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A theoretical study of the problem of steady nonlinear double-diffusive convec-
tion through a porous medium is presented. The Brinkman—Forchheimer model is
used to represent the porous medium. A variational formulation is given to deal
with the weak solution and the existence, regularity, and unigueness results are
discussed.  © 1996 Academic Press, Inc.

1. INTRODUCTION

During the last three decades, the phenomenon of double-diffusive
convection, in which two scalar fields, such as heat and salinity concentra-
tion, affect the density distribution in a fluid, has become increasingly
important. The interesting effects in such problems arise from the fact that
one substance diffuses more rapidly than the other and can thus modify
the transport process considerably. While most studies deal primarily with
the heat and mass transfer problem in a clear fluid layer, a new field,
dealing with heat and mass transfer research in a fluid-saturated porous
medium, has recently imerged. The review article by Trevisan and Bejan
[14] covers the latest developments in this area of research. As it is pointed
out in this article and in Murray and Chen [10], such studies have
applications in geophysics, astrophysics, oceanography, and energy tech-
nology.

Much of the research in porous medium, however, has been concerned
with the use of Darcy’s law as a suitable model for the porous medium.
This model takes into account the friction offered by the solid particles to
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the fluid and gives satisfactory results only when the porous medium is
closely packed and the domain of consideration is infinite. Darcy’s law,
however, cannot account for the no-slip boundary conditions at an inter-
face of a porous medium with solid boundary and the continuity of a
porous medium in contact with a viscous fluid. It is believed that for the
flow of a high porosity porous medium the Brinkman equation [3] removes
some of the above deficiencies and gives preferrable results. Support for
the use of the Brinkman equation, with appropriate care, over Darcy’s law,
may be found in the works of Tam [12], Lundgren [9], Slattery [11], and
Vafai and Tien [15]. We also wish to mention the work of Allaire [1, 2]
which indicates when the Brinkman equation or Darcy’s law can be more
effective, depending upon the length scale of the microstructure.

One of the basic questions which should be answered concerning any
applied problem is whether it is well set, that is, whether the solutions exist
and whether they are unique. In the present paper, we employ the
Brinkman—Forchheimer model to discuss the existence, regularity, and
uniqueness of weak solutions, via a variational formulation, for steady
double-diffusive convection in a porous medium. Following the lead of
several investigations, Givler and Altobelli [5] have recently determined
experimentally the effective viscosity for the Brinkman—Forchheimer model
for steady flow through a wall-bounded porous medium. Recognizing that
this model will soon become popular, we employ it here along with the
equations of energy and concentration statements. The method we em-
ploy to handle these equations is similar to the methods expounded in
Ladyzhenskaya [7] and Temam [13] for Navier—Stokes equations. In addi-
tion we also take recourse to some of the ideas and results of Hopf [6],
Lions [8], and Gilbarg and Trudinger [4].

We conclude this section with the remark that the Brinkman-—
Forchheimer model is not a universally valid model for the flow through a
porous media. In fact, it is useful for sparsely packed porous media and
situations when the flow velocity is quite high so that fluid inertia cannot
be neglected. For fine grained (high density) materials and for slow flows
such as the flow through natural rocks and clays, etc., the above model has
severe limitations.

2. THE GOVERNING EQUATIONS

We consider the problem of steady double-diffusive convection in a fluid
saturated porous medium. We assume that the porous medium is in local
thermal equilibrium and the Boussinesq approximation is applicable. Let
Q be an open bounded set in R” (n = 2 or 3) with boundary ¢Q of class
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C2. The governing equations are

V-v=0 in Q, (1)

Co pok Y2V = —VP + po[1 — ar (T — Tg) + ag(S — Sp)]9
+ AV — uMv in Q, (2)
v-VT=V-(NVT) in Q, (3)
v:VS=V-(QVS) in Q, (4)

where v, P, T, S, k, pg, i, &, a7, ag, Tr, Sg are, respectively, the filtration
velocity vector, pressure, temperature, concentration, permeability, den-
sity, viscosity, effective viscosity, thermal expansion coefficient, concentra-
tion expansion coefficient, reference temperature, and reference concen-
tration, and ¢, is a constant coefficient. Also g is the potential type
gravitational acceleration, M~! = k is the positive symmetric constant
tensor of permeability, N is the positive constant tensor of thermal
diffusion, and Q is the positive constant tensor of concentration diffusion.
The boundary conditions are

v=a ondQ, (5)
T=¢ ondQ, (6)
S=mn ondQ. (7)

Suppose that a can be extended inside ) in the form a = curlb with
be H?(Q) and ¢ and 7n can also be extended inside € such that
é&ne HY(Q).

We denote p by p=P — YL, pog:x; and introduce the following
dimensionless variables,

X* = L7, v*=(a;Typeg)  wmy, a* = (a;Typog)  mmya,
p* = (arT, PogL)ilp, T =T5'T, T§ = Ty 'Ty,
S§* = S;1S, =818y,
*=my M, *=n'N, Q*=¢;'Q, g*=g'g (8)
where L is the length of edge of the n-cube in which Q can be contained,

T, > 0 is the constant temperature, S, > 0 is the constant concentration,
g = lgl, and my, n,, q, are, respectively, the smallest eigenvalues of M, N, Q.
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Omitting the stars, Egs. (1) to (7) are dimensionalized as

V-v=0 inQ, (9
oD, RN + Vp — uyD,Av + Mv + (T — Tg)g
1
-—(8§—-Szx)g=0 inQ, (10)
.
R,V -VI —V-(NVT)=0 inQ, (11)
TRV - VS —V-(QVS) =0 inQ, (12)
v=a ondQ, (13)
T=¢ onodQ, (14)
S=n ondQ, (15)

where R, = a;T,pogl/(umn;) and Rg = agS,pogl/(um,q,) are,
respectively, the thermal Rayleigh number and the solute Rayleigh num-
ber, D, = (L?m;)"* is the Darcy number, and o = p,n,Lc,/( uk'/?),
T = a;Ty/(agS,), o = B/ p.

Remark. We can assume 7 > 1. Since if 7 < 1, we replace a;T, p,g by

agS, pog in introducing the dimensionless variables, and Egs. (10) to (12)
take the form

o.D,RgNIV + Vp — oD, Av + Mv + 7(T — Ty)g

—(§-S8x)9=0 inQ, (10.1)
RT .
—Vv-VTI—-=V-(NVT) =0 in Q, (11.1)
T

Rywv-VS —=V-(QVS)=0 inQ, (12.1)

where o, = pyq,Lcy/(uk?).

With (10)—(12) replaced by (10.1) to (12.1), the entire procedure that
follows can be carried through.

3. VARIATIONAL PROBLEM

We first list some function spaces which will be used later. Let D(Q) be
the space of C” functions with compact support contained in ) and V be
defined as

V={ueD(Q):V-u=0}. (16)
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The closures of V in L2(Q2) and H}({2) are two basic spaces in the study of
the present problem. The characterizations of these two spaces are

H={uel?(Q):V-u=0inQ, u-n=00n4Q}, (17)

where u - n|;q should be understood as u - n|;q = lim,, .U, - nlyo =0,
if u=1lim,_.u, in L*(Q) foru, €V, and

V={ueH}Q):V-u=0inQ}. (18)

The scalar products and norms in L?(Q) and H™(Q) are, respectively,
denoted by

(,0) = [wwde,  lulliz = (u,0)"?,
Q
((w.0) ey = L (Diu, DIv),  lullgmgay = (u,u)*?,
ljl<m
with
_ ol
Di=————  jl=jytjp+ o+,

Ju... ]
dxit axyy

The norms in Banach spaces L?(Q) and W™ ?({)) are denoted by
1/p
T T
LP(Q) fQ

) 1/p
||u||Wm,p(m=( y ||Dfu||m>) .

ljl<m

In the Hilbert space H;({2), we choose an equivalent norm

n 1/2
||u”H01(Q) = ( Z ”DiuHZLZ(Q)) ) (19)
i=1
where D; = d/dx,. ~
The product Hilbert space V X H3(Q)? is equipped with the usual
scalar product,

((WT,8), (v, t,5)) = (UVInya) + (T, ) nya) + (S, $)nya), (20)

where Hj(Q)? = Hg(Q) X Hy(Q).
We also need the function which was introduced by Hopf [6] over fifty
years ago. That is, for any € > 0, as dQ is of class C?, there exists a
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function 6, € C?(Q) such that

() 6. =1 in some neighbourhood of 4Q (which depends on ¢),
(i) 6 =0if p(x) = 2exp(—1/¢€),
(i) 106./9x,] < e/p(x) if p(x) <2exp(—=1/e), k=1,2,...,n,
where p(x) = dist(x, Q).
We now define a_, &, ., respectively, as

a,=curl(b), &=10.¢&  m=0n, (21)
and let

u=v-—a,, 0=T— &, y=S -, (22)

€

with u € V, 0, y € HX(Q).
It is straightforward to verify that (9)—(15) hold provided that u, p, 0,
and vy satisfy

V-u=0, (23)
oD,R;lu+al(u+a,)+Vp— puD,A(u+a,)+ M(u+a,)
1
0+ )9 - —(v+B)g =0, (24)
Rp(uta.) - V(0+4¢) = V-(NV(O+4)) =0 (25)
TRy(u+a) - V(y+B) - V- (QV(y+ B)) =0, (26)
u=0, 6=0, vy=00n4Q, (27)

where lrlfe = fe - TR’ BE ="M — SR'

To motivate the variational problem, we assume that the smooth solu-
tions u, p, 6, y exist for (23)—-(27) and that a_, ., B, are also smooth. On
taking scalar products of (24), (25), (26) with the functionsw € V, t € D(Q),
s € D(Q), respectively, and integrating by parts, we obtain

oD,R;(lu +al(u+a,),w)+ uD,(V(u+a,),Vw) + (M(u+,),w)

+((0+ ¢)g,w) — %((wﬁe)g,W) =0, (28)
Ry((u+a) - V(O0+4),t)+ (NV(O+y,)Vt)=0, (29)
TRy((u+a,) - V(y+B.),s) +(QV(y+ B.),Vs)=0. (30)

Since V is dense in V and D(Q) is dense in Hy(Q), a continuity
argument shows that (28)—(30) still hold if (u, 6, y) € V X Hj(Q)? a, €
HY(Q), 4., B. € H*(Q) and for (w, ¢, s) € V X H}(Q)?.
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We define a mapping G(-, - , - ) from V x H}(Q)? into itself by

(G(u,0,7),(w,t,s))
=oD,R;(lu+al(u+a,)w)+ uD,(V(u+a,),Vw)

(M + 2,)w) + (84 0)8.) — ~((7 + £)g.w)
+Ry((u+a)-V(O+ ), 1)+ (NV(O+ ), Vi)
+ 7Rg((u+a,) - V(y+ B.),s) + (QV(y + B.),Vs). (31)

Thus the_variational problem associated with (23)-(27) is to find
(u,0,y) € V X H}(Q)? such that

(G(u,0,y),(W,t,5)) =0  VY(w,t,5) €V xXH(Q). (32

Conversely, if (u, 6, y) € V X Hg(Q)* satisfies (32), then (28), (29), and
(30) hold for any w € V, t € H}(Q), and s € H}(Q) by choosing ¢ = 0,
s=0o0rw=0,s=00rw=0,t=0in (32), respectively.

Propositions 1.1 and 1.2 in Temam [13, Chap. 1] assert that for f =
{fi, for-- [} with f; € D'(Q) (i =1,2,...,n) the following results are
true:

(i) A necessary and sufficient condition that f = Vp for some p
D'(Q) is that (f,w) = 0 Vw € V.

(i) Let Q be a bounded Lipschitz open set in R”. If a distribution p
has all its first derivatives D,p (1 <i < n)in H *(Q), then p € L*(Q).

It follows from (28) that there exists a distribution p € L2(Q) such that
(24) holds in the distribution sense in Q. Also, (29) and (30) imply that (25)
and (26) are true in the distribution sense in Q and (23), (27) are satisfied
in the distribution sense in ) and in the trace sense on (), respectively.

4. THE EXISTENCE OF SOLUTIONS

With the use of above argument we now prove the existence of solutions
of (9)-(15). To do so, we note_that it is enough to show that variational
problem (32) has a solution in V X Hy(Q)%.

We first prove the following lemma.
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LEMMA 1. If G is a mapping from N X H}(Q)? into itself defined by (31),
then

() G is continuous,
(ii) there exists a r > 0 such that

(G(Y),Y) >0 VY eVxHQ) with I¥[5xmyay =7

Proof. Let (u¥, 6%, y*) — (u, 6, y) strongly in V X HX(Q)? as k —
and m;, n;, g, be the largest eigenvalues of matrices M, N, Q, respectively.
Then for any (w, ¢, s) € V X H}(Q)? we have

[{G(u*, 0%, v%) = G(u, 0,v), (w,1,5))]
< oD, R {|(* + a l(u* — u),w)]
+|((u* +al—lu+al)(u+a,),w)|}
+ oD, |(V(U* = u), VW) | +|(M(u* = u), w)[ +[((6* — 6)g,w)|
L = )+ R+ a) - T - 0).0)
+ Ry (U —u) - (0 + 4,),1)]
+|(NV(0* — 0),Ve)| + R|((u* + a,) - V(v* — ¥).9)|

+ 7R, |((UF = u) - V(v + B.).s)| +|QV(yX — ¥),Vs)|
< oD, Ry[lu* — ull2llu* + a_ll p«lwll .+

+ oD,R;llu + a_ll +llu* — ull 2llwll .«

+ po D, IUF — ullglwlly + m,llu* — ullglwlly + 1165 — o1l 2wl 4
1 k k k

+;|Iy — yllelwlly + R160% — 0l ellu® — ull zellell o

+ Rl el — ullell6 + g ll s + nllo* — Ollpellell iz

+1RllyE = yllmallu® + a llpellsll e

+ 1RlIsllmallu® = ullelly + Bllzs + qlly* — yllmellsllgz. (33)

The continuity of G follows from (33) and from Sobolev’s imbedding
theorems as well as from the boundedness of (u*, 8%, y*) in V x H}(Q)?
(cf. Gilbarg and Trudinger [4]).
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To prove the second part we note that for any (u, 6, y) € V X HX(Q)?
we have

(G(u, 0,v),(u,, y))
> oDl + i3 + 1601 + llyli:

+ oD,R;(lu +a/l(u+a,),u) + u,D,(Va,,Vu)

+(Ma,,u) + ((6 + ¢.)g,u) - %((*y+ B.)g.u)

+Ry((u+a,) -V(6+4,),0)+ (NVy, Vo)

+ 7Rg((u +a,) - V(v + B.),v) + (QVA., Vy)
> o D llF + lullyy + 1101133 + vl

+ oD, Ry(lu + a,lu®) — oD, R;|(lu + a_la,, u)l

— po D lIVallzlullyz — myllallczllully — 101l 2 llull

1 1
— Iellzzlull = —llyllzzlulle = I Bellzzllullz

= Ry(lluller + llallz2)10 Vi ll 2 — n IV Nl 21101 123

— mRs(Iully + llacll2)ly VB2 — gl VB c2llyllmg.  (34)

We now estimate the terms |(ju + a_la_, wl, 10 Vi ll;2, and ||y VB2
successively.

We first note that since b, € H*(Q) (1 < i < n), the Sobolev’s imbed-
ding theorems imply that b, € L*(Q) (1 < i < n). This gives

lal < ¢, {IVbl + ebl/p(x)} <c,{e/p(x) +|Vbl}, (35)
where ¢,, ¢, are constants. Now
I(lu + ala,, u)l < llu+allzllu - allzaq,), (36)
where Q_={x € Q: p(x) < 2exp(—1/¢)} and

" 1/2
i12
lu - aEHLZ(QE) = ( Z / |Mial€| dx)
i=1"Q

1/2
210 12
< (fﬂelul lal dx)

1/4
LwWa)mM} (37)

< ZCz{ellu/pH]_z +
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With use of the Hardy inequality (Hopf [6]) and the Sobolev inequality
lu/pllrz < constllully:, — llulle < constllully: Vu € HF(Q), (38)

the inequality (37) becomes
lu - allzza,) < czA(e)llullz, (39)

where A(e) = max{e, ([, |Vb|* dx)*/*} > 0 as € — 0.
From (36)-(39) we conclude that for any &> 0 we can choose e
sufficiently small such that

|(lu + aa.,u)| < 8lully + sliull7llall2. (40)

In a similar way we can show that for any 6 > 0 we can choose e
sufficiently small such that

10V lle < 8ll6llns, Yy VB2 < Sllylluz. (41)

We now return to (34). By applying the well-known inequality (Ladyz-
henskaya [7])

1
llull2 < WHMHH& Yu € Hy(Q), (42)
and inequalities

1 5 1 5 T2 1 2
lullglloll 2 < =lully + =I1160172, ullgllylle < =Ml + —Ilyllze
2 2 2 27

together with (40) and (41) in (34) we obtain
(G(u,0,7),(u.0,7)

R; 6+ TR0
> {Da( sy — oBR,) — W}nuny

1 Rp8\
+{1—2mm - }nean

1 TR O ,
e 2mrint/2 2 Iyllag

m,; 1
_{SUD(;RTHae”LZ+/J~0Da||va5”L2+ l/2||a 22 + nl/zlltﬂellm

1
+ W—nl/zll ,BEIILZ}HUIIV —{8Rzllallz + n IVl 211011114

—{78Rsllallz + q VB 2}yl g (43)
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Since 7 > 1, by choosing 0 < 8 < §, < uo/(oR;) we have

(G(u,0,7),(u,0,v))

2ant/? 2

. 1 R;8 + TR¢6
> mln{Da( Mo — 06, R;), 1 — } -

2
(Il + 1013 + 1)
- {aaDaRTnaean + uyD,JIValle
m;
+(W + 5RT + STRS)HHEHLZ

1 1
=gl + =5l Bl + IVl 2 + q,nv;aEan}
m™n TTN

1/2
X (Ilullf + 1013 + llyllzg) (44)

We now choose

0.< 5.2 min| o, (D, by Ry), 2 = 1/20 ) 7,
(45)
1
= DR s + oD
K
m, 1
+( /2 + 6R; + STRs)”ae”LZ + m”d@”ﬁ
1
+ 1/2 l IBEHL2 + ”1”V¢5”L2 + q;”V,BE”LZ ) (46)
TN

where
k = min{D,( po — 08, Ry), 1 — 1/2wn'?} — 8(R; + TRy) /2.
The above choices for 6 and r lead to
(G(Y),Y)y >0  with [IYllpxuiay =r,

which proves the second part of the lemma.

Besides the above lemma the following lemma is needed to obtain the
existence result (Lions [8]).
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LEMMA 2.  Let 7 be a finite-dimensional Hilbert space with scalar product
(+, ) and norm || - |, and let G be a continuous mapping from # into itself
such that

(G(x),x >0 for x|l = ry > 0.
Then there exists x € %, with ||x|| < ry, such that
G(x) =0.

We are now ready to obtain the main result of the section.

THEOREM 1. The problem (32) has at least one solution (U, 0, y) € V x
Hy(Q)>.

Proof. We employ the Galerkin method to prove this theorem. Since 14
and H(Q) are separable, there exist three sequences w,w,,...,w,, of
linearly independent elements in V, t,ty, ..., t, of linearly mdependent
elements in Hy((), and s,,s,,...,s,, of linearly independent elements in

H}(Q). We define an approximate solutlon (u,,, 6,,v,) of (32) by

= Taw, f=Thn w=Ley @)

oD, R (lu, +al(u, +a,),w) + ueD,(V(u, +a,),Vw)
F (MU + 30.w) + (0, + 0)8.9) = (3 + BIg.w) =0,
(48)
Ry((u, +a.) - V(6, + g[fé),tj) + (NV(6,, + ¢.),V) =0, (49)
Rs((u, +2a0) * V(% + B).5;) + (QV(w, + B), Vs;) = 0, (50)

with
a],b],c e R, j=12,....m
Let X be the product space spanned by Wy, w,, ..., W, ; f;,f,,... and
S$4,85,...,8,,. The scalar product on X is induced by V X Hol(Q)2 and

G=G,is defmed by
(G(u,8,7),(w,1,5)) =(G(u, 8,7), (W, 1,5))
= (31) Y(u,0,y),(w,t,s) €X. (51)

It is obvious that G,, satisfies the hypotheses of Lemma 1 and Lemma 2.
Therefore, there exists a solution (u,,, 6,,, %,) € X such that

(G(Up,s 0,0, ), (W, t,8)) =0,  V(w,t,5) €X. (52)
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In particular
oD,R(lu,, +a/l(u, +a,),w)+ u,D,(V(u, +a,),Vw)
1
+(M(u,, +a),w) + (6, + ¥)9,w) = —((% + B9, W) =0
vweVnXx,

RT((um + ae) : V(Om + (/je)’t) + (NV(Om + ll’e)’Vt) =0
Vie HX(Q) N X,

TRy((u,, +a.) - V(% + B),s) + (QV(y, + B.),Vs) =0
Vs € Hy(Q) N X.

It follows that (48)—(50) are satisfied and a;, b, c; can be determined
through (48)—(50). Multiplying (48), (49), (50) by, respectively, a;, b;, ¢; and
adding the equalities for j = 1,2,..., m we obtain

0=<GI"‘L m! m”Ym) (um’ ml’)’m)>

2 2
> (llu, 17 + 116,155 + 1,15

m
{aaD R.lla_llz2 + woD,lIVa, ||Lz+( = +8R; + 87R )“aeHLz
n

1 1
4+ P — 2+ n,||V 2+ q,llV, 2
Al + ol Bl + Ve + VB,

2 2 \Y/
X (1Iu,, 1 + 116,075 + 1y 73)
This gives

||(Um v/ ym) ||I7xH3(n)2

I/\

1
{aw Ryllallu: + poD,|IVa,ll,:

m,; 1
+( /2 + OR; + 87Rs)||a5||L2 + m”%”ﬁ

1
+— 7l Bellz + mlIVyll.z + q,IIVBellLZ}- (53)

Since the sequence (u,,, 6,,,,) is uniformly bounded in V x HXQ)?, it
follows that there exists a (u,6,y) € V X Hy(Q)?* and a subsequence
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m, — o (we still write m instead of m, for the convenience) such that
Uy, 6,0 %,) — (U, 6,y)  weaklyinV x HX(Q)%. (54)
Moreover, the compactness imbedding theorem shows that
(Up» 6,05 %) = (u,0,y)  stronglyin L* X L* x L*. (55)
Taking the limit in (52) with m — o we get
(G(u,0,7),(w,t,5)) =0  V(w,t,5) €X. (56)

A continuity argument finally shows that (56) holds for any (w, , s) € V x
H}(Q)? and (u, 6, y) is a solution of (32). This completes the proof.

5. REGULARITY AND UNIQUENESS

In this section, we discuss the regularity and uniqueness of the solution
of (9)-(15). Here a_, ¢, B. are replaced, respectively, by a, ¢y = £ — Ty,
B = mn — Sz. We assume that a € H%(Q), ¢, B € H*(Q).

THEOREM 2.  Let Q) be an open bounded set of class C* and (v, p, T, S) €
HY(Q) X L2(Q) X HY(Q)? be a solution of (9)-(15), then (v, p,T,S) €
H2(Q) X HY(Q) x H*(Q) X H*(Q).

Proof. Let u=v—a, 6=T—& y=8—m, then (u,p,6,y) is a
solution of (23)—(27). We write (24) as

—uoD,Au + Vp =1, (57)

where

1
f=poD,Aa = M(u+a) = (6+ )9+ —(v+B)g
— oD,R;|u + al(u + a).

Notice that f € L2(Q), thus the regularity theory for the generalized
Stokes problem (see [13, Proposition 2.2, Chap. 1]) shows that

ue H’(Q) and peHY(Q).
We consider the Dirichlet problem

-V-(NV9) = —Ry(u+a)-V(6+¢)+V-(NVy), (58)
=0 on d().
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Since —R,(u+a) - V(0+ )+ V- (NVy) € L2(Q), the standard regu-
larity theory of elliptic partial differential equations tells us 6 € H2(Q).
Similarly, we can show that vy € H2(Q).

The further regularity results can be obtained by reiterating the same
procedure as in the proof of Theorem 2, provided that the additional
conditions are imposed on boundary Q) and on boundary data a, £, and 7.
We state without proof the following theorem:

THEOREM 3. Let Q) be an open bounded set of class C* and a € C*,
&, m e C® then any solution (v, p,T,S) of (9)—(15) belongs to C*({}) X
C*(Q)3.

Finally, we establish a uniqueness result.

THEOREM 4. If llally:, sup,ol¢l, and sup,ql Bl are small, then the
solution of (9)—(15) is unique (as always, p is unique up to a constant).

Proof. Let (v, p,,T,,S,) and (v,, p,,T,,S,) be two solutions of
(9-(15), then (U, =v, —a,p;,0, =T, — & v, =8, —n) and (u, =
Vv, —a, p, 0, =T, — & vy,=8,—mn) are two solutions of (23)-(27). It
follows that (u,, 6,, v,) and (u,, 6,, v,) are two solutions of problem (32).
We, therefore, have

0 =<G(u1, 01,71) — G(Uy, 0,,7,),(Up — Uy, 0, — 0,7, — 72)>
= oD,R;(lu; + al(u; +a),u; —uy)
— oD,R;(lu, + al(u, + a),u; — u,)

+ oD (V(u; — u,),V(u; — uy)) + (M(u, — uy),u; — Uy)

+((6, — 6,)9,u; —u,) + %((y1 — ¥,)9,U; — U,)
+Ry((uy +a) - V(0, + 4),0, — 0,)
—Ry((uy+2a) - V(0,+ ), 0, — 0,)

+(NV(0l - 6,),V(0, — 02))

+ 7Rg((uy +a) - V(v + B), v — v2)

— TRs((u, + ) - V(v + B) v — 72)

+(QV(y: = %2). V(71 — 72))
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> wo DUy — ,llF + lluy — uylly + 116, — 6,015 + lly, — v,l13
= Mo t,llUy 21V 1 20lH 1 21l H} Y1 Yalla}

1
—”Ul - U2||H||91 - 02||L2 - _Hul - U2||H||71 - 72||L2

—Rylluy — u,llmll6y — 0,llmell6; + il

—1Rglluy — ullully, — valluallyy + Bl

—oD,Ry|(luy + al(u; — u,),u; — u,)|

—oD,Ry|((luy + al — lu, + al)(u, + a),u; — u,)]. (59)

From Theorem 2 we know that 6, + ¢ and vy, + B are continuous. The
weak maximum principle gives

16, + ¥ll;= < suply|  and lly, + Bll= < suplBl. (60)
Q) aQ
Also by Sobolev imbedding theorem we have
[(luy + al(uy = uy),uy = u)| < e(llugll + llalle)lu, = u,ll, (62)

|((|U1 + al - |U2 + al)(ug + a)lul - U2)| < C(”uan + ||a||L2)||U1 - uz”lz/_y
(62)
where ¢ is Sobolev imbedding constant.

We now estimate ||u,|l7 and [lu,|lz. For any solution (u, 6, y) of problem
(32) we have

oD,R;(lu+al(u + a),u) + uyD,(V(u + a),Vu)

MU+ ), 1) + (04 $)a,) — (3 + Ba.u) =0.
It follows that
to D, ull? + lull;
< coD,Ryllall zullF + coD, Ry llallillully/(7n*/?)

+ oD, IVall el + mlall il
+(suplyl + supl B1/7)lglelulls
Q) aQ
2
< coD, Ryl lull?

m,
+{co-DaRT||a||i4/(7rn1/2) + (,uoD + 1/2)“3-”H1

1
—suplal + supl g1/l
™ 20 o0
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This inequality implies that

coD,Rylallf + (mn/%ug D, +m))llal 2 + (sup, o1+ sup,ol B1/7)ligll 2

lull7 <
wnl/zDa( o — coRyllallz2)

Employing the above inequality and (42), (60)—(62) in (59) we obtain
0> {Da( o — coRllall2)( e — 2coRyllall,2)

—ZCURT{C(TDHRTHB.H%{l + (7Tn1/2/.LODa + m,)IIaIIHl

+(suplul + sup|B|/T)||g||Lz}} ~ luy = u,li2

a0 ) mn'/?(puy — coRyllall;z)
1 2

+11 - W — R%(S()U(?lﬂ“) )”01 - 92”?.101
1

+1-— il 72R§(S;J(§)|B|2)Ily1 - yzllég. (63)

From (63) we know that if llall;:, sup,ql¥l, and sup,,| Bl are small, then
u, = u,, 0, = 0,, y, = v,. These in turn imply that p, — p, = const.
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