& +\frac{1}{\tau}\left|\left(\left(\gamma^{k}-\gamma\right) \mathbf{g}, \mathbf{w}\right)\right|+R_{T}\left|\left(\left(\mathbf{u}^{k}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\theta^{k}-\theta\right), t\right)\right| \\
& +R_{T}\left|\left(\left(\mathbf{u}^{k}-\mathbf{u}\right) \cdot\left(\theta+\psi_{\epsilon}\right), t\right)\right| \\
& +\left|\left(\mathbf{N} \nabla\left(\theta^{k}-\theta\right), \nabla t\right)\right|+\tau R_{S}\left|\left(\left(\mathbf{u}^{k}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\gamma^{k}-\gamma\right), s\right)\right| \\
& \left.+\tau R_{s}\left|\left(\left(\mathbf{u}^{k}-\mathbf{u}\right) \cdot \boldsymbol{\nabla}\left(\gamma+\beta_{\epsilon}\right), s\right)\right|+\mid \mathbf{Q} \boldsymbol{\nabla}\left(\gamma^{K}-\gamma\right), \nabla s\right) \mid \\
\leq & \sigma D_{a} R_{T}\left\|\mathbf{u}^{k}-\mathbf{u}\right\|_{L^{2}}\left\|\mathbf{u}^{k}+\mathbf{a}_{\epsilon}\right\|_{L^{4}}\|\mathbf{w}\|_{L^{4}} \\
& +\sigma D_{a} R_{T}\left\|\mathbf{u}+\mathbf{a}_{\epsilon}\right\|_{L^{4}}\left\|\mathbf{u}^{k}-\mathbf{u}\right\|_{L^{2}}\|\mathbf{w}\|_{L^{4}} \\
& +\mu_{0} D_{a}\left\|\mathbf{u}^{k}-\mathbf{u}\right\|_{\tilde{V}}\|\mathbf{w}\|_{\tilde{V}}+m_{l}\left\|\mathbf{u}^{k}-\mathbf{u}\right\|_{H}\|\mathbf{w}\|_{H}+\left\|\theta^{k}-\theta\right\|_{L^{2}}\|\mathbf{w}\|_{H} \\
& +\frac{1}{\tau}\left\|\gamma^{k}-\gamma\right\|_{L^{2}}\|\mathbf{w}\|_{H}+R_{T}\left\|\theta^{k}-\theta\right\|_{H_{0}^{1}}\left\|\mathbf{u}^{k}-\mathbf{u}\right\|_{L^{4}}\|t\|_{L^{4}} \\
& +R_{T}\|t\|_{H_{0}^{1}}\left\|\mathbf{u}^{k}-\mathbf{u}\right\|_{L^{4}}\left\|\theta+\psi_{\epsilon}\right\|_{L^{4}}+n_{l}\left\|\theta^{k}-\theta\right\|_{H_{0}^{1}}\|t\|_{H_{0}^{1}} \\
& +\tau R_{S}\left\|\gamma^{k}-\gamma\right\|_{H_{0}^{1} \|}\left\|\mathbf{u}^{k}+\mathbf{a}_{\epsilon}\right\|_{L^{4}}\|s\|_{L^{4}} \\
& +\tau R_{S}\|s\|_{H_{0}^{1}}\left\|\mathbf{u}^{K}-\mathbf{u}\right\|_{L^{4}}\left\|\gamma+\beta_{\epsilon}\right\|_{L^{4}}+q_{l}\left\|\gamma^{k}-\gamma\right\|_{H_{0}^{1}}\|s\|_{H_{0}^{1}} . \tag{33}
\end{align*}
$$

The continuity of G follows from (33) and from Sobolev's imbedding theorems as well as from the boundedness of ($\mathbf{u}^{k}, \theta^{k}, \gamma^{k}$) in $\tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ (cf. Gilbarg and Trudinger [4]).

To prove the second part we note that for any $(\mathbf{u}, \theta, \gamma) \in \tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ we have

$$
\begin{align*}
&\langle G(\mathbf{u}, \theta, \gamma),(\mathbf{u}, \theta, \gamma)\rangle \\
& \geq \mu_{0} D_{a}\|\mathbf{u}\|_{\tilde{V}}^{2}+\|\mathbf{u}\|_{H}^{2}+\|\theta\|_{H_{0}^{1}}^{2}+\|\gamma\|_{H_{0}^{1}}^{2} \\
&+\sigma D_{a} R_{T}\left(\mid \mathbf{u}+\mathbf{a}_{\epsilon}\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right), \mathbf{u}\right)+\mu_{0} D_{a}\left(\nabla \mathbf{a}_{\epsilon}, \nabla \mathbf{u}\right) \\
&+\left(\mathbf{M} \mathbf{a}_{\epsilon}, \mathbf{u}\right)+\left(\left(\theta+\psi_{\epsilon}\right) \mathbf{g}, \mathbf{u}\right)-\frac{1}{\tau}\left(\left(\gamma+\beta_{\epsilon}\right) \mathbf{g}, \mathbf{u}\right) \\
&+R_{T}\left(\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \nabla\left(\theta+\psi_{\epsilon}\right), \theta\right)+\left(\mathbf{N} \nabla \psi_{\epsilon}, \nabla \theta\right) \\
&+\tau R_{S}\left(\left(\mathbf{u}+\mathbf{a}_{\epsilon}\right) \cdot \nabla\left(\gamma+\beta_{\epsilon}\right), \gamma\right)+\left(\mathbf{Q} \nabla \beta_{\epsilon}, \nabla \gamma\right) \\
& \geq \mu_{0} D_{a}\|\mathbf{u}\|_{V}^{2}+\|\mathbf{u}\|_{H}^{2}+\|\theta\|_{H_{0}^{1}}^{2}+\|\gamma\|_{H_{0}^{1}}^{2} \\
&+\sigma D_{a} R_{T}\left(\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right|,|\mathbf{u}|^{2}\right)-\sigma D_{a} R_{T}\left|\left(\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right| \mathbf{a}_{\epsilon}, \mathbf{u}\right)\right| \\
&-\mu_{0} D_{a}\left\|\nabla \mathbf{a}_{\epsilon}\right\|_{L^{2}}\|\mathbf{u}\|_{\tilde{V}}-m_{l}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}\|\mathbf{u}\|_{H}-\|\theta\|_{L^{2}}\|\mathbf{u}\|_{H} \\
&-\left\|\psi_{\epsilon}\right\|_{L^{2}}\|\mathbf{u}\|_{H}-\frac{1}{\tau}\|\gamma\|_{L^{2}}\|\mathbf{u}\|_{H}-\frac{1}{\tau}\left\|\beta_{\epsilon}\right\|_{L^{2}}\|\mathbf{u}\|_{H} \\
&-R_{T}\left(\|\mathbf{u}\|_{H}+\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}\right)\left\|\theta \nabla \psi_{\epsilon}\right\|_{L^{2}}-n_{l}\left\|\nabla \psi_{\epsilon}\right\|_{L^{2}}\|\theta\|_{H_{0}^{1}} \\
&-\tau R_{S}\left(\|\mathbf{u}\|_{H}+\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}\right)\left\|\gamma \nabla \beta_{\epsilon}\right\|_{L^{2}}-q_{l}\left\|\nabla \beta_{\epsilon}\right\|_{L^{2}}\|\gamma\|_{H_{0}^{1}} . \tag{34}
\end{align*}
$$

We now estimate the terms $\left\|\left(\mathbf{u}+\mathbf{a}_{\epsilon} \mid \mathbf{a}_{\epsilon}, \mathbf{u}\right) \mid,\right\| \theta \nabla \psi_{\epsilon} \|_{L^{2}}$, and $\left\|\gamma \nabla \beta_{\epsilon}\right\|_{L^{2}}$ successively.

We first note that since $b_{i} \in H^{2}(\Omega)(1 \leq i \leq n)$, the Sobolev's imbedding theorems imply that $b_{i} \in L^{\infty}(\Omega)(1 \leq i \leq n)$. This gives

$$
\begin{equation*}
\left|\mathbf{a}_{\epsilon}\right| \leq c_{1}\{|\boldsymbol{\nabla} \mathbf{b}|+\epsilon|\mathbf{b}| / \rho(x)\} \leq c_{2}\{\epsilon / \rho(x)+|\boldsymbol{\nabla} \mathbf{b}|\}, \tag{35}
\end{equation*}
$$

where c_{1}, c_{2} are constants. Now

$$
\begin{equation*}
\left|\left(\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right| \mathbf{a}_{\epsilon}, \mathbf{u}\right)\right| \leq\left\|\mathbf{u}+\mathbf{a}_{\epsilon}\right\|_{L^{2}}\left\|\mathbf{u} \cdot \mathbf{a}_{\epsilon}\right\|_{L^{2}\left(\Omega_{\epsilon}\right)}, \tag{36}
\end{equation*}
$$

where $\Omega_{\epsilon}=\{x \in \Omega: \rho(x)<2 \exp (-1 / \epsilon)\}$ and

$$
\begin{align*}
\left\|\mathbf{u} \cdot \mathbf{a}_{\epsilon}\right\|_{L^{2}\left(\Omega_{\epsilon}\right)} & =\left(\sum_{i=1}^{n} \int_{\Omega_{\epsilon}}\left|u_{i} a_{\epsilon}^{i}\right|^{2} d x\right)^{1 / 2} \\
& \leq\left(\int_{\Omega_{\epsilon}}|\mathbf{u}|^{2}\left|\mathbf{a}_{\epsilon}\right|^{2} d x\right)^{1 / 2} \\
& \leq 2 c_{2}\left\{\epsilon\|\mathbf{u} / \rho\|_{L^{2}}+\left(\int_{\Omega_{\epsilon}}|\nabla \mathbf{b}|^{4} d x\right)^{1 / 4}\|\mathbf{u}\|_{L^{4}}\right\} . \tag{37}
\end{align*}
$$

With use of the Hardy inequality (Hopf [6]) and the Sobolev inequality

$$
\begin{equation*}
\|u / \rho\|_{L^{2}} \leq \text { const }\|u\|_{H_{0}^{1}}, \quad\|u\|_{L^{4}} \leq \text { const }\|u\|_{H_{0}^{1}} \quad \forall u \in H_{0}^{1}(\Omega), \tag{38}
\end{equation*}
$$

the inequality (37) becomes

$$
\begin{equation*}
\left\|\mathbf{u} \cdot \mathbf{a}_{\epsilon}\right\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq c_{3} \lambda(\epsilon)\|\mathbf{u}\|_{\tilde{V}}, \tag{39}
\end{equation*}
$$

where $\lambda(\epsilon)=\max \left\{\boldsymbol{\epsilon},\left(\int_{\Omega_{\epsilon}}|\boldsymbol{\nabla} \mathbf{b}|^{4} d x\right)^{1 / 4}\right\} \rightarrow 0$ as $\epsilon \rightarrow 0$.
From (36)-(39) we conclude that for any $\delta>0$ we can choose ϵ sufficiently small such that

$$
\begin{equation*}
\left|\left(\left|\mathbf{u}+\mathbf{a}_{\epsilon}\right| \mathbf{a}_{\epsilon}, \mathbf{u}\right)\right| \leq \delta\|\mathbf{u}\|_{\tilde{V}}^{2}+\delta\|\mathbf{u}\|_{\tilde{V}}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}} . \tag{40}
\end{equation*}
$$

In a similar way we can show that for any $\delta>0$ we can choose ϵ sufficiently small such that

$$
\begin{equation*}
\left\|\theta \nabla \psi_{\epsilon}\right\|_{L^{2}} \leq \delta\|\theta\|_{H_{0}^{1}}, \quad\left\|\gamma \nabla \beta_{\epsilon}\right\|_{L^{2}} \leq \delta\|\gamma\|_{H_{0}^{1}} . \tag{41}
\end{equation*}
$$

We now return to (34). By applying the well-known inequality (Ladyzhenskaya [7])

$$
\begin{equation*}
\|u\|_{L^{2}} \leq \frac{1}{\pi n^{1 / 2}}\|u\|_{H_{0}^{1}} \quad \forall u \in H_{0}^{1}(\Omega) \tag{42}
\end{equation*}
$$

and inequalities

$$
\|\mathbf{u}\|_{H}\|\theta\|_{L^{2}} \leq \frac{1}{2}\|\mathbf{u}\|_{H}^{2}+\frac{1}{2}\|\theta\|_{L^{2}}^{2}, \quad\|\mathbf{u}\|_{H}\|\gamma\|_{L^{2}} \leq \frac{\tau}{2}\|\mathbf{u}\|_{H}^{2}+\frac{1}{2 \tau}\|\gamma\|_{L^{2}}^{2}
$$

together with (40) and (41) in (34) we obtain

$$
\langle G(\mathbf{u}, \theta, \gamma),(\mathbf{u}, \theta, \gamma)\rangle
$$

$$
\begin{align*}
\geq & \left\{D_{a}\left(\mu_{0}-\sigma \delta R_{T}\right)-\frac{R_{T} \delta+\tau R_{S} \delta}{2 \pi n^{1 / 2}}\right\}\|\mathbf{u}\|_{\tilde{V}}^{2} \\
& +\left\{1-\frac{1}{2 \pi n^{1 / 2}}-\frac{R_{T} \delta}{2}\right\}\|\theta\|_{H_{0}^{1}}^{2} \\
& +\left\{1-\frac{1}{2 \pi \tau^{2} n^{1 / 2}}-\frac{\tau R_{S} \delta}{2}\right\}\|\gamma\|_{H_{0}^{1}}^{2} \\
& -\left\{\delta \sigma D_{a} R_{T}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+\mu_{0} D_{a}\left\|\nabla \mathbf{a}_{\epsilon}\right\|_{L^{2}}+\frac{m_{l}}{\pi n^{1 / 2}}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+\frac{1}{\pi n^{1 / 2}}\left\|\psi_{\epsilon}\right\|_{L^{2}}\right. \\
& \left.+\frac{1}{\tau \pi n^{1 / 2}}\left\|\beta_{\epsilon}\right\|_{L^{2}}\right\}\|\mathbf{u}\|_{\tilde{V}}-\left\{\delta R_{T}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+n_{l}\left\|\nabla \psi_{\epsilon}\right\|_{L^{2}}\right\}\|\theta\|_{H_{0}^{1}} \\
& -\left\{\tau \delta R_{S}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+q_{l}\left\|\nabla \beta_{\epsilon}\right\|_{L^{2}}\right\}\|\gamma\|_{H_{0}^{1}} . \tag{43}
\end{align*}
$$

Since $\tau \geq 1$, by choosing $0<\delta \leq \delta_{0}<\mu_{0} /\left(\sigma R_{T}\right)$ we have

$$
\langle G(\mathbf{u}, \theta, \gamma),(\mathbf{u}, \theta, \gamma)\rangle
$$

$$
\begin{align*}
\geq\{ & \left.\min \left\{D_{a}\left(\mu_{0}-\sigma \delta_{0} R_{T}\right), 1-\frac{1}{2 \pi n^{1 / 2}}\right\}-\frac{R_{T} \delta+\tau R_{S} \delta}{2}\right\} \\
& \times\left(\|\mathbf{u}\|_{\dot{V}}^{2}+\|\theta\|_{H_{0}^{1}}^{2}+\|\gamma\|_{H_{0}^{1}}^{2}\right) \\
- & \left\{\delta \sigma D_{a} R_{T}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+\mu_{0} D_{a}\left\|\nabla \mathbf{a}_{\epsilon}\right\|_{L^{2}}\right. \\
& +\left(\frac{m_{l}}{\pi n^{1 / 2}}+\delta R_{T}+\delta \tau R_{S}\right)\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}} \\
& \left.+\frac{1}{\pi n^{1 / 2}}\left\|\psi_{\epsilon}\right\|_{L^{2}}+\frac{1}{\tau \pi n^{1 / 2}}\left\|\beta_{\epsilon}\right\|_{L^{2}}+n_{l}\left\|\nabla \psi_{\epsilon}\right\|_{L^{2}}+q_{l}\left\|\nabla \beta_{\epsilon}\right\|_{L^{2}}\right\} \\
& \times\left(\|\mathbf{u}\|_{V}^{2}+\|\theta\|_{H_{0}^{1}}^{2}+\|\gamma\|_{H_{0}^{1}}^{2}\right)^{1 / 2} . \tag{44}
\end{align*}
$$

We now choose

$$
\begin{align*}
0<\delta \leq \min \{ & \left.\delta_{0}, \min \left\{D_{a}\left(\mu_{0}-\sigma \delta_{0} R_{T}\right), 1-1 / 2 \pi n^{1 / 2}\right\} \frac{2}{R_{T}+\tau R_{S}}\right\} \tag{45}\\
r \geq \frac{1}{\kappa}\{ & n^{1 / 2} \sigma D_{a} R_{T}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{4}}+\mu_{0} D_{a}\left\|\nabla \mathbf{a}_{\epsilon}\right\|_{L^{2}} \\
& +\left(\frac{m_{l}}{\pi n^{1 / 2}}+\delta R_{T}+\delta \tau R_{S}\right)\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+\frac{1}{\pi n^{1 / 2}}\left\|\psi_{\epsilon}\right\|_{L^{2}} \\
& \left.+\frac{1}{\tau \pi n^{1 / 2}}\left\|\beta_{\epsilon}\right\|_{L^{2}}+n_{l}\left\|\nabla \psi_{\epsilon}\right\|_{L^{2}}+q_{l}\left\|\nabla \beta_{\epsilon}\right\|_{L^{2}}\right\},
\end{align*}
$$

where

$$
\kappa=\min \left\{D_{a}\left(\mu_{0}-\sigma \delta_{0} R_{T}\right), 1-1 / 2 \pi n^{1 / 2}\right\}-\delta\left(R_{T}+\tau R_{S}\right) / 2
$$

The above choices for δ and r lead to

$$
\langle G(\mathbf{Y}), \mathbf{Y}\rangle>0 \quad \text { with }\|\mathbf{Y}\|_{\tilde{V} \times H_{0}^{1}(\Omega)^{2}}=r
$$

which proves the second part of the lemma.
Besides the above lemma the following lemma is needed to obtain the existence result (Lions [8]).

Lemma 2. Let \mathscr{H} be a finite-dimensional Hilbert space with scalar product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and let G be a continuous mapping from \mathscr{H} into itself such that

$$
\langle G(x), x\rangle>0 \quad \text { for }\|x\|=r_{0}>0
$$

Then there exists $x \in \mathscr{H}$, with $\|x\| \leq r_{0}$, such that

$$
G(x)=0 .
$$

We are now ready to obtain the main result of the section.
Theorem 1. The problem (32) has at least one solution $(\mathbf{u}, \theta, \gamma) \in \tilde{\mathbf{V}} \times$ $H_{0}^{1}(\Omega)^{2}$.

Proof. We employ the Galerkin method to prove this theorem. Since \tilde{V} and $H_{0}^{1}(\Omega)$ are separable, there exist three sequences $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ of linearly independent elements in $\tilde{\mathbf{V}}, t_{1}, t_{2}, \ldots, t_{m}$ of linearly independent elements in $H_{0}^{1}(\Omega)$, and $s_{1}, s_{2}, \ldots, s_{m}$ of linearly independent elements in $H_{0}^{1}(\Omega)$. We define an approximate solution ($\mathbf{u}_{m}, \theta_{m}, \gamma_{m}$) of (32) by

$$
\begin{gather*}
\mathbf{u}_{m}=\sum_{l=1}^{m} a_{j} \mathbf{w}_{j}, \quad \theta_{m}=\sum_{l=1}^{m} b_{j} t_{j}, \quad \gamma_{m}=\sum_{l=1}^{m} c_{j} s_{j} \tag{47}\\
\sigma D_{a} R_{T}\left(\left|\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right|\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right), \mathbf{w}_{j}\right)+\mu_{0} D_{a}\left(\nabla\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right), \nabla \mathbf{w}_{j}\right) \\
+\left(\mathbf{M}\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right), \mathbf{w}_{j}\right)+\left(\left(\theta_{m}+\psi_{\epsilon}\right) \mathbf{g}, \mathbf{w}_{j}\right)-\frac{1}{\tau}\left(\left(\gamma_{m}+\beta_{\epsilon}\right) \mathbf{g}, \mathbf{w}_{j}\right)=0, \tag{48}\\
R_{T}\left(\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\theta_{m}+\psi_{\epsilon}\right), t_{j}\right)+\left(\mathbf{N} \nabla\left(\theta_{m}+\psi_{\epsilon}\right), \nabla t_{j}\right)=0, \tag{49}\\
\tau R_{S}\left(\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\gamma_{m}+\beta_{\epsilon}\right), s_{j}\right)+\left(\mathbf{Q} \nabla\left(\gamma_{m}+\beta_{\epsilon}\right), \nabla s_{j}\right)=0, \tag{50}
\end{gather*}
$$

with

$$
a_{j}, b_{j}, c_{j} \in \mathbf{R}, \quad j=1,2, \ldots, m
$$

Let X be the product space spanned by $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m i} t_{1}, t_{2}, \ldots, t_{m}$ and $s_{1}, s_{2}, \ldots, s_{m}$. The scalar product on X is induced by $\mathbf{V} \times H_{0}^{1}(\Omega)^{2}$, and $G=G_{m}$ is defined by

$$
\begin{align*}
\left\langle G_{m}(\mathbf{u}, \theta, \gamma),(\mathbf{w}, t, s)\right\rangle & =\langle G(\mathbf{u}, \theta, \gamma),(\mathbf{w}, t, s)\rangle \\
& =(31) \quad \forall(\mathbf{u}, \theta, \gamma),(\mathbf{w}, t, s) \in X . \tag{51}
\end{align*}
$$

It is obvious that G_{m} satisfies the hypotheses of Lemma 1 and Lemma 2. Therefore, there exists a solution $\left(\mathbf{u}_{m}, \theta_{m}, \gamma_{m}\right) \in X$ such that

$$
\begin{equation*}
\left\langle G_{m}\left(\mathbf{u}_{m}, \theta_{m}, \gamma_{m}\right),(\mathbf{w}, t, s)\right\rangle=0, \quad \forall(\mathbf{w}, t, s) \in X \tag{52}
\end{equation*}
$$

In particular

$$
\begin{aligned}
& \sigma D_{a} R_{T}\left(\left|\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right|\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right), \mathbf{w}\right)+\mu_{0} D_{a}\left(\boldsymbol{\nabla}\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right), \boldsymbol{\nabla} \mathbf{w}\right) \\
& +\left(\mathbf{M}\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right), \mathbf{w}\right)+\left(\left(\theta_{m}+\psi_{\epsilon}\right) \mathbf{g}, \mathbf{w}\right)-\frac{1}{\tau}\left(\left(\gamma_{m}+\beta_{\epsilon}\right) \mathbf{g}, \mathbf{w}\right)=0 \\
& \forall \mathbf{w} \in \tilde{\mathbf{V}} \cap X, \\
& R_{T}\left(\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\theta_{m}+\psi_{\epsilon}\right), t\right)+\left(\mathbf{N} \nabla\left(\theta_{m}+\psi_{\epsilon}\right), \boldsymbol{\nabla} t\right)=0 \\
& \forall t \in H_{0}^{1}(\Omega) \cap X, \\
& \tau R_{S}\left(\left(\mathbf{u}_{m}+\mathbf{a}_{\epsilon}\right) \cdot \boldsymbol{\nabla}\left(\gamma_{m}+\beta_{\epsilon}\right), s\right)+\left(\mathbf{Q} \nabla\left(\gamma_{m}+\beta_{\epsilon}\right), \nabla s\right)=0 \\
& \forall s \in H_{0}^{1}(\Omega) \cap X .
\end{aligned}
$$

It follows that (48)-(50) are satisfied and a_{j}, b_{j}, c_{j} can be determined through (48)-(50). M ultiplying (48), (49), (50) by, respectively, a_{j}, b_{j}, c_{j} and adding the equalities for $j=1,2, \ldots, m$ we obtain

$$
\begin{aligned}
0= & \left\langle G_{m}\left(\mathbf{u}_{m}, \theta_{m}, \gamma_{m}\right),\left(\mathbf{u}_{m}, \theta_{m}, \gamma_{m}\right)\right\rangle \\
\geq & \kappa\left(\left\|\mathbf{u}_{m}\right\|_{\tilde{V}}^{2}+\left\|\theta_{m}\right\|_{H_{0}^{1}}^{2}+\left\|\gamma_{m}\right\|_{H_{0}^{1}}^{2}\right) \\
& -\left\{\delta \sigma D_{a} R_{T}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+\mu_{0} D_{a}\left\|\boldsymbol{\nabla} \mathbf{a}_{\epsilon}\right\|_{L^{2}}+\left(\frac{m_{l}}{\pi n^{1 / 2}}+\delta R_{T}+\delta \tau R_{S}\right)\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}\right. \\
& \left.\quad+\frac{1}{\pi n^{1 / 2}}\left\|\psi_{\epsilon}\right\|_{L^{2}}+\frac{1}{\tau \pi n^{1 / 2}}\left\|\beta_{\epsilon}\right\|_{L^{2}}+n_{l}\left\|\boldsymbol{\nabla} \psi_{\epsilon}\right\|_{L^{2}}+q_{l}\left\|\nabla \beta_{\epsilon}\right\|_{L^{2}}\right\} \\
& \quad \times\left(\left\|\mathbf{u}_{m}\right\|_{V}^{2}+\left\|\theta_{m}\right\|_{H_{0}^{1}}^{2}+\left\|\gamma_{m}\right\|_{H_{0}^{1}}^{2}\right)^{1 / 2} .
\end{aligned}
$$

This gives

$$
\begin{align*}
& \left\|\left(\mathbf{u}_{m}, \theta_{m}, \gamma_{m}\right)\right\|_{\tilde{V} \times H_{0}^{1}(\Omega)^{2}} \\
& \leq r=\frac{1}{\kappa}\{ \\
& \left\{\delta \sigma D_{a} R_{T}\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+\mu_{0} D_{a}\left\|\nabla \mathbf{a}_{\epsilon}\right\|_{L^{2}}\right. \\
& \tag{53}\\
& \quad+\left(\frac{m_{l}}{\pi n^{1 / 2}}+\delta R_{T}+\delta \tau R_{S}\right)\left\|\mathbf{a}_{\epsilon}\right\|_{L^{2}}+\frac{1}{\pi n^{1 / 2}}\left\|\psi_{\epsilon}\right\|_{L^{2}} \\
& \\
& \left.\quad+\frac{1}{\tau \pi n^{1 / 2}}\left\|\beta_{\epsilon}\right\|_{L^{2}}+n_{l}\left\|\nabla \psi_{\epsilon}\right\|_{L^{2}}+q_{l}\left\|\boldsymbol{\nabla} \beta_{\epsilon}\right\|_{L^{2}}\right\} .
\end{align*}
$$

Since the sequence ($\mathbf{u}_{m}, \theta_{m}, \gamma_{m}$) is uniformly bounded in $\tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$, it follows that there exists a $(\mathbf{u}, \theta, \gamma) \in \tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2}$ and a subsequence
$m_{k} \rightarrow \infty$ (we still write m instead of m_{k} for the convenience) such that

$$
\begin{equation*}
\left(\mathbf{u}_{m}, \theta_{m}, \gamma_{m}\right) \rightarrow(\mathbf{u}, \theta, \gamma) \quad \text { weakly in } \tilde{\mathbf{V}} \times H_{0}^{1}(\Omega)^{2} . \tag{54}
\end{equation*}
$$

M oreover, the compactness imbedding theorem shows that

$$
\begin{equation*}
\left(\mathbf{u}_{m}, \theta_{m}, \gamma_{m}\right) \rightarrow(\mathbf{u}, \theta, \gamma) \quad \text { strongly in } \mathbf{L}^{4} \times L^{4} \times L^{4} \tag{55}
\end{equation*}
$$

Taking the limit in (52) with $m \rightarrow \infty$ we get

$$
\begin{equation*}
\langle G(\mathbf{u}, \theta, \gamma),(\mathbf{w}, t, s)\rangle=0 \quad \forall(\mathbf{w}, t, s) \in X . \tag{56}
\end{equation*}
$$

A continuity argument finally shows that (56) holds for any (w,t,s) $\in \tilde{\mathbf{V}} \times$ $H_{0}^{1}(\Omega)^{2}$ and $(\mathbf{u}, \theta, \gamma)$ is a solution of (32). This completes the proof.

5. REGULARITY AND UNIQUENESS

In this section, we discuss the regularity and uniqueness of the solution of (9)-(15). Here $\mathbf{a}_{\epsilon}, \psi_{\epsilon}, \beta_{\epsilon}$ are replaced, respectively, by $\mathbf{a}, \psi=\xi-T_{R}$, $\beta=\eta-S_{R}$. We assume that $\mathbf{a} \in \mathbf{H}^{2}(\Omega), \psi, \beta \in H^{2}(\Omega)$.

Theorem 2. Let Ω be an open bounded set of class C^{3} and $(\mathbf{v}, p, T, S) \in$ $\mathbf{H}^{1}(\Omega) \times L^{2}(\Omega) \times H^{1}(\Omega)^{2}$ be a solution of (9)-(15), then $(\mathbf{v}, p, T, S) \in$ $\mathbf{H}^{2}(\Omega) \times H^{1}(\Omega) \times H^{2}(\Omega) \times H^{2}(\Omega)$.

Proof. Let $\mathbf{u}=\mathbf{v}-\mathbf{a}, \theta=T-\xi, \gamma=S-\eta$, then $(\mathbf{u}, p, \theta, \gamma)$ is a solution of (23)-(27). We write (24) as

$$
\begin{equation*}
-\mu_{0} D_{a} \Delta \mathbf{u}+\nabla p=\mathbf{f} \tag{57}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{f}= & \mu_{0} D_{a} \Delta \mathbf{a}-\mathbf{M}(\mathbf{u}+\mathbf{a})-(\theta+\psi) \mathbf{g}+\frac{1}{\tau}(\gamma+\beta) \mathbf{g} \\
& -\sigma D_{a} R_{T}|\mathbf{u}+\mathbf{a}|(\mathbf{u}+\mathbf{a}) .
\end{aligned}
$$

Notice that $\mathbf{f} \in \mathbf{L}^{2}(\Omega)$, thus the regularity theory for the generalized Stokes problem (see [13, Proposition 2.2, Chap. I]) shows that

$$
\mathbf{u} \in \mathbf{H}^{2}(\Omega) \quad \text { and } \quad p \in H^{1}(\Omega)
$$

We consider the Dirichlet problem

$$
\begin{gather*}
-\boldsymbol{\nabla} \cdot(\mathbf{N} \boldsymbol{\nabla} \theta)=-R_{T}(\mathbf{u}+\mathbf{a}) \cdot \boldsymbol{\nabla}(\theta+\psi)+\boldsymbol{\nabla} \cdot(\mathbf{N} \boldsymbol{\nabla} \psi), \tag{58}\\
\theta=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

Since $-R_{T}(\mathbf{u}+\mathbf{a}) \cdot \boldsymbol{\nabla}(\theta+\psi)+\boldsymbol{\nabla} \cdot(\mathbf{N} \boldsymbol{\nabla} \psi) \in L^{2}(\Omega)$, the standard regularity theory of elliptic partial differential equations tells us $\theta \in H^{2}(\Omega)$. Similarly, we can show that $\gamma \in H^{2}(\Omega)$.

The further regularity results can be obtained by reiterating the same procedure as in the proof of Theorem 2, provided that the additional conditions are imposed on boundary $\partial \Omega$ and on boundary data \mathbf{a}, ξ, and η. We state without proof the following theorem:

Theorem 3. Let Ω be an open bounded set of class C^{∞} and $\mathbf{a} \in \mathbf{C}^{\infty}$, $\xi, \eta \in C^{\infty}$, then any solution (\mathbf{v}, p, T, S) of (9)-(15) belongs to $\mathbf{C}^{\infty}(\bar{\Omega}) \times$ $C^{\infty}(\Omega)^{3}$.

Finally, we establish a uniqueness result.
Theorem 4. If $\|\mathbf{a}\|_{H^{1}}, \sup _{\partial \Omega}|\psi|$, and $\sup _{\partial \Omega}|\beta|$ are small, then the solution of (9)-(15) is unique (as always, p is unique up to a constant).

Proof. Let $\left(\mathbf{v}_{1}, p_{1}, T_{1}, S_{1}\right)$ and ($\left.\mathbf{v}_{2}, p_{2}, T_{2}, S_{2}\right)$ be two solutions of (9)-(15), then $\left(\mathbf{u}_{1}=\mathbf{v}_{1}-\mathbf{a}, p_{1}, \theta_{1}=T_{1}-\xi, \gamma_{1}=S_{1}-\eta\right)$ and ($\mathbf{u}_{2}=$ $\mathbf{v}_{2}-\mathbf{a}, p_{2}, \theta_{2}=T_{2}-\xi, \gamma_{2}=S_{2}-\eta$) are two solutions of (23)-(27). It follows that $\left(\mathbf{u}_{1}, \theta_{1}, \gamma_{1}\right)$ and $\left(\mathbf{u}_{2}, \theta_{2}, \gamma_{2}\right)$ are two solutions of problem (32). We, therefore, have

$$
\begin{aligned}
0= & \left\langle G\left(\mathbf{u}_{1}, \theta_{1}, \gamma_{1}\right)-G\left(\mathbf{u}_{2}, \theta_{2}, \gamma_{2}\right),\left(\mathbf{u}_{1}-\mathbf{u}_{2}, \theta_{1}-\theta_{2}, \gamma_{1}-\gamma_{2}\right)\right\rangle \\
= & \sigma D_{a} R_{T}\left(\left|\mathbf{u}_{1}+\mathbf{a}\right|\left(\mathbf{u}_{1}+\mathbf{a}\right), \mathbf{u}_{1}-\mathbf{u}_{2}\right) \\
& -\sigma D_{a} R_{T}\left(\left|\mathbf{u}_{2}+\mathbf{a}\right|\left(\mathbf{u}_{2}+\mathbf{a}\right), \mathbf{u}_{1}-\mathbf{u}_{2}\right) \\
& +\mu_{0} D_{a}\left(\boldsymbol{\nabla}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right), \boldsymbol{\nabla}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)\right)+\left(\mathbf{M}\left(\mathbf{u}_{2}-\mathbf{u}_{2}\right), \mathbf{u}_{1}-\mathbf{u}_{2}\right) \\
& +\left(\left(\theta_{1}-\theta_{2}\right) \mathbf{g}, \mathbf{u}_{1}-\mathbf{u}_{2}\right)+\frac{1}{\tau}\left(\left(\gamma_{1}-\gamma_{2}\right) \mathbf{g}, \mathbf{u}_{1}-\mathbf{u}_{2}\right) \\
& +R_{T}\left(\left(\mathbf{u}_{1}+\mathbf{a}\right) \cdot \boldsymbol{\nabla}\left(\theta_{1}+\psi\right), \theta_{1}-\theta_{2}\right) \\
& -R_{T}\left(\left(\mathbf{u}_{2}+\mathbf{a}\right) \cdot \boldsymbol{\nabla}\left(\theta_{2}+\psi\right), \theta_{1}-\theta_{2}\right) \\
& +\left(\mathbf{N} \nabla\left(\theta_{1}-\theta_{2}\right), \boldsymbol{\nabla}\left(\theta_{1}-\theta_{2}\right)\right) \\
& +\tau R_{S}\left(\left(\mathbf{u}_{1}+\mathbf{a}\right) \cdot \boldsymbol{\nabla}\left(\gamma_{1}+\beta\right), \gamma_{1}-\gamma_{2}\right) \\
& -\tau R_{S}\left(\left(\mathbf{u}_{2}+\mathbf{a}\right) \cdot \boldsymbol{\nabla}\left(\gamma_{2}+\beta\right), \gamma_{1}-\gamma_{2}\right) \\
& +\left(\mathbf{Q} \boldsymbol{\nabla}\left(\gamma_{1}-\gamma_{2}\right), \boldsymbol{\nabla}\left(\gamma_{1}-\gamma_{2}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
\geq & \mu_{0} D_{a}\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{\tilde{V}}^{2}+\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{H}^{2}+\left\|\theta_{1}-\theta_{2}\right\|_{H_{0}^{1}}^{2}+\left\|\gamma_{1}-\gamma_{2}\right\|_{H_{0}^{1}}^{2} \\
& -\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{H}\left\|\theta_{1}-\theta_{2}\right\|_{L^{2}}-\frac{1}{\tau}\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{H}\left\|\gamma_{1}-\gamma_{2}\right\|_{L^{2}} \\
& -R_{T}\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{H}\left\|\theta_{1}-\theta_{2}\right\|_{H_{0}^{1}}^{1}\left\|\theta_{1}+\psi\right\|_{L^{\infty}} \\
& -\tau R_{S}\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{H}\left\|\gamma_{1}-\gamma_{2}\right\|_{H_{0}^{1}}\left\|\gamma_{1}+\beta\right\|_{L^{\infty}} \\
& -\sigma D_{a} R_{T}\left|\left(\left|\mathbf{u}_{1}+\mathbf{a}\right|\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right), \mathbf{u}_{1}-\mathbf{u}_{2}\right)\right| \\
& -\sigma D_{a} R_{T}\left|\left(\left(\left|\mathbf{u}_{1}+\mathbf{a}\right|-\left|\mathbf{u}_{2}+\mathbf{a}\right|\right)\left(\mathbf{u}_{2}+\mathbf{a}\right), \mathbf{u}_{1}-\mathbf{u}_{2}\right)\right| \tag{59}
\end{align*}
$$

From Theorem 2 we know that $\theta_{1}+\psi$ and $\gamma_{1}+\beta$ are continuous. The weak maximum principle gives

$$
\begin{equation*}
\left\|\theta_{1}+\psi\right\|_{L^{\infty}} \leq \sup _{\partial \Omega}|\psi| \quad \text { and } \quad\left\|\gamma_{1}+\beta\right\|_{L^{\infty}} \leq \sup _{\partial \Omega}|\beta| . \tag{60}
\end{equation*}
$$

Also by Sobolev imbedding theorem we have

$$
\begin{equation*}
\left|\left(\left|\mathbf{u}_{1}+\mathbf{a}\right|\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right), \mathbf{u}_{1}-\mathbf{u}_{2}\right)\right| \leq c\left(\left\|\mathbf{u}_{1}\right\|_{H}+\|\mathbf{a}\|_{L^{2}}\right)\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{V}^{2}, \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
\left|\left(\left(\left|\mathbf{u}_{1}+\mathbf{a}\right|-\left|\mathbf{u}_{2}+\mathbf{a}\right|\right)\left(\mathbf{u}_{2}+\mathbf{a}\right), \mathbf{u}_{1}-\mathbf{u}_{2}\right)\right| \leq c\left(\left\|\mathbf{u}_{2}\right\|_{H}+\|\mathbf{a}\|_{L^{2}}\right)\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{\tilde{V}}^{2} \tag{62}
\end{equation*}
$$

where c is Sobolev imbedding constant.
We now estimate $\left\|\mathbf{u}_{1}\right\|_{\tilde{V}}$ and $\left\|\mathbf{u}_{2}\right\|_{\tilde{V}}$. For any solution ($\mathbf{u}, \theta, \gamma$) of problem (32) we have

$$
\begin{aligned}
& \sigma D_{a} R_{T}(|\mathbf{u}+\mathbf{a}|(\mathbf{u}+\mathbf{a}), \mathbf{u})+\mu_{0} D_{a}(\boldsymbol{\nabla}(\mathbf{u}+\mathbf{a}), \nabla \mathbf{u}) \\
& \quad+(\mathbf{M}(\mathbf{u}+\mathbf{a}), \mathbf{u})+((\theta+\psi) \mathbf{g}, \mathbf{u})-\frac{1}{\tau}((\gamma+\beta) \mathbf{g}, \mathbf{u})=0 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \mu_{0} D_{a}\|\mathbf{u}\|_{V}^{2}+\|\mathbf{u}\|_{H}^{2} \\
& \leq c \sigma D_{a} R_{T}\|\mathbf{a}\|_{L^{2}}\|\mathbf{u}\|_{\tilde{V}}^{2}+c \sigma D_{a} R_{T}\|\mathbf{a}\|_{L^{4}}^{2}\|\mathbf{u}\|_{\tilde{V}} /\left(\pi n^{1 / 2}\right) \\
& +\mu_{0} D_{a}\|\nabla \mathbf{a}\|_{L^{2}}\|\mathbf{u}\|_{\tilde{V}}+m_{l}\|\mathbf{a}\|_{L^{2}}\|\mathbf{u}\|_{H} \\
& +\left(\sup _{\partial \Omega}|\psi|+\sup _{\partial \Omega}|\beta| / \tau\right)\|\mathbf{g}\|_{L^{2}}\|\mathbf{u}\|_{H} \\
& \leq c \sigma D_{a} R_{T}\|\mathbf{a}\|_{L^{2}}\|\mathbf{u}\|_{V}^{2} \\
& +\left\{c \sigma D_{a} R_{T}\|\mathbf{a}\|_{L^{4}}^{2} /\left(\pi n^{1 / 2}\right)+\left(\mu_{0} D_{a}+\frac{m_{l}}{\pi n^{1 / 2}}\right)\|\mathbf{a}\|_{H^{1}}\right. \\
& \left.+\frac{1}{\pi n^{1 / 2}}\left(\sup _{\partial \Omega}|\psi|+\sup _{\partial \Omega}|\beta| / \tau\right)\|\boldsymbol{g}\|_{L^{2}}\right)\|\mathbf{u}\|_{\tilde{V}} .
\end{aligned}
$$

This inequality implies that
$\|\mathbf{u}\|_{\tilde{V}} \leq \frac{c \sigma D_{a} R_{T}\|\mathbf{a}\|_{H^{1}}^{2}+\left(\pi n^{1 / 2} \mu_{0} D_{a}+m_{l}\right)\|\mathbf{a}\|_{H^{1}}+\left(\sup _{\partial \Omega}|\psi|+\sup _{\partial \Omega}|\beta| / \tau\right)\|\mathbf{g}\|_{L^{2}}}{\pi n^{1 / 2} D_{a}\left(\mu_{0}-c \sigma R_{T}\|\mathbf{a}\|_{L^{2}}\right)}$.
Employing the above inequality and (42), (60)-(62) in (59) we obtain

$$
\begin{align*}
0 \geq\{ & D_{a}\left(\mu_{0}-c \sigma R_{T}\|\mathbf{a}\|_{L^{2}}\right)\left(\mu_{0}-2 c \sigma R_{T}\|\mathbf{a}\|_{L^{2}}\right) \\
& -2 c \sigma R_{T}\left\{c \sigma D_{a} R_{T}\|\mathbf{a}\|_{H^{1}}^{2}+\left(\pi n^{1 / 2} \mu_{0} D_{a}+m_{l}\right)\|\mathbf{a}\|_{H^{1}}\right. \\
& \left.\left.+\left(\sup _{\partial \Omega}|\psi|+\sup _{\partial \Omega}|\beta| / \tau\right)\|\mathbf{g}\|_{L^{2}}\right\}\right\} \frac{\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{\tilde{v}}^{2}}{\pi n^{1 / 2}\left(\mu_{0}-c \sigma R_{T}\|\mathbf{a}\|_{L^{2}}\right)} \\
& +\left(1-\frac{1}{n \pi^{2}}-R_{T}^{2}\left(\sup _{\partial \Omega}|\psi|\right)^{2}\right)\left\|\theta_{1}-\theta_{2}\right\|_{H_{0}^{1}}^{2} \\
& +\left(1-\frac{1}{n \pi^{2} \tau^{2}}-\tau^{2} R_{S}^{2}\left(\sup _{\partial \Omega}|\beta|^{2}\right)\left\|\gamma_{1}-\gamma_{2}\right\|_{H_{0}^{1}}^{2} .\right. \tag{63}
\end{align*}
$$

From (63) we know that if $\|\mathbf{a}\|_{H^{1}}, \sup _{\partial \Omega}|\psi|$, and $\sup _{\partial \Omega}|\beta|$ are small, then $\mathbf{u}_{1}=\mathbf{u}_{2}, \theta_{1}=\theta_{2}, \gamma_{1}=\gamma_{2}$. These in turn imply that $p_{1}-p_{2}=$ const.

ACKNOWLEDGMENT

The work reported in this paper has been supported by Grant A 7728 of N.S.E.R.C. of Canada. The authors gratefully acknowledge the support thus received.

REFERENCES

1. G. Allaire, Homogenization of the Navier-Stokes equations with slip boundary conditions, Comm Pure Appl. Math. 44 (1991), 609.
2. G. Allaire, Homogenization of the N avier-Stokes equations in open sets perforated with tiny holes, Arch Rational Mech. Anal. 113 (1991), 209.
3. H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. 1 (1947), 27.
4. D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-V erlag, Berlin, 1983.
5. R. C. Gilver and S. A. Altobelli, A determination of the effective viscosity for the Brinkman-F orchheimer flow model, J. Fluid Mech. 258 (1994), 355.
6. E. Hopf, Ein allgemeiner Endlichkeitssatz der Hydrodynamik, Math. Ann. 117 (1940), 765.
7. O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow," G ordon \& Breach, N ew Y ork, 1969.
8. J. L. Lions, "Quelques methodes de resolution des problemes aux limites non lineaires," D unod/G authier-V illars, Paris, 1969.
9. T. S. Lundgren, Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mech. 51 (1972), 733.
10. B. T. M urray and C. F. Chen, D ouble-diffusive convection in a porous medium, J. Fluid Mech. 201 (1989), 147.
11. J. C. Slattery, "M omentum, E nergy and M ass Transfer in Continua," K rieger, M alabar, 1980.
12. C. R. W. Tam, The drag on a cloud of spherical particles in low Reynolds number flow, J. Fluid Mech. 38 (1969), 537-546.
13. R. Temam, "Navier-Stokes Equations," N orth-H olland, A msterdam, 1977.
14. O.V.Trevisan and A. Bejan, Combined heat and mass transfer by natural convection in a porous medium, Adv. Heat Transfer 20 (1990), 315-352.
15. K. V afai and C. L. Tien, B oundary and inertia effects on flow and heat transfer in porous media, Internat. J. Heat Mass Transfer, 24 (1981), 195-203.
