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Abstract

We demonstrate a method for obtaining strong solutions to the right Hudson—
Parthasarathy quantum stochastic differential equation

dU, = FjU dAL(1), Up=1

where U is a contraction operator process, and the matrix of coefficients [F7] consists of
unbounded operators. This is achieved whenever there is a positive self-adjoint reference
operator C that behaves well with respect to the F?, allowing us to prove that Dom C'/2 is left
invariant by the operators U,, thereby giving rigorous meaning to the formal expression
above.

We give conditions under which the solution U is an isometry or coisometry process, and
apply these results to construct unital *-homomorphic dilations of (quantum) Markov
semigroups arising in probability and physics.
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0. Introduction

A quantum Markovian cocycle is a family of *-homomorphisms (j;:.o/ = %),
between two operator algebras, ./ = %, where % is equipped with a semigroup (o),
of *-homomorphisms, and such that

Jsit = Jsoosoj, for all s,£=0, (0.1)

where j; denotes an extension of j; whose domain includes o(lJ,;5 /(7). Such
perturbations of the semigroup evolution law occur naturally in stochastic
settings, where ./ and % are commutative algebras of bounded measurable
functions. By no longer insisting that .o/ and % be commutative, we obtain a
quantum stochastic process (in the sense of [AFL]) which generalises the classical
notion of a flow to a form more suitable for modelling situations in quantum
physics.

The most commonly studied examples of cocycles are those for which .o/ is
a *-subalgebra of B(h), the algebra of all bounded operators on some Hilbert
space b, and € is of the form .7 ® B(Z), where /" is the von Neumann algebra
generated by .o/ and # is the symmetric Fock space over L?(R,;k), the square
integrable functions on R, taking values in some Hilbert space k. Fock space here
plays the role of Wiener space in the classical theory, and is equipped with a
semigroup (o,),-, induced by the natural time shift on L?*(R;k). That this is an
appropriate choice for the image algebra % can be justified by a limiting procedure
motivated by physical arguments (see, for example, [AAFLY]). Suppose .«/ = .o/" and
let E:%—.o/ be the vacuum conditional expectation. Then (7, = [Eoj),5, is a
semigroup of completely positive maps on .o/ that describes the reduced dynamics
of an open quantum system, and j is a dilation of this quantum dynamical
semigroup (QDS).

One method of constructing such cocycles is to solve a quantum stochastic
differential equation (QSDE) of Evans—Hudson type [EvH,LW1],

dj, = jio0y dAG(1),  jo(a) = a®1, (0.2)

where 0 = [0%], ;-0 is a matrix of linear maps on ./, A= [/lg]a_ﬁ>0 are the
fundamental noise processes of Hudson—Parthasarathy quantum stochastic calculus
[HuP,Mey,Par], and summation over repeated indices is understood. Conversely, it
can be shown that all sufficiently well-behaved cocycles arise in this manner
[AcM,LW2]. However for applications to physics [Bar,Bel,Sin], and references
therein], and for the realisation of classical stochastic processes in the quantum
setting [F4,F5], it is usually required that the components 0;‘; of the matrix 6 consist
of unbounded maps. Proving the existence of a solution to the EH equation is then a
highly non-trivial problem [FSi,Be2]. An alternative route exists for the construction
of cocycles when .o/ = B(ly), the full algebra, by considering the subclass of inner
cocycles obtained by conjugation. A family U = (U;),5, of bounded operators on
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H:=H®F is a right cocycle if

U(): 1, U_er[:O-S(U[)US, S,t>07

and a left cocycle if the adjoint family is a right cocycle. If U is a right cocycle for
which each U, is a coisometry then defining j by

J(X)=UX®1)U,, XeB(h) (0.3)

produces a cocycle of the form (0.1). As above, right and left operator-valued
cocycles can be constructed by solving the right and left Hudson—Parthasarathy
equations:

dU, = F;U, dAL(1); dv, = V,GydAl(1), (0.4)

where F = [Fj] and G = [G}] are matrices of operators on I, and again all
sufficiently regular right and left cocycles arise this way [F3,LW2]. Furthermore, if U
is the solution to the right equation and each F’ i is bounded then j defined by (0.3)
satisfies the EH equation (0.2) for the matrix of maps 6 defined by

03(X) = XFj + (FI)*X + ) (F))*XF},. (0.5)

i1

Eqgs. (0.4) are written in the form usually encountered in the literature on quantum
stochastic calculus, but to give rigorous meaning to these equations the operators F/ §

and Gj should really be defined as operators on the whole space H rather than just
the first component by of the tensor product. When they are bounded operators they
can be identified with F 2,‘@1 and G;;@ 1, the unique continuous extensions of the
algebraic tensor products with the identity operator on Fock space, and then no
serious difficulty occurs. Similarly, when seeking solutions to the left equation with
unbounded coefficients, since processes are only ever defined, in the HP calculus, on
the algebraic tensor product of some dense subspace of [) and & (the linear span of
the exponential vectors in Fock space) we can identify Gj with its algebraic
ampliation. To solve the right equation for unbounded Ff, it is clearly necessary to
obtain information about the range of the operators (U;),5 . Solutions have been
found in [App,F1,Vin], and in all cases this was achieved by assuming that there is a
dense subspace of ﬂ%ﬁ Dom Fj consisting of vectors satisfying certain analyticity
conditions. Subsequently Fagnola [F3] and Mohari [Mol] focused on the left
equation and obtained existence results for that equation under far less stringent
hypotheses on the coefficient matrix since the analytical difficulties are considerably
less.

In this paper, we present a new method for solving the right equation that allows
us to incorporate advances made in the study of the left equation. In particular the
domains of the coefficients are no longer required to contain a common dense
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invariant subspace. Two advantages of dealing the right equation are that the proof
that the solution is an isometry process is very much easier (cf. Corollary 2.4), and
that the inner cocycle j defined through conjugation by (0.3) is seen to possess an
infinitesimal generator in that it satisfies the EH equation on some *-algebra .o/ for
the maps 973 defined by (0.5). The germ of the idea is as follows: if the coefficients i

for the left equation are bounded, and the solution V' is a contraction process, then
the adjoint process V* is the solution to the adjoint right equation:

dvi = (G vrda), V=1

The main result of the paper, Theorem 2.3, extends this principle to the case of
unbounded generators by hypothesising the existence of a positive self-adjoint
“reference operator’ satisfying a form inequality that can be written heuristically as

0(C)<b(C®1).

This enables us to obtain a priori estimates on the continuity of each V* with respect
to the graph norm of C'/?, and hence obtain information about the range of V. The
method was inspired by the techniques developed in [ChF,CGQ] for proving the
conservativity of QDSs, a problem that has intimate connections with proving that
solutions to the left equation are isometric (see Proposition 2.5).

The plan of the paper is as follows. Section 1 contains some general results about
closable operators and their ampliations, and one-parameter contraction semi-
groups. These allow us to define precisely what we mean by a solution of the right
equation at the start of Section 2, before going on to establish our main result. This is
then exploited in Section 3 to give simplified conditions under which it is possible to
construct isometric solutions to the right equation when there is only one dimension
of quantum noise, that is, when k = C. Finally, in Section 4, we apply these results to
realise classical birth and death processes as quantum flows, prove the existence and
unitarity of a solution to a QSDE that arises in models of superradiation (via an
alternative approach to that used in [Wal]), and construct unitary right cocycles that
enable us to dilate QDSs of diffusion type (see, for example, [AlF,F4]), as well as
realising classical diffusion processes as quantum flows in Fock space.

Tensor product and summation conventions: We shall use the symbol © to denote
the algebraic tensor product of vector spaces and linear maps, reserving ® for the
Hilbert space tensor product of Hilbert spaces and their vectors. If S and 7 are
closable operators on Hilbert spaces h and k, respectively, then we denote the closure
of SOT by S®T (see Lemma 1.1 below). Thus, if Se B(h), T € B(k), then SQ T is
the unique continuous extension to the Hilbert space h®k of the bounded operator
SO T whose domain is the inner product space h©k. At times we will follow the
trends prevalent in the literature and identify bounded operators with their
ampliations, but only when this does not lead to confusion.

We shall adopt the Einstein summation convention and sum over repeated indices;
greek indices will run from 0 to d, and roman indices from 1 to d, where d is the
number of dimensions of quantum noise (see the start of Section 2).
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1. Operator theory preliminaries

In this section we collect together a number of results on closable operators and
one-parameter semigroups that we shall need later in the paper.

Lemma 1.1. Let S and T be closable operators on Hilbert spaces h and K, respectively.
Then the operator SO T is closable.

Proof. This follows from the obvious operator inclusion (SOT)*>
S*OT* O

Remark. Since we denote the closure of SOT by S®T, we have that SQ T =
S®T.

The main use we make of the above result is to ampliate closable operators, that is
taking T to be the identity. In particular, we shall need to consider pairs of closed or
closable operators, the domain of one lying inside the domain of the other, and these
behave well under such ampliations.

Lemma 1.2. Let S and T be closable operators on a Hilbert space h such that
Dom ScDom T. Then Dom S® lxcDom T ® 1 for every Hilbert space k, and
moreover there exist constants a,b>=0 such that

(T ® 1)l <al|(S® L)l + blI¢]? (1.1)

holds for all choices of k and £e Dom S ® 1.

Note. The inequality holds in particular for the case k = C, when S® lx = S and
TRl =T.

Proof. The inclusion map Dom S < Dom T is closed and everywhere defined, when
these spaces are equipped with their respective graph norms, and hence bounded,
giving existence of the constants ¢ and b when k = C.

For general k, note that Dom SOk is a core for S®]lk, and that any
element ¢ of this space can be written as > ,u;®v; where u;eDom S
and {v;} is an orthonormal set. It is then straightforward to check that (1.1)
remains valid for such ¢ and the same a and b, from which the result then
follows. O

To define quantum stochastic integrals we work with square-integrable
Hilbert-space-valued functions, and when dealing with the right HP equation
we must apply closed operators to such functions and determine if the resulting map
is again square-integrable. The following settles the measurability part of the
question.
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Lemma 1.3. Let T be a closed operator on a Hilbert space h, and let f : X - h be a
strongly measurable function on some measure space X satisfying f(X)=Dom T. Then
the map g : x> Tf (x) is strongly measurable.

Proof. Let T = U|T| be the polar decomposition of T and define maps g, : X —h by
gn(x) = U[T 1) (|T|)f (x), where 1)y, is the indicator function of [0, 7]. Then each
gn is strongly measurable and (g,) converges to g pointwise. [

When applying the lemmas above the operator S will usually be the generator
of a strongly continuous one-parameter semigroup of operators, (P;),., say.
Then, for any other Hilbert space k, the family of ampliations (P, ® lk),~; is a
strongly continuous one-parameter semigroup. If we denote its generator by S
then clearly SO 1<S. But Dom SOk is a dense subspace of h®k that is left
invariant by the semigroup, and thus is a core for S ([Dav], Theorem 1.9). Hence,
S=S®1.

The particular example that we need later is given by taking a positive self-adjoint
operator C on h, and letting Q be the contraction semigroup generated by —C. So
then (Q;®1),5, is generated by —C® 1. We will make repeated use of the following
variant of the Yosida approximation:

C. = R.CR, where R, = (1 JreC)f1 for each ¢ > 0.

The spectral theorem implies that C, e B(h), and that ueh is in Dom C'/? if and only
if limcl0||(C()1/2u|\< o0. Moreover, for any other Hilbert space k, (1p + ¢C) O lcis a
bijection onto h(®k and a restriction of lhgk + €C® lx. Thus (1 + eC® 1)71|hOk =
R, ® 1k, hence (C®1k)4h©k = C.Olk, and so (C® 1), = C.® 1k by continuity.
Thus, we can identify C, with C, ® 1 in what follows without causing serious harm,
since we are actually working with the Yosida approximation of the generator of the
ampliated semigroup.

The reason for using this variant of the Yosida approximation is that the
unboundedness of the coefficients Fjj is controlled by multiplying by (C()l/ 2

and so we need a greater power of C in the denominator than the
numerator.

Lemma 1.4. Let C and T be operators on the Hilbert space h, with C positive,
invertible and self-adjoint, and T closed. The following are equivalent:

) T(Cé)l/ s densely defined and bounded for all ¢ > 0;

(i) 7(C)"?* is everywhere defined and bounded for all ¢ > 0;
(iii) Dom C'>?cDom T

Proof. (i = ii) T(Ce)l/2 is closed since T is closed and (Cé)l/2 is bounded, and so the
result follows by the Closed Graph Theorem.
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(ii = iii) Writing T(C,)"/* as the product C'2R,, it is clear that it maps h
bijectively onto Dom C'/?, which is thus contained in Dom 7.
(iii = i) This follows from Lemma 1.2, since C'/2(C,)"*eB(h). O

Remark. The implications (iii = i = ii) remain valid when 0 is in the spectrum of C.
However, 0 must be in the resolvent of C for (ii = iii)—consider C = 0.

2. Fock space and the right and left HP equations

Quantum stochastic integrals: Fix a Hilbert space ), called the initial space, and an
integer d>1, the number of dimensions of quantum noise. Let H=H® %, the

Hilbert space tensor product of the initial space and # = I'(L*(R.;CY)), the
symmetric Fock space over L*(R.; Cd). Put

M = L*(R;C)YNLE(Ry;C) and & = Lin{e(f) : feM},

where &(f) = ((n!))""?f®") is the exponential vector associated to the test
function f. The elementary tensor u®e(f) will usually be abbreviated to wue(f).
The notion of adaptedness plays a crucial role in the theory of quantum stochastic
calculus as developed by Hudson and Parthasarathy [HuP]. This is expressed
through the continuous tensor product factorisation property of Fock space: for
each 7 > 0 let

7. =T(L(0,4;CY), F'=T (L1, 0[;C)).

Then # = % ,® %' via the continuous linear extension of the isometric map
e(f)e(flo) ®e(fl00p); F1 and Z'" embed naturally into # as subspaces by
tensoring with the vacuum vector ¢(0). Let D be a dense subspace of . An operator
process on D is a family X = (X;),., of operators on H satisfying:

(i) DOE<= ()59 Dom X;,

(i) t+— {ue(f), Xve(g) ) is measurable,

(1ii) X,vs(ghovt[)eb@g",, and Xve(g) = [X,vs(ghoy,[)} ®£(g|[t7w[),

for all ueh, ve®, f, ge M and ¢ > 0. Families of operators satisfying (iii) are called
adapted. Any process satisfying the further condition

(iV) r+— X,ve(g) is strongly measurable and for || X,0e(g)||* ds< oo Vi >0

is called stochastically integrable on D. It is for these processes that Hudson and
Parthasarathy defined the stochastic integral fot X;dAj(s) for each of the
fundamental noise processes A which are defined with respect to the standard

basis of C?. The resulting family (fot X, dAj(s)) is a process on D, and moreover the

map ¢+ fot X; dAj(s) is strongly continuous on DO & The action of such integrals is
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given in (2.1), and their interaction with each other, the quantum It6 formula, is
given in (2.2) below. However, rather than give these for a single integral we shall

work with matrices of processes: if M = [Mﬁ]:,ﬁ:o is a matrix of stochastically

integrable processes on D then we can set [M = f(; M (s) dAP(s), the sum of (d + 1)?

integrals, to produce another (continuous) process on ©. Moreover, for all uel,
ve®D, f,geM and r > 0

(). 1vle)) = [ 66 el ), Mi)uelg) > ds. (2.1)

where f!, ...,/ are the components of the C?-valued function f, /° =1, f,(s) =
S™(s), and our summation convention is in force. If N = [N}] is another matrix of

stochastically integrable processes on some other dense subspace © and we put
=/ Nj(s) (s) dAP(s) then

CIMue(f), IV ue(g)y = / 1OV ue( £), N3 (s)eeg) >

+ M (s)ue(f), 1M ve(g) > + ML(s)ue(f), Nj(s)ve(g) > } ds
(2.2)

for all ue®, ve®', f, geM and ¢ > 0.
Finally, a process X = (X;),., on D has a strong stochastic integral representation
if there is a matrix [M}] of stochastically integrable processes on D such that

t
X, :XO+/ M (s) dAL(s).
0
It follows readily from (2.1) and (2.2) that

1 Xoue(f)II* = | Xous( )] +/0 {2 Re (f*(s) Xsue(f),f* (s) M (s)ue( ) >

d
+ D IIf“(S)Mé.(S)uS(f)Ilz} ds (2.3)
i=1

for all ue®, feM and 7 > 0.
Differential equations: In this paper we are concerned with the right and left HP
equations:

dU, = FjU dAL(1), Uy=1, (R)

dv,=V,GydAl(r), Vo=1, (L)
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where F = [F, g]ilgzo and G = [G;‘;]Z’ 4o are matrices of operators on b. Given any such
matrix F of operators for which each F/ § is densely defined (respectively closable) let
F* (resp. F) denote the matrix [(Ff)*] of adjoints (resp. [F_;;] of closures). Associated
to any such matrix, we define the following subspace of )

Dom[F ﬂ Dom Fj. (2.4)
op

Note that F gives rise naturally to an operator on @ @Dl by the prescription
() — (Fju), which has domain {(«’) e @ “*Vh : u’ e (), Dom F* for each y}. The
subspace Dom[F] is the largest subspace ® <) such that @ (@+D) D is contained in this
maximal domain.

We will only consider solutions that are contraction processes, that is processes U
or V for which each U, or V; is a contraction. Let Dl be a dense subspace. A
contraction process V is a weak solution of (L) on D for the operator matrix G if the
following hold:

(Li) D=Dom|[G],

(Lii) for all ueh, ve®D, f, geM and ¢ > 0,

Cue(f), (Vi — 1)uelg >f/ﬂ () Cue(f), ViGhuelg) > ds. (2.5

Note that any weak solution is necessarily weakly continuous. The process V is a
strong solution of (L) on D for G if, in addition,

(Liii) ¢+ V¢ is strongly measurable for all £eH.

The effect of this extra condition is that the processes (V;(G;O1)),5, on D are
stochastically integrable, since V' is assumed to be a contraction process, and so now
by (2.1) and (2.5) it follows that

t
vV, =1 +/ V(G5O 1) dAl(s).
0

For the right equation (R), the situation is in general more complex since there is
no reason to expect that for any solution U the range of each U, should lie in an
algebraic tensor product of the form © ©.%. For this reason, we only define
solutions of (R) when each component Fj of the matrix F is closable. Let F®1
denote the matrix [Fj ® 1] of closed operators on H (so that Dom[F ® 1] =H), and let
D be as above. A contraction process U is a weak solution of (R) on D for the
operator matrix F if the following hold:

(Ri) U,29 U(DOE)=Dom [F®1],

(Rii) for all ueh,veD,f,geM and t > 0

<mUMU—1wa>—/ﬁ () Cue( 1), (F1 @ 1) Uyve(g)  ds.
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Note that since Fj is assumed to be closable the measurability of the integrand

follows by taking adjoints and using standard approximation arguments. A strong
solution of (R) on D is any weak solution that satisfies the further condition.

(Riii) each process (F §® 1)U on D is stochastically integrable.

For such U, we have
t
U =1 +/ (F@ 1)U, dAL(s),
0

and so in particular U is strongly continuous.

If § is separable then any H-valued weakly measurable function is also strongly
measurable by Pettis’ Theorem, and thus any weak solution to (L) is necessarily a
strong solution. However, the same need not be true for solutions of (R). A notion of
mild solution for (R) has been introduced in [FW]. There it is shown that any strong
solution is also a mild solution, and that there exist coefficient matrices F for which
mild solutions exist, but for which there are no strong solutions.

Let G = [G}j,] be a matrix of operators on ), 7" a positive, self-adjoint operator on

b, and D a subspace of Iy such that

DcDom I'mDom|[G] and Gg(b) cDom7'? Vix1, B>0.
Then we can define a real quadratic form 0g(7T) and a matrix of sesquilinear forms
[06(T)g] by

d
06(T)(u) = 2Re{ Tu, Gl y + > || TGl |,

i1
and
06(T)j(u,v) = {Tu, Gjo) + (GPu, Tvy + (T"?Glu, Tl/zG%v>
for u = (1*)e ®“*VD and u,veD. It follows that
06(T)(w) = 06(T) (", ).

We say that 0(T) is defined as a form on © whenever we need to make the domain
of definition precise; if T is bounded then 0s(T) is defined as a form on the subspace
Dom|[G] of . If O(T) is in fact bounded then we shall also use 05(7") to denote the
corresponding bounded self-adjoint operator.

Proposition 2.1 ([F3], [MoP]). Let G = [G}] be a matrix of operators on b, and let D

be a dense subspace of I). Suppose that there exists a contraction process V that is a
strong solution to (L) on © for this G. Then 05(1)<0 as a form on D. If V is an
isometry process then 05(1) =0 on D.
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Proof. Let & =3, upe(fyljo,7)) for some 7" > 0 and some finite family {(u,,/,)} in
D x M in which each f, is continuous. Then contractivity of " implies that

0= [|VEl]” — €]

:/Ot{2Re<VSy°‘(s) il (s >+Z||V’ }ds (2.6)

by (2.3), where y*(s) = >_, f(s)upe(fp1jo.17)- Differentiating at 0 and letting 7—0
gives
0=0a(1)(y).

wherey = (3_,/,(0)u,). Varying the f, and u, then gives the result, and note that if
V is an isometry process then the inequality in (2.6) becomes an equality. [J

Remarks. (a) If G is a matrix of operators on [) such that the inequality 0(1)<0

holds on some dense subspace D then [5’1 + G’] defines a contraction from

jlij=1
@D to @@, and so in particular each G]’- has a unique continuous extension to
an element of B(h). If 85(1) = 0 then [5;1 + Gj’f}szl is an isometry.

(b) If all the components in the matrix G (respectively F) are bounded then there is
always a unique strong solution V of (L) (resp. a solution U of (R)), although it may
be an unbounded process on b. In this situation 05(1)<0 is not only a necessary
condition for contractivity of ¥ but also sufficient one. Similarly, U will be a
contraction process if and only if 0p(1)<0. The original proofs of this
characterisation are contained in [F3,Mo2]; an alternative line of proof is given in
[LiP,LW1] that makes use of the characterisation of the generators of completely
positive contraction flows. In this context, it makes sense to regard 6 as the linear
map B(h) — My1(B(b)) given by

0p(X) = (X®1)F + FX(X Q1) + F*A(X)F,

where A(X) = diag{0, X, ..., X'}, rather than just restricting it to the cone of positive
self-adjoint operators.

Taking adjoints: Suppose that V' is a contraction process that is a weak solution to
(L) on D for some operator matrix G, and also that each Gje B(D). Then it follows
from (2.1) that ¥* is a weak solution to the QSDE dV* = (G/)*1* dA” on . Our
main result in this section shows how to extend this procedure to a class of
generators G for which the Gj are no longer bounded. In particular, we must obtain
information about the range of each V. Our arguments make use of the quantum
It6 formula (2.2), which is valid for processes that have strong stochastic integral
representations, and thus our standing hypothesis is the existence of a strong solution
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to (L), from which we will prove the existence of a strong solution to (R). In Section
3, we give conditions that guarantee the existence of this solution to (L).

As part of the proof, we will require that the adjoint process V* be strongly
measurable, and Proposition 2.2 below gives some sufficient conditions for this to be
the case. In fact we shall show that it is strongly right continuous by first showing it
is a Markovian cocycle and then adapting standard arguments of semigroup theory.
For each teR let s, be the unitary right shift operator on LZ(R;C‘J), defined by
(sf)(r) =f(r—1) for feL?(R;C%). Let S, be the second quantisation and
ampliation of s, that is S;ue( f) = ue(s,f). Then the map

B(h®T(L*(R;C")))3 Y-S, YSFe B(H® I'(L*(R; C?)))

is a normal automorphism, and the collection of these for all re R is an ultraweakly
continuous one-parameter group of such maps. Now let X € B(H), then ampliating

with 1_, the identity of I'(L?(] — 0, 0[; C%)), we get X ® 1 _ e B(h®@ I'(L*(R; C“))). If
1=0 it follows that there is some ¢,(X) e B(H) such that

U[(X)®17 == S[(X@ lf)S;}:.

The family (g;),-, so defined is an ultraweakly continuous one-parameter semigroup
of unital, normal *-homomorphisms of B(H). A family W = (W,),.,< B(H) is a left
cocycle if it satisfies the following:

(i) The family W is adapted.
(i) Wy =1.
(i) Wy = Wioo (W) for all s,1>0.

Similarly, W is a right cocycle if W* = (W}),. is a left cocycle.

Proposition 2.2. Let G be a matrix of operators on by, and suppose that there exists a
contraction process V that is a strong solution to (L) on some dense subspace Dcl. If
V is the unique strong solution for this G and D then V is strongly continuous and a left
cocycle. Furthermore, V* is a right cocycle that is strongly right continuous.

Proof. That V" is strongly continuous is a consequence of its strong stochastic
integral representation as noted earlier. So now fix # > 0 and consider the process V"’

defined by
VS, _ VY7 § < l7
Vie/(Vs_y), s>t.

It follows that ¥’ is a strong solution to (L) on D ©® & for G, and so by uniqueness V
is a left cocycle. Thus, V* is a right cocycle by definition.
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Now for any s,7>0 and £eH, we have

(V5 = VP = ll(ou(VF) = DVFEIP

s+t
<2 VEE|P —2Re{ VFE, 0, (V) VEED

since (V) is a contraction. The right-hand side converges to zero as s— 0 by strong
continuity of V' and normality of ¢,, and the result follows. [

Remark. Mohari proved the following uniqueness result in [Mol]: let G = [G}] be an
operator matrix with G the generator of a strongly continuous contraction
semigroup. If D=Dom|[G] is a core for G) then there is at most one weak
solution V' to (L) on D for this G. In fact in [Mol] it is assumed from the
outset that ) is separable and so there is no distinction between weak and
strong solutions. However, using this uniqueness result, the arguments of the
proof above can be adapted to show that if a weak solution to (L) does exist then it is
a cocycle, hence it is strongly continuous, and so it must actually be a strong
solution.

Given any positive self-adjoint operator 7 on b let 1(7) denote the form
u— 24 ||T2u%|?, defined for each ue @ “*Dom T'/2. Also, recall the notation
Dom|[F] introduced in (2.4).

Theorem 2.3. Suppose that U is a contraction process, F is an operator matrix, C is a
positive, self-adjoint operator on Yy, and 6 > 0 and by, b, =0 are constants such that the
following hold:

(i) There is a dense subspace D<) such that the adjoint process U* is a strong
solution of dU* = U*(Ff)* dAf on D, and is the unique strong solution for this
F* = [(F!)*] and .

(1) For each 0<e<9 there is a dense subspace D, =D such that (Cé)l/z(bé) =D and
each (F/?)*(Cé)l/zb( is bounded.

(iii) Dom C'/?cDom|F].

(iv) Dom|[F] is dense in by, and for all 0<e < the form 0p(C.) on Dom[F] satisfies
the inequality

HF(CC) <b Z(Cé) + bl
on some dense subspace of Dom|[F].

Then U is a strong solution to the right equation (R) on Dom C'/2 for the operator
matrix F.

Note. By (i) it follows that each Fj is closable, hence the matrix F is defined, and so
(iii) makes sense.
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Proof. First note that (F ;‘)*(Cé)l/ ? is bounded and everywhere defined by (ii) and
Lemma 1.4. Taking adjoints we have

B(Y) 3 [(F)*(C)F =(C) *FE > (C) F.

Thus, the form 0r(C,) on Dom[F] is defined in terms of bounded operators that have
a dense common domain of definition. Using the operators [(F;)*(C()l/ ol
define an extension of 0r(C,) to a bounded form on all of I), and so we shall treat it
as a bounded operator on @V, also identifying it with its ampliation to an
operator on @ “*UH. Moreover, the inequality in (iv) is now valid as an operator
inequality.

Now by (i) the process U* satisfies

, We can

t
Ur=1+ / U*(FPY* dAb(s)
0

on the domain DO &, and so it follows that the process (U,*(CE)I/Z),ZO has the
stochastic integral representation

t
UF(C)Y = (€)' + /0 UF(FPY*(C)'2 dab(s)

on D, O &, which extends to all of ) ® & by continuity. By (i) and Proposition 2.2 it
follows that U* is a strongly continuous left cocycle and so U is a strongly (right)
continuous right cocycle. Thus, we can take the adjoint of the above, since the
resulting integrands are stochastically integrable, to get

(€00 = (€)' + [0 v aalts
0

on hO &. Applying (2.3) gives

1(C) 2 Uie ()| = 1(C)Pue( )]
* /0 t{z Re(f*(s)(C) 2 Usue(£), S (5)[(F)* (C) T Usue(f) >
d
+ |lf“(S)[(Fi)*(Ce)‘/zl*UsuS(f)|2} ds
i=1

for all uel,f eM. Collecting together the terms making up 07(C,), we have

1(C) 2 Tue(£)IIF = 1(C)Pue )] + /0[ (x(s), 0p(Co)x(s) ) ds,
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where x*(s) := f*(s) Usue( f). The inequality in (iv) implies that
(€)' 2 Uwe( NP < I(C)2us( )1

+/ot(bll(Ce)l/zUsuS(f)|2+ bal|Usue(f)II?) dvy(s),

where vr(z fo + 1/ (s)|*) ds, and so the Gronwall inequality gives

|(Ce)1/2Ut“8(f)|2<{|(Ce)l/zuﬁ(f)||2+b2 / ||Usue<f>||2dvf<s>}exp{blvfm}.

Letting ¢ —0 we see that U,((Dom C'/?)®¢&)<=Dom C'/>® 1, and condition (iii) in
conjunction with Lemma 1.2 implies that Dom C'?®1<=Dom F; ®1 for all o, f§,
and hence U is a weak solution of (R) on Dom C'/2.

Now by Lemma 1.3 the functions 71— (Fj ® 1) Uue( /) are strongly measurable for
all 0<a, f<d, ueDom C'/? and feM. Also the above inequality (in the limit as
£¢—0) shows that 71— ||(C'/>® 1) U,ue(f)]| is locally bounded, and so Lemma 1.2 and
(iii) imply that the processes ((F i ® 1)U,),5, are stochastically integrable on

Dom C'/2. Hence U is a strong solution as required. [J

Remarks. (a) The requirement that U* be the unique strong solution to the adjoint
left equation allowed us to conclude that the processes {[(F} 0% () U} are

stochastically integrable and hence (C, )1/ U has a strong stochastic integral
representation. If ) is separable then the stochastic integrability of this family of
processes is guaranteed by the equivalence of strong and weak measurability for
functions taking values in a separable Hilbert space, and so the uniqueness
requirement in part (i) of the hypothesis can be dropped without affecting the result.

(b) By Lemma 1.4, a sufficient condition for the boundedness of each (Ff)*(CE)|3[

is Dom C'/2cDom[F*], and indeed this is necessary if 0 lies in the resolvent of C.
This observation provides an important guide as to what would be a suitable choice
for C. As an illustration, in the diffusion example in Section 4 we have that (F)))" is a
second-order differential operator, and so for C we take 8* + 1. However, it is still
important to check that (C()l/ 2 maps some dense subspace D, into D, the subspace
for which U* satisfies the QSDE (L).

(c) The proof of the above result remains valid if we replace C, by other variants of
the Yosida approximation which raises the possibility of using a “less unbounded”
reference operator C. Indeed we could used CR? or C(1 + ¢C?)"? instead of C,, and
then we would be able to use C of the same order as (FJ)*. However, if we adopt
these variants then proving the analogous result to Proposition 3.4 below becomes
much harder.
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Having constructed a solution U to the right equation we now finish this
section with two results that give conditions under which we can prove that
U is an isometry or coisometry process. The first of these happens, at least formally,
when 0p(1) = 0 (cf. the remark after Proposition 2.1), although we must take care
when considering the form 0r(1), defined on Dom[F], and its extension 0z(1) to
Dom|F].

Corollary 2.4. Suppose that the conditions of Theorem 2.3 hold and let U be the strong
solution to (R) for the given matrix F. If either

() Dom C'2 ADom|[F] is a core for C'/* and 0r(1) = 0, or
(i) 0#(1) =0,

then U is an isometry process.

Proof. If (i) holds then, using the condition (iii) from the hypotheses of Theorem 2.3
and Lemma 1.2, it is possible to find for each ue Dom C'/? a sequence (u,) in this
core such that u, > u and Fju, —>F_/§‘u. It follows that the form 0z(1) when restricted

to Dom C'/? is equal to zero, which is also clearly the case if condition (ii) holds. So
now let @ denote the sesquilinear form defined by

(&), (1) <L (Fr@ D'y + CFEP@DE Py + ((Fi@ 1), (Fy@ i

for (¢7),(n")e ®“*Dom[F®1]. By the above the restriction of this form to
Dom C'/2(® Z is zero. But as noted in Section 1, Dom C'/2®.% is a core for
C'2®1, and so another application of the inequality (1.1) allows us to show that @
is zero when restricted to Dom C!/>® 1. Now since U is a strong solution to (R) we
can apply (2.2) to get

CUwie(f), Unelg) > = Cue(f),ve(g)> + / O (x(s), y(s)) ds

for all u,veDom C'/? f geM, and where x*(s)=f*(s)Ugue(f) and y*(s) =
g”(s) Ugve(g). But U; maps Dom C'/2© & into Dom C'/?>® 1 by Theorem 2.3, hence
the integrand is zero if either (i) or (ii) holds, and the result follows. [

A quantum dynamical semigroup (QDS) on B(h) is an ultraweakly continuous
semigroup .7 = (7 ,),5, of normal completely positive maps on B(h). It is
conservative if 7 ,(1) =1 for all +>0. Given the generator K of a strongly
continuous contraction semigroup b and operators (L;),, such that

Cu, Kuy + (Kuuy + ) || Ll <0, (2.7)

1>1
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for all u in some core D for K, it is possible to construct the minimal QDS 7 (see [F5]
and references therein) that has (formal) generator % given by

Cu, (X)) = {u, XKv) + {Ku, Xv) —|—Z {Liu, XLy, u,ved.

=1

That is, 7 is a QDS that satisfies
t
.7 X0y = Xy + [ a2 (T (0w,
0

and if 7" is another QDS satisfying the above integral identity then 7 ,(X) < 7(X)
for all #>0 and positive X € B(l)). Showing that the solution U to (R) constructed in
Theorem 2.3 is a coisometry process is equivalent to showing that U* is an isometry
process, which (under favourable circumstances) is equivalent to showing that a
related QDS is conservative:

Proposition 2.5 ([F3,F5]). Suppose that the conditions of Theorem 2.3 hold and let U
be the strong solution to (R) for the given matrix F. Suppose further that (F(‘)))* is the
generator of a strongly continuous contraction semigroup, that the subspace D is a core
for (Fg)*, and let I be the minimal QDS with generator

d
Cu, (X)) = Cu, X(F) vy + C(F9)'u, Xoy + > (F)) u, X(F)*v).

i=1
The following are equivalent:

(1) U is a coisometry process.
(i) Op«(1) =0 on D and T is conservative.
(ii1) [5}1 + Fﬂ?;‘:l is a coisometry on (—B;’:l b and T is conservative.

Remark. By Proposition 2.1 the inequality (2.7) holds for K = (F))* and L, = (F?)*,
hence the minimal QDS .7 exists.

3. Special case: isometric solutions with one-dimensional noise

The results in the previous section provide a very general method for generating
contraction solutions to the right HP equation, and one whose basic idea could be
modified easily if necessary, for instance by using different regularisations to C,. In
this section we refine our basic result in a number of ways. Firstly, in order to make
use of known results on the existence of (strong) solutions to the QSDE (L) (and
hence verify part (i) of Theorem 2.3) we shall assume from now on that the initial
space |y is separable. Secondly, in order to simplify the form of the generator we shall
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set d = 1, that is we work with only one dimension of quantum noise, and we now
look for isometric solutions to the QSDE (R) (cf. Proposition 2.1).

The operator matrix for the rest of the section is specified by a triple of operators
(L,H,S), where L and H are densely defined, with L closable and H symmetric, and
S is an isometric element of B(}). The operator matrix is

Y5 A I 5
L S—1

F =

3

and we assume throughout that Dom[F] is a dense subspace of [). Rather than work
with F* the matrix of adjoints, we shall use the following matrix:

pi_ | AL L

—S*L S*—1

b

whose components are restrictions of the components of F*. Thus, the QSDEs that
we are now working with are

dU, = [(—1L*L — iH) dt — L*S dA, + LdA] + (S — 1) d4,]U, (R)
and
dU} = U¥[(— I\L*L + iH) dt + L* dA, — S*L dA] + (S* — 1) dA,). (L)
The formal generator of the related flow is

—AXL*L 4+ [*XL - 1L*LX +i[H,X] [L*X]S

0p(X) =
F(X) S*[X, L] S*XS— X |’

(3.1)

so in particular 0r(1) = 0 on some domain.

Proposition 3.1. Let (L, H,S) be a triple of operators as above, and suppose that there
is a dense subspace D of by such that

(i) D=Dom L*LnDom L*"Dom H, and
(i) the closure of (—iL*L+iH)|y is the infinitesimal generator of a strongly
continuous contraction semigroup on l.

Then there is a contraction process U* that is a strong solution to (L) on ®, and
furthermore it is the unique strong solution.

Proof. The result follows immediately from the method given in [F3].
The form

0p+(1) :u—2Re {u, Flu) + (F'u, 4(1)F'u) (3.2)
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00

is well-defined for ue @ D by (i), where A(1) = {O 1

] . By the construction of FT,

we have

Op(1)(u) = <Lu® —u!, (SS* — 1)(Lu® — ")) <0 (3.3)
for all u = [u’,u'] " e D@D, that is F' satisfies the formal contractivity conditions
(cf. the remark after Proposition 2.1). Let K denote the closure of (— 3L*L + iH)|y,
then by considering vectors of the form u = [u°,0] " in (3.2) we can extend (—S*L)|4
to all of Dom K by approximating elements of Dom K by sequences in D that
converge in graph norm and using the inequality (3.3). Thus, 6z:(1) extends to Dom
K@®D, and continues to satisfy (3.3) on this domain. Put I, = diag{n(n — K)~', 1}
and F| = I*F'I, for each n>1, then it follows that F is a bounded map satisfying

Fi+ (F)* + (F,

n

Y*A(1)F; <0.
So for each n we can solve the equation
dU™ = U™ (F}); dAl

and each U"* is contractive. In fact for each uel), feM and éeH the family

{¢, U,(n)*ug(f)>}f:1 is equibounded and equicontinuous on each bounded
interval. A diagonalisation argument and the Ascoli-Arzela theorem can then be
employed to show that there is a weakly convergent subsequence {U"%)*}

whose limit is the required solution. The uniqueness follows by the result of
Mohari. [0

Remark. In the examples below we shall take S to be unitary since we will be
constructing unitary cocycles. Thus S*L is closable with S*L = S*L. Also, from
(3.3), it follows that Dom L> Dom K, and that the extension of (—S*L)|y to Dom
K in the proof is nothing but the restriction of —S*L to this domain.

The next result gives some sufficient conditions that imply that the solution U* to
(L) constructed above is an isometry process. The conditions are by no means
optimal, in particular they are not necessary, but are written in such a way as to be
easily applicable to our examples in the next section.

Corollary 3.2. Let (L, H,S) be a triple of operators as above, and suppose that the
conditions of Proposition 3.1 hold, with U* the contraction process that is the strong

solution to (L)'. Suppose further that the operator S is unitary, and that there is a
positive self-adjoint operator M on by and a constant k=0 such that:

(i) Dom K cDom M2, and Dom K is a core for M'/?,
(i) $*L(Dom K?)=Dom M'/?,
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(i) 2 Re ¢ MV2u, M2 Ku'y + ||M"/2S* Lu||* <k||M"u||* Vue Dom K2, and
(iv) Dom M cDom L*L, and ||Lu||<||M"/?u|| Yue Dom M,

where K denotes the closure of (—3L*L + iH)|y. Then U* is an isometric process.

Proof. Apply Theorem 4.4 of [ChF] to deduce that the minimal QDS associated to
(L) is conservative, and so U* is an isometry process by Proposition 2.5. [

Perhaps one of the more difficult things to check in order to be able to apply
Theorem 2.3 is that the form inequality for 67(C,) in (iv) holds for all values of ¢ in
an interval of the form (0, §). Proposition 3.4 below shows that this will be the case if
the analogous form inequality holds for 67(C), and if the commutators of C with L
and S are sufficiently well-behaved. The following lemma eases the algebraic burden
of the proof of this result.

Lemma 3.3. Let # be a unital associative algebra and suppose that c¢,re B satisfy
ecr =¢erc =1 —r for some € > 0. For any a,be % the linear maps ., and w,;, on B
defined by

Tap(X) = alx,b] and  wqp(x) = [a,x]b (xe %)

satisfy

Tap(rer) = rz‘raﬁ;,(c)r2 —r(l = r)tap(c)(1 — r)r — erfe, a]rz[b, clr

+ er(1 = 1)[e,dr[b, c|(1 — r)r — er*[c, alr[b, c]r?
and
wap(rer) =rro.p(e)r* —r(l —rogp(c)(1 — r)r — erle,al?[b, cr
+ er(1 = 1)[c,dlr[b, c](1 — r)r — er*[c, ar[b, c]r.
Proof. The relations satisfied by ¢ and r imply that [x,r] = er[c, x]r and hence

[x,7?] = er?[c, x]r + er[c, x]r? for all xe#. These identities and those already given
lead to the following chain of equalities:

T4 (rer) =alrer, b) = arclr, b] + arle, blr + alr, b]cr
=ar(1 = r)[b,clr + arlc,blr + arlb, c](1 —r)r
= —r?alb, c|r — [a,?][b, c]r + ralb, (1 — r)r + [a,7][b, ] (1 — r)r
2

=1 t.(c)r — er*[c, alrlb, c|r — er[e, al?[b, c]r

+ rtgp(c)(r — Dr +erfe,alrb, c](1 —r)r
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:rzra,/,(c)r2 —r(1 = 7r)tap(c)(l — r)r —erfe, a]rz[b7 cr
+ er(1 = 1)[c,dlr[b, c](1 — r)r — er*[c, a)r(b, c]r?,

giving the identity for 7,;. The one for w,; follows by an almost identical
proof. [

Remark. If % is assumed to be involutive and ¢ and r are self-adjoint, then the
identity for » can be derived from that for © since m,p(x) = Tpe ¢ (x*)*.

Proposition 3.4. Let (L, H,S) be a triple of operators as above, and suppose that there

exists a positive, invertible, self-adjoint operator C, a dense subspace D of V), and
constants 0<d<1 and b3, by =0 such that the following hold:

) Re(ﬁ)C@for all 0<e<d, and D is contained in the domain of the following
operators:

L*L,L*S,[C, L], |C, H],CS.
(i) The form 0p(C) defined on D satisfies the following inequality:
—b31(C)<0p(C)<b31(C).

(i) For all ue®, ||C2[C, L]u|| <b4||C"ul|.
(V) For all ue®, ||[C, S]u|| <b4||C"/?ul|.

Then for all 0<ec<d the form 0p(C,) is well-defined on ® and satisfies
HF(Cé) <2(b3 + b4)l(cé).

Proof. We shall use the preceding lemma to rewrite each component 03(C,) =
0F(Cé); of the form (3.1). This is possible, since in the notation of the lemma (and
ignoring domain problems for now) we have

00(X) = L*[AL, X] + [{L*, X]L + [iH, X|

- TL*,%L(X) T w%L*A,L

(X) + i1 (X)

and, similarly,

1
0 =ow 0 =+ 0! =1 w
1 L*.S) 1 S*,L» 1 S*-%S + %S*‘S’

noting for 0} that $*S = 1. Now note that the issue of domains is covered for
us by condition (i). Indeed, each component 97;(@) is a well-defined sesquilinear

form on D, and moreover so is each of the terms such as 7 , lL(Ce)- For example,
2



300 F. Fagnola, S.J. Wills | Journal of Functional Analysis 198 (2003) 279-310

we have
0%(C.) = wr+5(R,CR.) = [L*, R.CR]S
which should really be thought of as the form
D x D3 (u,v)— {(Lu, R.CR,Sv> — { R.CRu, L*Sv

which is well-defined since CR, is bounded and ® = Dom L~ Dom L*S. Lemma 3.3
allows us to rewrite this as

01(C) = R201(C)R? = R(1 = R)OY(C)(1 = R)R
— €R[C,L*]R?[S, C]R. + €R.(1 — R)[C, L*|R[S, C](1 — R)R,
— ¢R[C, L¥|R.[S, C]R?

and again each of the terms on the right-hand side, plus those appearing in the
derivation of the above, make good sense courtesy of condition (i). The adjoint

identity holds for 05(C,),
00(C.) = RAOY(CO)RE — R.(1 — RYO(C)(1 - R)R,
— ¢R[C,L¥|R)L, C]R + cR.(1 — R)[C, L*|RJL,C](1 — R)R,
— cR[C, IR L. CIR,

and the identity for 0}(C,) is got by changing 6 to 0] and L to S in the above. Thus,
each component 0(C,) defines a sesquilinear form on D, and the quadratic form
0r(C,) is well-defined on D with

0r(Cc) =R!0r(C)R! — R207(C)R? — R!p (C)R! + R (C)R?

R|C,L¥|R*[L,C]R, R.C,L*|R[S,CIR,

- , 3.4
‘| R[C,S*|R[L,C]R. R.C,S*|R2[S,C|R. (34)
where
Rl R 0 | - R.(1—R) 0
¢ 0 R’ ¢ 0 R (1 —R,)
and
‘ [C,S*|R[L,C] [C,S*|R.[S,C]

are all positive operator matrices or forms.
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Now R, and 1 — R, are positive contractions, and ¢R, < C~! for each ¢ > 0. Thus
for any u = 1%, u']" e D@D and 0<e<d<]1,

¢ (C)(u) =|[|RI?[L, Clu||> + 2 Re ( RIZ[C, Lu®, R[S, Clu' )
+ ||RI2[S, Clu'|?
< 2{|IRIP1C, L) + [[[C, Sl [P}
<2 {||CPC, Ll + [[[C, So| P}
< 2¢'bar(C)(u),

by inequalities (iii) and (iv). Thus the last three terms of (3.4) are bounded above by
2b4R?1(C)R?. The result now follows since for all 0<e<J we have R>?CR>< C, and
R(1—R)C(1 —RH)R.<C.. O

Theorem 3.5. Let (L,H,S) be a triple of operators as above and suppose that
there is a positive, invertible, self-adjoint operator C such that the hypotheses of
Propositions 3.1 and 3.4 hold. Suppose also that the following conditions hold for some
0<d <6:

() For each 0<e<9' there is a dense subspace D, such that (C()l/z(’b() =D,
and such that the restrictions of the operators L*(C)"? , L(C)"? and (— IL*L +
iH)(Cé)l/2 to D, are bounded.

(i) Dom C'/?cDom — IL*L — iH nDom L~ Dom L*S.

Then U, the adjoint of the process from Proposition 3.1, is a strong solution to
(R) on Dom C'/2. Moreover, if Dom C'> nDom|F] is a core for C'/* then U is
isometric.

Proof. Since the hypotheses of Propositions 3.1 and 3.4 and the additional
conditions above hold it follows that all of the requirements of Theorem 2.3 are
fulfilled, and so the contraction process U is a strong solution to (R)" for the
operator matrix F on the domain Dom C'/2. If Dom C'/>nDom|[F] is a core for

C'/2 then Corollary 2.4 can be applied to show that U is an isometry process since
Op(l)=0. O

4. Examples

Birth and death processes: Let ) = [?(Z), with standard orthonormal basis (e4),. 7,
and let W be the unitary right shift given by We, = ¢,,;. Let N be the number
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operator on /?(Z), that is

Dom N = {(u,,); U, €C, > nPlu|’ < o0 } N(uy) = (nuy).

neZ

Then for any function A : Z— C the operator denoted A(N) is defined by

Dom A(N) = {(un): un €C, Y [A(m)uy|* < o0 } AN () = (A(n)uy).

neZ

Let D’ = Lin{e,}, so then D’ =Dom A(N) for any function 4, and is in fact a core
for A(N).
Define the triple (L, H,S) and the reference operator C by

L=WJWN), H=0, S=W, C=N?>+1,

and note that ®° is an invariant subspace for all these.

Now L*L = |A]*(N), a positive self-adjoint operator for which D’ is a core, so we
can apply Proposition 3.1 and Corollary 3.2 (with ® = D°, M = |i|2(N), and k = 0)
to obtain an isometric process U* that is a strong solution to (L)' on .

For any function ¢ : Z—C, the form 0(¢(N)) is well-defined on ©°. Indeed, it is

actually possible to regard 0z(¢(N)) as an operator on h@ b with domain D° @ D°,
and it can be written

0r(p(N)) = [MIN )] (0N +1) ~ oAV 1]

We now restrict our attention to functions A for which there is some 4 > 0 such that

An)*<b(n| +1) VneZ.

Since
—QIN|+ D[N +1)*+1] = [N>+1] =2N + I<2|N| + 1,

it follows readily that the form 60p(C) satisfies the inequality in part (i) of
Proposition 3.4 on the domain ©°. Also, note that on ®°

[C,L] = [N*, W]A(N) = W(W*N*W — N*)A(N) = W(2N + 1)A(N),
which is relatively bounded by C3/4, so that (iii) follows, and similarly

[C,S] = W(W*N*W — N*) = W(2N + 1),
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from which part (iv) follows. Thus, we can apply Proposition 3.4 to get that 0x(C,)
satisfies a form inequality of the correct type on D = .

Finally, the growth condition on /. implies that Dom C'/? is contained in the
subspace Dom|2|*(N) nDom A(N)nDom Z(N)W*, so conditions (i) and (i) of
Theorem 3.5 are satisfied with D, = D°. Thus, there is a strong unitary solution to
the QSDE

dU, = [~ 1|2 (N) dt — J(N) dA, + Wi(N) dA] + (W — 1) dA,|U,

on Dom C'/2, since D" = Dom|[F], and D’ is a core for C'/2.
If we consider the algebra /*(Z)<B(})) acting by pointwise multiplication,
then

Oh(o(N) = 2P (N){o(N + 1) = o(N)}, @el”(2),
and so the flow X — U*(X®1)U gives a realisation of the classical pure birth

process with intensity |2|27 since the generator 08 is of the appropriate form.
Replacing the triple above by

L=W*u(N), H=0, S=W*

with p: Z—C subject to the same growth condition, and setting C = N> + 1 once
more, we obtain a strong unitary solution to the QSDE

dU, = [~ ul(N) dt — @(N) dA, + W*u(N) dA] + (W* — 1) dA)U,,
on Dom C!/2. This time

Oh(o(N)) = [ (N){p(N — 1) — o(N)},

and so we have a realisation of the classical pure death process with
intensity p.

By increasing the number of noise dimensions to two we are able to realise a
combined birth and death process. Let F be the operator matrix

—SAPIN) =3Ikl (N) —A(N)  —a(N)
F= WAi(N) w-1 0
W*u(N) 0 Wwr-1
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Then for any function ¢ :Z—C the operator matrix 0p(¢(N)) (with domain
containing D’ ® D’ @ D") decomposes as

JAP(N) A(N) 0 (V) 0 A(N)
A(N) 1 0y + 0 0 0 1, (4.1)
0 0 0 u(N) 0

where 1) = 1(@(N +1) = @(N)) and 1_) =1(¢(N — 1) — ¢(N)). Viewing each
component as a 2 X 2 matrix, the estimates above together with Proposition 3.4
show that there is some ' > 0 such that 0p(C,)<b'1(C.), where C = N>+ 1 as
before. So now appealing directly to Theorem 2.3 (rather than Theorem 3.5),
Corollary 2.4 and Proposition 2.5 (or, rather, a two-dimensional version of
Corollary 3.2), we can show that there is a unitary process U that is a strong
solution to

AU, = [~ L (|AP(N) + |ul* (N)) d A (1) = Z(N) dAS (1) — &(N) dA9(z)
+ WA(N) dAy(t) + WH*u(N) dA3(t) + (W — 1) dA| (1)
+ (W* = 1)dA3(0)]U,.

Then note from (4.1) that 0)(@(N)) has the required form for the cocycle
X UF(X®1)U, to be a realisation of the birth and death process with intensities
/A and p.

The inverse harmonic oscillator: Let by = >(Z.), where Z, = {0, 1,2, ...}, equipped
with the standard basis (e,),~,. Let W be the isometric right shift, We, = e, 1, and

D’ = Lin{e,}. Define the triple (L, H,S) and reference operator C by
L=AN)W, H=u(N), S=1, C=N>+1

for functions A: Z, -»C and u: Z, —» R, and assume that there is some ¢ > 0 such
that

max{|2(n)[, [u(n)|} <c(n+ 1) Vn=0.

So now for any function ¢ : Z, — C, the components of (¢ (N)) (whose domains
contain D°) are

Oo(e(V) = [2P(N + D{o(N +1) = o(N)},  6i(@(N)) =0,
Op(@(N)) = A(N)[p(N), W] = 0} (p(N))*.
In particular, if we take @(N) = C = N> + 1, then

05(C) = (2N + 1)AP(N + 1),
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and
[C, L] = 0)(C) = A(N)[N*, W] = A(N)(WW* + Py)N*W — J(N)WN?
=AN)YW(2N +1),

where Py = 1 — WW* is the projection onto Cey, so that PoN>W = 0. Thus [C, L] is
relatively bounded by C3/*. These observations allow us to apply Propositions 3.1
and 3.4, and Theorem 3.5 to prove the existence of an isometric process U that is a
strong solution to

dU; = [(—%|/1|2(N+ 1) — iu(N)) dt — W*J(N) dA, + A(N)W dA|U,.
If, further, we assume the existence of 0< ¢’ <c¢ such that
dn<|i(n)P<e(n+1) Yn=0,

then Dom K = Dom N and we can apply Corollary 3.2 with M = ¢(N + 1) and
k = ¢ to deduce that U is a unitary process. As a particular example we take A(n) =
—in'/?, u(n) = 0. Then equation (R)’ reads

dU, = [~ 1BB' dt — iBdA, — iB" dA!|U,,

where BY = N'2W and B= W*N'/? are the usual creation and annihilation
operators on b. As shown in [Wal], this equation arises by considering the interaction
of an inverse oscillator in a heat bath and taking the singular coupling limit. A strong
solution of the QSDE is constructed in [Wal] by use of Maassen kernels, and
analytical difficulties such as investigating the range of the U, are surmountable there
because of the simple algebraic structure of the equation for this special choice of 4
and u.

Perturbations of Hamiltonian evolutions: Let b= L*(R). We shall use the
following vector spaces of functions on [R:Cf([R{), the space of bounded
continuous functions with bounded continuous derivatives up to the
order k; C*(R), the space of infinitely differentiable functions with compact
support; and H¥(R), the space of functions in I that have weak derivatives
up to order k in b. Let o, p and ¢ (resp. #) be R-valued functions in Cﬁ(R)
(resp. C;(R)), m a positive constant, and define the triple (L, H, S) as operators on
H*(R) by

1, i

Lu=ou +pu, Hu=——1u

/ / _

for ue H*(R). So then L*, restricted to H*(R), satisfies

L*u= —ou + (p — o' )u.
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Under the assumption ||o?||, <m™' it can be shown that — IL*L + iH, restricted
to H*(R), is closable and that its closure is the generator of a strongly continuous
contraction semigroup [Kat, Theorem 2.7, p. 499]. Moreover, its domain coincides
with H?(R). So we can apply Proposition 3.1 with D = H*(R) to obtain a
contraction process U* that is a solution to (L) on D.

Define the reference operator to be the positive self-adjoint operator C with
domain H*(R) given by

Cu=u% +u.

Lemma 4.1. The hypotheses of Proposition 3.4 hold for the triple (L, H, S) and the
reference operator C when we put ® = H3(R).

Proof. Since ® = Dom C? it follows that it is invariant under each R,, and clearly D
is contained in the domains of L*L, L*, [C, L] and [C, H], so that (i) holds. Also, (iv)
holds trivially.

As a first step for verifying (ii) we compute the commutator i[H, C]. Denoting by 0
the differentiation operator,

(10 + on, €] = [n,0*)0 + 8[n, "]
- _ 1’],84 _ 28’1/83 _ 28217/82 _ 28317/6 _ 841’[/

_ 381’]/63 _ 2821’]/62 _ 363’1/a+ 1’]”83 _ 831’]”

— 80" + 300" P — 3070 — P — Do — P ?
= — 8% & — 40D — 9y — >
and
[£,C] = —20¢8'0% — 20%E80 — 0E®) — B)p,
By the Cauchy—Schwarz inequality
|<u, [0+ O, Cluy | < 81 ||, 10%ul” + 4110 |, |[0ul]* + 2{|n ], ae|[|0%ul]
< 8l'l], [10%l* + 6110 ]|, |0l Ju]
< BI17ll. +31nl.) Cu, Cuy
and

2[<u, [E, Cluy | < (611€]., + 311D ) Cu, Cuy
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for all ue®. Thus, we obtain

2/ Cuy il H, Cluy [< B[ +611E 1 + 310 + 311ED ] ) <ur, Cuy.
Similarly,
(C.L]= ) T,
0<a,f<2
where

P2 = 4d’, P = 0<3)7 P10 = Po1 = P(S)’ ®oo =0,

P12 = 2/0/ — 20", Py = 2/)/7 0 =0, @p= 0(3),

so again even though C is a differential operator of order 4, and L a differential
operator of order 1, their commutator has order 4. Taking adjoints, we have

[L*7 C] = Z (_1)05-0-/)'8[5'(/)“/}81'

0<o,f<2
Therefore, the term of order 5 in O of the differential operator
03(C) = [L*, C]L + L¥*[C, L]
must come from
—060% P20 + 0% 2,0°0,

and in fact its coefficient vanishes, so that 63(C) is actually of order at most 4. The
same arguments used in the estimate of |<u, i[H, Clu)| yield the inequalities

| <u, {[L*, CIL + L*[C, L}u) |<clu, Cuy, |{v,05(C)ud|<cu,1(Chuy

for all u, ve® (and where we have set u = [u, v]T), and for some constant ¢ that
depends only on g, p and their derivatives up to the order 4. Thus, the inequality in
part (ii) of Proposition 3.4 holds for

b = 3¢+ 4|1, + 3110 + 31 +311EV],
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Finally, to show that (iii) holds, note that 9*C~'9* is a contraction for all
0<a,0/'<2, and so

HC*I/Z[C,L}L{‘F — Z <5“,¢“/ﬁ'aﬁ/u, Cflaa(pzﬁaﬁu>
0<apo ,f <2
= Z (71)“, <¢a’ﬁ’aplu7 (81, C713“)¢aﬁ8ﬂu>
0<apfo,f <2
<9¢ Y 1107 ulll|o’ull,
0<pp<2

where ¢ = maxogﬁgzﬂ%ﬁﬂi. Thus

2
||Cl/2[c,L]u|2<9c’< > ||6ﬁu|> <27¢ > |10l <Ee Cu, Cuy.

0<p<2 0<p<2

This proves the lemma. [

Now note that Dom C'?<cDom —1L*L+iH nDom LnDom L*, and so setting
D, = H*(R) for all € we see that the conditions of Theorem 3.5 hold, noting part (b)
of the remarks after Theorem 2.3. Thus, there is an isometric process U that is a
strong solution to

dU, = (L*dA, — LdA} + K dr)U,

on Dom C'/? = H?*(R). That U is a coisometry process can be shown by applying
the arguments of [ChF], Section 5.1, where it is shown that the QDS associated to the
model of heavy ion collision from [AlF] is conservative, this time taking M to be a
multiple of —9% + 1.

The above argument can be modified by taking

i

Hu == (i + (),

and in this case we no longer need to impose the bound on ||o?|| to show that K, the
closure of — %L*L +iH, is the generator of a strongly continuous contraction
semigroup (see, for example, [F5], Theorem A.3). The rest of the calculation above
can then be applied directly to prove the existence of an isometric solution to (R)’ for
this new form of H. Moreover, it can be shown as in [F5, Chapter 4], that this
solution is unitary. If we consider the algebra L*(R) acting by pointwise
multiplication on [), then since we have

O5(f) =30°f" + (a6" = ap +m)f’,
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we see that the flow X +— U (X ® 1)U, gives a realisation of a diffusion process with
covariance ¢ and drift 66’ — gp + 7.
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