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Abstract

We demonstrate a method for obtaining strong solutions to the right Hudson–

Parthasarathy quantum stochastic differential equation

dUt ¼ Fa
bUt dLb

aðtÞ; U0 ¼ 1

where U is a contraction operator process, and the matrix of coefficients ½Fa
b � consists of

unbounded operators. This is achieved whenever there is a positive self-adjoint reference

operator C that behaves well with respect to the Fa
b ; allowing us to prove that Dom C1=2 is left

invariant by the operators Ut; thereby giving rigorous meaning to the formal expression

above.

We give conditions under which the solution U is an isometry or coisometry process, and

apply these results to construct unital *-homomorphic dilations of (quantum) Markov

semigroups arising in probability and physics.
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0. Introduction

A quantum Markovian cocycle is a family of *-homomorphisms ðjt:A-CÞtX0

between two operator algebras,ACC; where C is equipped with a semigroup ðstÞtX0

of *-homomorphisms, and such that

jsþt ¼ #; s3ss3jt for all s; tX0; ð0:1Þ

where #; s denotes an extension of js whose domain includes ssð
S

tX0 jtðAÞÞ: Such
perturbations of the semigroup evolution law occur naturally in stochastic
settings, where A and C are commutative algebras of bounded measurable
functions. By no longer insisting that A and C be commutative, we obtain a
quantum stochastic process (in the sense of [AFL]) which generalises the classical
notion of a flow to a form more suitable for modelling situations in quantum
physics.
The most commonly studied examples of cocycles are those for which A is

a n-subalgebra of BðhÞ; the algebra of all bounded operators on some Hilbert

space h; and C is of the form A00#BðFÞ; where A00 is the von Neumann algebra

generated by A and F is the symmetric Fock space over L2ðRþ; kÞ; the square
integrable functions on Rþ taking values in some Hilbert space k: Fock space here
plays the role of Wiener space in the classical theory, and is equipped with a

semigroup ðstÞtX0 induced by the natural time shift on L2ðRþ; kÞ: That this is an
appropriate choice for the image algebra C can be justified by a limiting procedure

motivated by physical arguments (see, for example, [AAFL]). Suppose A ¼ A00 and
let E : C-A be the vacuum conditional expectation. Then ðTt :¼ E3jtÞtX0 is a

semigroup of completely positive maps on A that describes the reduced dynamics
of an open quantum system, and j is a dilation of this quantum dynamical

semigroup (QDS).
One method of constructing such cocycles is to solve a quantum stochastic

differential equation (QSDE) of Evans–Hudson type [EvH,LW1],

djt ¼ jt3y
a
b dLb

aðtÞ; j0ðaÞ ¼ a#1; ð0:2Þ

where y ¼ ½yab�a;bX0 is a matrix of linear maps on A; L ¼ ½Lb
a �a;bX0 are the

fundamental noise processes of Hudson–Parthasarathy quantum stochastic calculus
[HuP,Mey,Par], and summation over repeated indices is understood. Conversely, it
can be shown that all sufficiently well-behaved cocycles arise in this manner
[AcM,LW2]. However for applications to physics [Bar,Be1,Sin], and references
therein], and for the realisation of classical stochastic processes in the quantum

setting [F4,F5], it is usually required that the components yab of the matrix y consist
of unbounded maps. Proving the existence of a solution to the EH equation is then a
highly non-trivial problem [FSi,Be2]. An alternative route exists for the construction
of cocycles when A ¼ BðhÞ; the full algebra, by considering the subclass of inner

cocycles obtained by conjugation. A family U ¼ ðUtÞtX0 of bounded operators on
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H :¼ h#F is a right cocycle if

U0 ¼ 1; Usþt ¼ ssðUtÞUs; s; tX0;

and a left cocycle if the adjoint family is a right cocycle. If U is a right cocycle for
which each Ut is a coisometry then defining j by

jtðXÞ :¼ Un

t ðX#1ÞUt; XABðhÞ ð0:3Þ

produces a cocycle of the form (0.1). As above, right and left operator-valued
cocycles can be constructed by solving the right and left Hudson–Parthasarathy
equations:

dUt ¼ Fa
bUt dLb

aðtÞ; dVt ¼ VtG
a
b dLb

aðtÞ; ð0:4Þ

where F ¼ ½F a
b � and G ¼ ½Ga

b� are matrices of operators on h; and again all

sufficiently regular right and left cocycles arise this way [F3,LW2]. Furthermore, if U

is the solution to the right equation and each F a
b is bounded then j defined by (0.3)

satisfies the EH equation (0.2) for the matrix of maps y defined by

yabðX Þ ¼ XF a
b þ ðFb

a Þ
n
X þ

X
iX1

ðFi
aÞ

n
XF i

b: ð0:5Þ

Eqs. (0.4) are written in the form usually encountered in the literature on quantum
stochastic calculus, but to give rigorous meaning to these equations the operators F a

b

and Ga
b should really be defined as operators on the whole space H rather than just

the first component h of the tensor product. When they are bounded operators they
can be identified with Fa

b#1 and Ga
b#1; the unique continuous extensions of the

algebraic tensor products with the identity operator on Fock space, and then no
serious difficulty occurs. Similarly, when seeking solutions to the left equation with
unbounded coefficients, since processes are only ever defined, in the HP calculus, on
the algebraic tensor product of some dense subspace of h and E (the linear span of
the exponential vectors in Fock space) we can identify Ga

b with its algebraic

ampliation. To solve the right equation for unbounded Fa
b ; it is clearly necessary to

obtain information about the range of the operators ðUtÞtX0: Solutions have been

found in [App,F1,Vin], and in all cases this was achieved by assuming that there is a
dense subspace of

T
a;b Dom F a

b consisting of vectors satisfying certain analyticity

conditions. Subsequently Fagnola [F3] and Mohari [Mo1] focused on the left
equation and obtained existence results for that equation under far less stringent
hypotheses on the coefficient matrix since the analytical difficulties are considerably
less.
In this paper, we present a new method for solving the right equation that allows

us to incorporate advances made in the study of the left equation. In particular the
domains of the coefficients are no longer required to contain a common dense
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invariant subspace. Two advantages of dealing the right equation are that the proof
that the solution is an isometry process is very much easier (cf. Corollary 2.4), and
that the inner cocycle j defined through conjugation by (0.3) is seen to possess an

infinitesimal generator in that it satisfies the EH equation on some n-algebra A for
the maps yab defined by (0.5). The germ of the idea is as follows: if the coefficients Ga

b

for the left equation are bounded, and the solution V is a contraction process, then

the adjoint process Vn is the solution to the adjoint right equation:

dVn

t ¼ ðGb
a Þ

n
Vn

t dLb
aðtÞ; Vn

0 ¼ 1:

The main result of the paper, Theorem 2.3, extends this principle to the case of
unbounded generators by hypothesising the existence of a positive self-adjoint
‘‘reference operator’’ satisfying a form inequality that can be written heuristically as

yðCÞpbðC#1Þ:

This enables us to obtain a priori estimates on the continuity of each Vn
t with respect

to the graph norm of C1=2; and hence obtain information about the range of Vn
t : The

method was inspired by the techniques developed in [ChF,CGQ] for proving the
conservativity of QDSs, a problem that has intimate connections with proving that
solutions to the left equation are isometric (see Proposition 2.5).
The plan of the paper is as follows. Section 1 contains some general results about

closable operators and their ampliations, and one-parameter contraction semi-
groups. These allow us to define precisely what we mean by a solution of the right
equation at the start of Section 2, before going on to establish our main result. This is
then exploited in Section 3 to give simplified conditions under which it is possible to
construct isometric solutions to the right equation when there is only one dimension
of quantum noise, that is, when k ¼ C: Finally, in Section 4, we apply these results to
realise classical birth and death processes as quantum flows, prove the existence and
unitarity of a solution to a QSDE that arises in models of superradiation (via an
alternative approach to that used in [Wal]), and construct unitary right cocycles that
enable us to dilate QDSs of diffusion type (see, for example, [AlF,F4]), as well as
realising classical diffusion processes as quantum flows in Fock space.

Tensor product and summation conventions: We shall use the symbol } to denote
the algebraic tensor product of vector spaces and linear maps, reserving # for the
Hilbert space tensor product of Hilbert spaces and their vectors. If S and T are
closable operators on Hilbert spaces h and k; respectively, then we denote the closure
of S}T by S#T (see Lemma 1.1 below). Thus, if SABðhÞ;TABðkÞ; then S#T is
the unique continuous extension to the Hilbert space h#k of the bounded operator
S}T whose domain is the inner product space h}k: At times we will follow the
trends prevalent in the literature and identify bounded operators with their
ampliations, but only when this does not lead to confusion.
We shall adopt the Einstein summation convention and sum over repeated indices;

greek indices will run from 0 to d; and roman indices from 1 to d; where d is the
number of dimensions of quantum noise (see the start of Section 2).

F. Fagnola, S.J. Wills / Journal of Functional Analysis 198 (2003) 279–310282



1. Operator theory preliminaries

In this section we collect together a number of results on closable operators and
one-parameter semigroups that we shall need later in the paper.

Lemma 1.1. Let S and T be closable operators on Hilbert spaces h and k; respectively.

Then the operator S}T is closable.

Proof. This follows from the obvious operator inclusion ðS}TÞn*
Sn}Tn: &

Remark. Since we denote the closure of S}T by S#T ; we have that %S# %T ¼
S#T :

The main use we make of the above result is to ampliate closable operators, that is
taking T to be the identity. In particular, we shall need to consider pairs of closed or
closable operators, the domain of one lying inside the domain of the other, and these
behave well under such ampliations.

Lemma 1.2. Let S and T be closable operators on a Hilbert space h such that

Dom %SCDom %T: Then Dom S#1kCDom T#1k for every Hilbert space k; and

moreover there exist constants a; bX0 such that

jjðT#1kÞxjj2pajjðS#1kÞxjj2 þ bjjxjj2 ð1:1Þ

holds for all choices of k and xADom S#1k:

Note. The inequality holds in particular for the case k ¼ C; when S#1k ¼ %S and

T#1k ¼ %T:

Proof. The inclusion map Dom %S+Dom %T is closed and everywhere defined, when
these spaces are equipped with their respective graph norms, and hence bounded,
giving existence of the constants a and b when k ¼ C:

For general k; note that Dom %S}k is a core for S#1k; and that any

element x of this space can be written as
P

i ui#vi where uiADom %S

and fvig is an orthonormal set. It is then straightforward to check that (1.1)
remains valid for such x and the same a and b; from which the result then
follows. &

To define quantum stochastic integrals we work with square-integrable
Hilbert-space-valued functions, and when dealing with the right HP equation
we must apply closed operators to such functions and determine if the resulting map
is again square-integrable. The following settles the measurability part of the
question.
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Lemma 1.3. Let T be a closed operator on a Hilbert space h; and let f : X-h be a

strongly measurable function on some measure space X satisfying f ðX ÞCDom T : Then

the map g : x/Tf ðxÞ is strongly measurable.

Proof. Let T ¼ U jT j be the polar decomposition of T and define maps gn : X-h by
gnðxÞ ¼ U jT j1½0;n�ðjT jÞf ðxÞ; where 1½0;n� is the indicator function of ½0; n�: Then each

gn is strongly measurable and ðgnÞ converges to g pointwise. &

When applying the lemmas above the operator S will usually be the generator
of a strongly continuous one-parameter semigroup of operators, ðPtÞtX0 say.

Then, for any other Hilbert space k; the family of ampliations ðPt#1kÞtX1 is a

strongly continuous one-parameter semigroup. If we denote its generator by S̃

then clearly S}1CS̃: But Dom S}k is a dense subspace of h#k that is left

invariant by the semigroup, and thus is a core for S̃ ([Dav], Theorem 1.9). Hence,

S̃ ¼ S#1:
The particular example that we need later is given by taking a positive self-adjoint

operator C on h; and letting Q be the contraction semigroup generated by �C: So
then ðQt#1ÞtX0 is generated by �C#1: We will make repeated use of the following

variant of the Yosida approximation:

CE :¼ RECRE where RE ¼ ð1þ ECÞ�1 for each E > 0:

The spectral theorem implies that CEABðhÞ; and that uAh is in Dom C1=2 if and only

if limEk0jjðCEÞ1=2ujjoN: Moreover, for any other Hilbert space k; ð1h þ ECÞ}1k is a

bijection onto h}k and a restriction of 1h#k þ EC#1k: Thus ð1þ EC#1Þ�1jh}k ¼
RE}1k; hence ðC#1kÞEjh}k ¼ CE}1k; and so ðC#1kÞE ¼ CE#1k by continuity.

Thus, we can identify CE with CE#1k in what follows without causing serious harm,
since we are actually working with the Yosida approximation of the generator of the
ampliated semigroup.
The reason for using this variant of the Yosida approximation is that the

unboundedness of the coefficients F a
b is controlled by multiplying by ðCEÞ1=2;

and so we need a greater power of C in the denominator than the
numerator.

Lemma 1.4. Let C and T be operators on the Hilbert space h; with C positive,

invertible and self-adjoint, and T closed. The following are equivalent:

(i) TðCEÞ1=2 is densely defined and bounded for all E > 0;
(ii) TðCEÞ1=2 is everywhere defined and bounded for all E > 0;
(iii) Dom C1=2CDom T :

Proof. ði ) iiÞ TðCEÞ1=2 is closed since T is closed and ðCEÞ1=2 is bounded, and so the
result follows by the Closed Graph Theorem.
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ðii ) iiiÞ Writing TðCEÞ1=2 as the product C1=2RE; it is clear that it maps h

bijectively onto Dom C1=2; which is thus contained in Dom T :

ðiii ) iÞ This follows from Lemma 1.2, since C1=2ðCEÞ1=2ABðhÞ: &

Remark. The implications ðiii ) i ) iiÞ remain valid when 0 is in the spectrum of C:
However, 0 must be in the resolvent of C for ðii ) iiiÞ—consider C ¼ 0:

2. Fock space and the right and left HP equations

Quantum stochastic integrals: Fix a Hilbert space h; called the initial space, and an
integer dX1; the number of dimensions of quantum noise. Let H ¼ h#F; the

Hilbert space tensor product of the initial space and F ¼ GðL2ðRþ;C
dÞÞ; the

symmetric Fock space over L2ðRþ;C
dÞ: Put

M ¼ L2ðRþ;C
dÞ-LN

locðRþ;C
dÞ and E ¼ Linfeð f Þ : fAMg;

where eð f Þ ¼ ððn!Þ�1=2f #nÞ is the exponential vector associated to the test
function f : The elementary tensor u#eð f Þ will usually be abbreviated to ueð f Þ:
The notion of adaptedness plays a crucial role in the theory of quantum stochastic
calculus as developed by Hudson and Parthasarathy [HuP]. This is expressed
through the continuous tensor product factorisation property of Fock space: for
each t > 0 let

Ft ¼ GðL2ð½0; t½;CdÞÞ; Ft ¼ GðL2ð½t;N½;CdÞÞ:

Then F ¼ Ft#Ft via the continuous linear extension of the isometric map

eð f Þ/eð f j½0;t½Þ#eð f j½t;N½Þ; Ft and Ft embed naturally into F as subspaces by

tensoring with the vacuum vector eð0Þ: Let D be a dense subspace of h: An operator

process on D is a family X ¼ ðXtÞtX0 of operators on H satisfying:

(i) D}EC
T

tX0 Dom Xt;

(ii) t//ueð f Þ;XtveðgÞS is measurable,
(iii) Xtveðgj½0;t½ÞAh#Ft; and XtveðgÞ ¼ ½Xtveðgj½0;t½Þ�#eðgj½t;N½Þ;

for all uAh; vAD; f ; gAM and t > 0: Families of operators satisfying (iii) are called
adapted. Any process satisfying the further condition

(iv) t/XtveðgÞ is strongly measurable and
R t

0 jjXsveðgÞjj2 dsoN 8t > 0

is called stochastically integrable on D: It is for these processes that Hudson and

Parthasarathy defined the stochastic integral
R t

0 Xs dLa
bðsÞ for each of the

fundamental noise processes La
b which are defined with respect to the standard

basis of Cd : The resulting family ð
R t

0 Xs dLa
bðsÞÞ is a process on D; and moreover the

map t/
R t

0 Xs dLa
bðsÞ is strongly continuous on D}E: The action of such integrals is
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given in (2.1), and their interaction with each other, the quantum Itô formula, is
given in (2.2) below. However, rather than give these for a single integral we shall

work with matrices of processes: if M ¼ ½Ma
b �

d
a;b¼0 is a matrix of stochastically

integrable processes on D then we can set IM
t ¼

R t

0 Ma
bðsÞ dLb

aðsÞ; the sum of ðd þ 1Þ2

integrals, to produce another (continuous) process on D: Moreover, for all uAh;
vAD; f ; gAM and t > 0

/ueð f Þ; IM
t veðgÞS ¼

Z t

0

faðsÞgbðsÞ/ueð f Þ;Ma
bðsÞveðgÞS ds; ð2:1Þ

where f 1;y; f d are the components of the Cd-valued function f ; f 0 � 1; faðsÞ ¼
f aðsÞ; and our summation convention is in force. If N ¼ ½Na

b � is another matrix of

stochastically integrable processes on some other dense subspace D0 and we put

IN
t ¼

R t

0 Na
bðsÞ dLb

aðsÞ then

/IM
t ueð f Þ; IN

t veðgÞS ¼
Z t

0

faðsÞgbðsÞf/IN
s ueð f Þ;Na

bðsÞveðgÞS

þ /Mb
a ðsÞueð f Þ; IM

s veðgÞSþ/Mi
aðsÞueð f Þ;Ni

bðsÞveðgÞSg ds

ð2:2Þ

for all uAD; vAD0; f ; gAM and t > 0:
Finally, a process X ¼ ðXtÞtX0 on D has a strong stochastic integral representation

if there is a matrix ½Ma
b � of stochastically integrable processes on D such that

Xt ¼ X0 þ
Z t

0

Ma
bðsÞ dLb

aðsÞ:

It follows readily from (2.1) and (2.2) that

jjXtueð f Þjj2 ¼ jjX0ueð f Þjj2 þ
Z t

0

2 Re/f aðsÞXsueð f Þ; f bðsÞMa
bðsÞueð f ÞS

(

þ
Xd

i¼1
jj f aðsÞMi

aðsÞueð f Þjj2
)

ds ð2:3Þ

for all uAD; fAM and t > 0:
Differential equations: In this paper we are concerned with the right and left HP

equations:

dUt ¼ Fa
bUt dLb

aðtÞ; U0 ¼ 1; ðRÞ

dVt ¼ VtG
a
b dLb

aðtÞ; V0 ¼ 1; ðLÞ
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where F ¼ ½F a
b �

d
a;b¼0 and G ¼ ½Ga

b�
d
a;b¼0 are matrices of operators on h:Given any such

matrix F of operators for which each Fa
b is densely defined (respectively closable) let

Fn (resp. %F) denote the matrix ½ðFb
a Þ

n� of adjoints (resp. ½F a
b � of closures). Associated

to any such matrix, we define the following subspace of h

Dom½F � :¼
\
a;b

Dom F a
b : ð2:4Þ

Note that F gives rise naturally to an operator on "ðdþ1Þh by the prescription

ðugÞ/ðF a
bubÞ; which has domain fðugÞA"ðdþ1Þh : ugA

T
aDom F a

g for each gg: The
subspace Dom½F � is the largest subspace DCh such that"ðdþ1ÞD is contained in this
maximal domain.
We will only consider solutions that are contraction processes, that is processes U

or V for which each Ut or Vt is a contraction. Let DCh be a dense subspace. A
contraction process V is a weak solution of (L) on D for the operator matrix G if the
following hold:
(Li) DCDom½G�;
(Lii) for all uAh; vAD; f ; gAM and t > 0;

/ueð f Þ; ðVt � 1ÞveðgÞS ¼
Z t

0

faðsÞgbðsÞ/ueð f Þ;VsG
a
bveðgÞS ds: ð2:5Þ

Note that any weak solution is necessarily weakly continuous. The process V is a
strong solution of (L) on D for G if, in addition,
(Liii) t/Vtx is strongly measurable for all xAH:
The effect of this extra condition is that the processes ðVtðGa

b}1ÞÞtX0 on D are

stochastically integrable, since V is assumed to be a contraction process, and so now
by (2.1) and (2.5) it follows that

Vt ¼ 1þ
Z t

0

VsðGa
b}1Þ dLb

aðsÞ:

For the right equation (R), the situation is in general more complex since there is
no reason to expect that for any solution U the range of each Ut should lie in an

algebraic tensor product of the form D0}F: For this reason, we only define
solutions of (R) when each component F a

b of the matrix F is closable. Let F#1

denote the matrix ½F a
b#1� of closed operators on H (so that Dom½F#1�CH), and let

D be as above. A contraction process U is a weak solution of (R) on D for the

operator matrix F if the following hold:
(Ri)

S
tX0 UtðD}EÞCDom ½F#1�;

(Rii) for all uAh; vAD; f ; gAM and t > 0

/ueð f Þ; ðUt � 1ÞveðgÞS ¼
Z t

0

faðsÞgbðsÞ/ueð f Þ; ðFa
b#1ÞUsveðgÞS ds:
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Note that since F a
b is assumed to be closable the measurability of the integrand

follows by taking adjoints and using standard approximation arguments. A strong

solution of (R) on D is any weak solution that satisfies the further condition.

(Riii) each process ðF a
b#1ÞU on D is stochastically integrable.

For such U ; we have

Ut ¼ 1þ
Z t

0

ðFa
b#1ÞUs dLb

aðsÞ;

and so in particular U is strongly continuous.
If h is separable then any H-valued weakly measurable function is also strongly

measurable by Pettis’ Theorem, and thus any weak solution to (L) is necessarily a
strong solution. However, the same need not be true for solutions of (R). A notion of
mild solution for (R) has been introduced in [FW]. There it is shown that any strong
solution is also a mild solution, and that there exist coefficient matrices F for which
mild solutions exist, but for which there are no strong solutions.
Let G ¼ ½Ga

b� be a matrix of operators on h; T a positive, self-adjoint operator on

h; and D a subspace of h such that

DCDom T-Dom½G� and Gi
bðDÞCDomT1=2 8iX1; bX0:

Then we can define a real quadratic form yGðTÞ and a matrix of sesquilinear forms

½yGðTÞab� by

yGðTÞðuÞ ¼ 2 Re/Tua;Ga
bubSþ

Xd

i¼1
jjT1=2Gi

bubjj2;

and

yGðTÞabðu; vÞ ¼ /Tu;Ga
bvSþ/Gb

au;TvSþ/T1=2Gi
au;T1=2Gi

bvS

for u ¼ ðuaÞA"ðdþ1ÞD and u; vAD: It follows that

yGðTÞðuÞ ¼ yGðTÞabðua; ubÞ:

We say that yGðTÞ is defined as a form on D whenever we need to make the domain
of definition precise; if T is bounded then yGðTÞ is defined as a form on the subspace
Dom½G� of h: If yGðTÞ is in fact bounded then we shall also use yGðTÞ to denote the
corresponding bounded self-adjoint operator.

Proposition 2.1 ([F3], [MoP]). Let G ¼ ½Ga
b� be a matrix of operators on h; and let D

be a dense subspace of h: Suppose that there exists a contraction process V that is a

strong solution to (L) on D for this G. Then yGð1Þp0 as a form on D: If V is an

isometry process then yGð1Þ ¼ 0 on D:
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Proof. Let x ¼
P

p upeð fp1½0;T �Þ for some T > 0 and some finite family fðup; fpÞg in

D �M in which each fp is continuous. Then contractivity of V implies that

0X jjVtxjj2 � jjxjj2

¼
Z t

0

2 Re/Vsy
aðsÞ;VsG

a
bybðsÞSþ

Xd

i¼1
jjVsG

i
ayaðsÞjj2

( )
ds ð2:6Þ

by (2.3), where yaðsÞ ¼
P

p f a
p ðsÞupeð fp1½0;T �Þ: Differentiating at 0 and letting T-0

gives

0XyGð1ÞðyÞ:

where y ¼ ð
P

p f a
p ð0ÞupÞ: Varying the fp and up then gives the result, and note that if

V is an isometry process then the inequality in (2.6) becomes an equality. &

Remarks. (a) If G is a matrix of operators on h such that the inequality yGð1Þp0

holds on some dense subspace D then ½di
j1þ Gi

j �
d
i;j¼1 defines a contraction from

"ðdÞD to "ðdÞh; and so in particular each Gi
j has a unique continuous extension to

an element of BðhÞ: If yGð1Þ ¼ 0 then ½di
j1þ Gi

j �
d
i;j¼1 is an isometry.

(b) If all the components in the matrix G (respectively F ) are bounded then there is
always a unique strong solution V of (L) (resp. a solution U of (R)), although it may
be an unbounded process on h: In this situation yGð1Þp0 is not only a necessary
condition for contractivity of V but also sufficient one. Similarly, U will be a
contraction process if and only if yF ð1Þp0: The original proofs of this
characterisation are contained in [F3,Mo2]; an alternative line of proof is given in
[LiP,LW1] that makes use of the characterisation of the generators of completely
positive contraction flows. In this context, it makes sense to regard yF as the linear
map BðhÞ-Mdþ1ðBðhÞÞ given by

yF ðX Þ ¼ ðX#1ÞF þ FnðX#1Þ þ FnDðX ÞF ;

where DðXÞ ¼ diagf0;X ;y;Xg; rather than just restricting it to the cone of positive
self-adjoint operators.

Taking adjoints: Suppose that V is a contraction process that is a weak solution to
(L) on D for some operator matrix G; and also that each Ga

bABðhÞ: Then it follows

from (2.1) that Vn is a weak solution to the QSDE dVn ¼ ðGb
a Þ

n
Vn dLb

a on h: Our
main result in this section shows how to extend this procedure to a class of
generators G for which the Ga

b are no longer bounded. In particular, we must obtain

information about the range of each Vn
t : Our arguments make use of the quantum

Itô formula (2.2), which is valid for processes that have strong stochastic integral
representations, and thus our standing hypothesis is the existence of a strong solution
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to (L), from which we will prove the existence of a strong solution to (R). In Section
3, we give conditions that guarantee the existence of this solution to (L).

As part of the proof, we will require that the adjoint process Vn be strongly
measurable, and Proposition 2.2 below gives some sufficient conditions for this to be
the case. In fact we shall show that it is strongly right continuous by first showing it
is a Markovian cocycle and then adapting standard arguments of semigroup theory.

For each tAR let st be the unitary right shift operator on L2ðR;CdÞ; defined by

ðstf ÞðrÞ ¼ f ðr � tÞ for fAL2ðR;CdÞ: Let St be the second quantisation and
ampliation of st; that is Stueð f Þ ¼ ueðstf Þ: Then the map

Bðh#GðL2ðR;CdÞÞÞ UY/StYSn

t ABðh#GðL2ðR;CdÞÞÞ

is a normal automorphism, and the collection of these for all tAR is an ultraweakly
continuous one-parameter group of such maps. Now let XABðHÞ; then ampliating

with 1�; the identity of GðL2ð� �N; 0½;CdÞÞ; we get X#1�ABðh#GðL2ðR;CdÞÞÞ: If
tX0 it follows that there is some stðX ÞABðHÞ such that

stðXÞ#1� ¼ StðX#1�ÞSn

t :

The family ðstÞtX0 so defined is an ultraweakly continuous one-parameter semigroup

of unital, normal n-homomorphisms of BðHÞ: A family W ¼ ðWtÞtX0CBðHÞ is a left

cocycle if it satisfies the following:

(i) The family W is adapted.
(ii) W0 ¼ 1:
(iii) Wsþt ¼ WsssðWtÞ for all s; tX0:

Similarly, W is a right cocycle if W n ¼ ðW n
t ÞtX0 is a left cocycle.

Proposition 2.2. Let G be a matrix of operators on h; and suppose that there exists a

contraction process V that is a strong solution to (L) on some dense subspace DCh: If

V is the unique strong solution for this G and D then V is strongly continuous and a left

cocycle. Furthermore, Vn is a right cocycle that is strongly right continuous.

Proof. That V is strongly continuous is a consequence of its strong stochastic
integral representation as noted earlier. So now fix t > 0 and consider the process Vt

defined by

Vt
s ¼

Vs; spt;

VtstðVs�tÞ; s > t:

(

It follows that Vt is a strong solution to (L) on D}E for G; and so by uniqueness V

is a left cocycle. Thus, Vn is a right cocycle by definition.
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Now for any s; tX0 and xAH; we have

jjðVn

sþt � Vn

t Þxjj
2 ¼ jjðstðVn

s Þ � 1ÞVn

t xjj
2

p 2jjVn

t xjj
2 � 2 Re/Vn

t x; stðVsÞVn

t xS

since stðVn
s Þ is a contraction. The right-hand side converges to zero as s-0 by strong

continuity of V and normality of st; and the result follows. &

Remark. Mohari proved the following uniqueness result in [Mo1]: let G ¼ ½Ga
b� be an

operator matrix with G0
0 the generator of a strongly continuous contraction

semigroup. If DCDom½G� is a core for G0
0 then there is at most one weak

solution V to (L) on D for this G: In fact in [Mo1] it is assumed from the
outset that h is separable and so there is no distinction between weak and
strong solutions. However, using this uniqueness result, the arguments of the
proof above can be adapted to show that if a weak solution to (L) does exist then it is
a cocycle, hence it is strongly continuous, and so it must actually be a strong
solution.
Given any positive self-adjoint operator T on h let iðTÞ denote the form

u/
Pd

a¼0 jjT1=2uajj2; defined for each uA"ðdþ1ÞDom T1=2: Also, recall the notation

Dom½F � introduced in (2.4).

Theorem 2.3. Suppose that U is a contraction process, F is an operator matrix, C is a

positive, self-adjoint operator on h; and d > 0 and b1; b2X0 are constants such that the

following hold:

(i) There is a dense subspace DCh such that the adjoint process Un is a strong

solution of dUn ¼ UnðFb
a Þ

n
dLb

a on D; and is the unique strong solution for this

Fn ¼ ½ðFb
a Þ

n� and D:
(ii) For each 0oEod there is a dense subspace DECD such that ðCEÞ1=2ðDEÞCD and

each ðFa
b Þ

nðCEÞ1=2jDE
is bounded.

(iii) Dom C1=2CDom½ %F�:
(iv) Dom½F � is dense in h; and for all 0oEod the form yF ðCEÞ on Dom½F � satisfies

the inequality

yF ðCEÞpb1iðCEÞ þ b21

on some dense subspace of Dom½F �:

Then U is a strong solution to the right equation (R) on Dom C1=2 for the operator

matrix F.

Note. By (i) it follows that each Fa
b is closable, hence the matrix %F is defined, and so

(iii) makes sense.
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Proof. First note that ðF a
b Þ

nðCEÞ1=2 is bounded and everywhere defined by (ii) and

Lemma 1.4. Taking adjoints we have

BðhÞ U ½ðFa
b Þ

nðCEÞ1=2�n*ðCEÞ1=2F a
b*ðCEÞ1=2F a

b :

Thus, the form yF ðCEÞ on Dom½F � is defined in terms of bounded operators that have
a dense common domain of definition. Using the operators ½ðFa

b Þ
nðCEÞ1=2�n; we can

define an extension of yF ðCEÞ to a bounded form on all of h; and so we shall treat it

as a bounded operator on "ðdþ1Þh; also identifying it with its ampliation to an

operator on "ðdþ1ÞH: Moreover, the inequality in (iv) is now valid as an operator

inequality.

Now by (i) the process Un satisfies

Un

t ¼ 1þ
Z t

0

Un

s ðFb
a Þ

n
dLb

aðsÞ

on the domain D}E; and so it follows that the process ðUn
t ðCEÞ1=2ÞtX0 has the

stochastic integral representation

Un

t ðCEÞ1=2 ¼ ðCEÞ1=2 þ
Z t

0

Un

s ðFb
a Þ

nðCEÞ1=2 dLb
aðsÞ

on DE}E; which extends to all of h}E by continuity. By (i) and Proposition 2.2 it

follows that Un is a strongly continuous left cocycle and so U is a strongly (right)
continuous right cocycle. Thus, we can take the adjoint of the above, since the
resulting integrands are stochastically integrable, to get

ðCEÞ1=2Ut ¼ ðCEÞ1=2 þ
Z t

0

½ðF a
bÞ

nðCEÞ1=2�nUs dLb
aðsÞ

on h}E: Applying (2.3) gives

jjðCEÞ1=2Utueð f Þjj2 ¼ jjðCEÞ1=2ueð f Þjj2

þ
Z t

0

2 Re/f aðsÞðCEÞ1=2Usueð f Þ; f bðsÞ½ðFa
b Þ

nðCEÞ1=2�nUsueð f ÞS
(

þ
Xd

i¼1
jjf aðsÞ½ðF i

aÞ
nðCEÞ1=2�nUsueð f Þjj2

)
ds

for all uAh; fAM: Collecting together the terms making up yF ðCEÞ; we have

jjðCEÞ1=2Utueð f Þjj2 ¼ jjðCEÞ1=2ueð f Þjj2 þ
Z t

0

/xðsÞ; yF ðCEÞxðsÞSds;
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where xaðsÞ :¼ f aðsÞUsueð f Þ: The inequality in (iv) implies that

jjðCEÞ1=2Utueð f Þjj2p jjðCEÞ1=2ueð f Þjj2

þ
Z t

0

ðb1jjðCEÞ1=2Usueð f Þjj2 þ b2jjUsueð f Þjj2Þ dnf ðsÞ;

where nf ðtÞ ¼
R t

0ð1þ jj f ðsÞjj2Þ ds; and so the Gronwall inequality gives

jjðCEÞ1=2Utueð f Þjj2p jjðCEÞ1=2ueð f Þjj2 þ b2

Z t

0

jjUsueð f Þjj2dnf ðsÞ

 �

expfb1nf ðtÞg:

Letting E-0 we see that UtððDom C1=2Þ}EÞCDom C1=2#1; and condition (iii) in

conjunction with Lemma 1.2 implies that Dom C1=2#1CDom Fa
b#1 for all a; b;

and hence U is a weak solution of (R) on Dom C1=2:
Now by Lemma 1.3 the functions t/ðFa

b#1ÞUtueð f Þ are strongly measurable for
all 0pa; bpd; uADom C1=2 and fAM: Also the above inequality (in the limit as

e-0) shows that t/jjðC1=2#1ÞUtueð f Þjj is locally bounded, and so Lemma 1.2 and
(iii) imply that the processes ððF a

b#1ÞUtÞtX0 are stochastically integrable on

Dom C1=2: Hence U is a strong solution as required. &

Remarks. (a) The requirement that Un be the unique strong solution to the adjoint

left equation allowed us to conclude that the processes f½ðF a
b Þ

nðCEÞ1=2�nUg are

stochastically integrable and hence ðCEÞ1=2U has a strong stochastic integral
representation. If h is separable then the stochastic integrability of this family of
processes is guaranteed by the equivalence of strong and weak measurability for
functions taking values in a separable Hilbert space, and so the uniqueness
requirement in part (i) of the hypothesis can be dropped without affecting the result.

(b) By Lemma 1.4, a sufficient condition for the boundedness of each ðFb
a Þ

nðCEÞjDE

is Dom C1=2CDom½Fn�; and indeed this is necessary if 0 lies in the resolvent of C:
This observation provides an important guide as to what would be a suitable choice

for C: As an illustration, in the diffusion example in Section 4 we have that ðF0
0 Þ

n is a

second-order differential operator, and so for C we take @4 þ 1: However, it is still

important to check that ðCEÞ1=2 maps some dense subspace DE into D; the subspace
for which Un satisfies the QSDE (L).
(c) The proof of the above result remains valid if we replace CE by other variants of

the Yosida approximation which raises the possibility of using a ‘‘less unbounded’’

reference operator C: Indeed we could used CR4
E or Cð1þ EC2Þ�2 instead of CE; and

then we would be able to use C of the same order as ðF 0
0 Þ

n: However, if we adopt

these variants then proving the analogous result to Proposition 3.4 below becomes
much harder.
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Having constructed a solution U to the right equation we now finish this
section with two results that give conditions under which we can prove that
U is an isometry or coisometry process. The first of these happens, at least formally,
when yF ð1Þ ¼ 0 (cf. the remark after Proposition 2.1), although we must take care
when considering the form yF ð1Þ; defined on Dom½F �; and its extension y %Fð1Þ to
Dom½ %F�:

Corollary 2.4. Suppose that the conditions of Theorem 2.3 hold and let U be the strong

solution to (R) for the given matrix F. If either

(i) Dom C1=2-Dom½F � is a core for C1=2 and yF ð1Þ ¼ 0; or

(ii) y %Fð1Þ ¼ 0;

then U is an isometry process.

Proof. If (i) holds then, using the condition (iii) from the hypotheses of Theorem 2.3

and Lemma 1.2, it is possible to find for each uADom C1=2 a sequence ðunÞ in this

core such that un-u and F a
bun-F a

bu: It follows that the form y %Fð1Þ when restricted

to Dom C1=2 is equal to zero, which is also clearly the case if condition (ii) holds. So
now let YF denote the sesquilinear form defined by

ððxgÞ; ðZgÞÞ//xa; ðFa
b#1ÞZbSþ/ðFb

a#1Þxa; ZbSþ/ðFi
a#1Þxa; ðF i

b#1ÞZbS

for ðxgÞ; ðZgÞA"ðdþ1ÞDom½F#1�: By the above the restriction of this form to

Dom C1=2}F is zero. But as noted in Section 1, Dom C1=2}F is a core for

C1=2#1; and so another application of the inequality (1.1) allows us to show thatYF

is zero when restricted to Dom C1=2#1: Now since U is a strong solution to (R) we
can apply (2.2) to get

/Utueð f Þ;UtveðgÞS ¼ /ueð f Þ; veðgÞSþ
Z t

0

YF ðxðsÞ; yðsÞÞ ds

for all u; vADom C1=2; f ; gAM; and where xaðsÞ ¼ f aðsÞUsueð f Þ and yaðsÞ ¼
gaðsÞUsveðgÞ: But Ut maps Dom C1=2}E into Dom C1=2#1 by Theorem 2.3, hence
the integrand is zero if either (i) or (ii) holds, and the result follows. &

A quantum dynamical semigroup (QDS) on BðhÞ is an ultraweakly continuous
semigroup T ¼ ðTtÞtX0 of normal completely positive maps on BðhÞ: It is

conservative if Ttð1Þ ¼ 1 for all tX0: Given the generator K of a strongly
continuous contraction semigroup h and operators ðLlÞlX0 such that

/u;KuSþ/Ku; uSþ
X
lX1

jjLlujj2p0; ð2:7Þ
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for all u in some core D for K; it is possible to construct the minimal QDST (see [F5]
and references therein) that has ( formal) generator L given by

/u;LðXÞvS ¼ /u;XKvSþ/Ku;XvSþ
X
lX1

/Llu;XLlvS; u; vAD:

That is, T is a QDS that satisfies

/u;TtðX ÞvS ¼ /u;XvSþ
Z t

0

/u;LðTsðXÞÞvSds;

and if T0 is another QDS satisfying the above integral identity then TtðXÞpT0
tðXÞ

for all tX0 and positive XABðhÞ: Showing that the solution U to (R) constructed in

Theorem 2.3 is a coisometry process is equivalent to showing that Un is an isometry
process, which (under favourable circumstances) is equivalent to showing that a
related QDS is conservative:

Proposition 2.5 ([F3,F5]). Suppose that the conditions of Theorem 2.3 hold and let U

be the strong solution to (R) for the given matrix F. Suppose further that ðF 0
0 Þ

n
is the

generator of a strongly continuous contraction semigroup, that the subspace D is a core

for ðF0
0 Þ

n; and let T be the minimal QDS with generator

/u;LðXÞvS ¼ /u;XðF 0
0 Þ

n
vSþ/ðF0

0 Þ
n
u;XvSþ

Xd

i¼1
/ðF 0

i Þ
n
u;XðF0

i Þ
n
vS:

The following are equivalent:

(i) U is a coisometry process.

(ii) yFnð1Þ ¼ 0 on D and T is conservative.

(iii) ½di
j1þ Fi

j �
d
i;j¼1 is a coisometry on "d

i¼1 h and T is conservative.

Remark. By Proposition 2.1 the inequality (2.7) holds for K ¼ ðF 0
0 Þ

n and Ll ¼ ðF0
l Þ

n;

hence the minimal QDS T exists.

3. Special case: isometric solutions with one-dimensional noise

The results in the previous section provide a very general method for generating
contraction solutions to the right HP equation, and one whose basic idea could be
modified easily if necessary, for instance by using different regularisations to CE: In
this section we refine our basic result in a number of ways. Firstly, in order to make
use of known results on the existence of (strong) solutions to the QSDE (L) (and
hence verify part (i) of Theorem 2.3) we shall assume from now on that the initial
space h is separable. Secondly, in order to simplify the form of the generator we shall
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set d ¼ 1; that is we work with only one dimension of quantum noise, and we now
look for isometric solutions to the QSDE (R) (cf. Proposition 2.1).
The operator matrix for the rest of the section is specified by a triple of operators

ðL;H;SÞ; where L and H are densely defined, with L closable and H symmetric, and
S is an isometric element of BðhÞ: The operator matrix is

F ¼
� 1

2
LnL � iH �LnS

L S � 1

" #
;

and we assume throughout that Dom[F ] is a dense subspace of h: Rather than work

with Fn; the matrix of adjoints, we shall use the following matrix:

Fw ¼
� 1

2
LnL þ iH Ln

�SnL Sn � 1

" #
;

whose components are restrictions of the components of Fn: Thus, the QSDEs that
we are now working with are

dUt ¼ ½ð� 1
2
LnL � iHÞ dt � LnS dAt þ L dAw

t þ ðS � 1Þ dLt�Ut ðRÞ0

and

dUn

t ¼ Un

t ½ð� 1
2L

nL þ iHÞ dt þ Ln dAt � SnL dAw
t þ ðSn � 1Þ dLt�: ðLÞ0

The formal generator of the related flow is

yF ðX Þ ¼
� 1

2
XLnL þ LnXL � 1

2
LnLX þ i½H;X � ½Ln;X �S

Sn½X ;L� SnXS � X

" #
; ð3:1Þ

so in particular yF ð1Þ ¼ 0 on some domain.

Proposition 3.1. Let ðL;H;SÞ be a triple of operators as above, and suppose that there

is a dense subspace D of h such that

(i) DCDom LnL-Dom Ln-Dom H; and

(ii) the closure of ð� 1
2
LnL þ iHÞjD is the infinitesimal generator of a strongly

continuous contraction semigroup on h:

Then there is a contraction process Un that is a strong solution to (L)0 on D; and

furthermore it is the unique strong solution.

Proof. The result follows immediately from the method given in [F3].
The form

yFwð1Þ : u/2 Re/u;F wuSþ/Fwu;Dð1ÞFwuS ð3:2Þ
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is well-defined for uAD"D by (i), where Dð1Þ ¼ 0 0
0 1

� �
: By the construction of Fw;

we have

yFwð1ÞðuÞ ¼ /Lu0 � u1; ðSSn � 1ÞðLu0 � u1ÞSp0 ð3:3Þ

for all u ¼ ½u0; u1�?AD"D; that is F w satisfies the formal contractivity conditions

(cf. the remark after Proposition 2.1). Let K denote the closure of ð� 1
2L

nL þ iHÞjD;
then by considering vectors of the form u ¼ ½u0; 0�? in (3.2) we can extend ð�SnLÞjD
to all of Dom K by approximating elements of Dom K by sequences in D that
converge in graph norm and using the inequality (3.3). Thus, yFwð1Þ extends to Dom
K"D; and continues to satisfy (3.3) on this domain. Put In ¼ diagfnðn � KÞ�1; 1g
and F w

n ¼ In
n F wIn for each nX1; then it follows that F w

n is a bounded map satisfying

F w
n þ ðFw

n Þ
n þ ðF w

n Þ
nDð1ÞFw

np0:

So for each n we can solve the equation

dU ðnÞ* ¼ U ðnÞ * ðF w
n Þ

a
b dLb

a

and each U ðnÞ* is contractive. In fact for each uAh; fAM and xAH the family

f/x;U
ðnÞ*
t ueð f ÞSgNn¼1 is equibounded and equicontinuous on each bounded

interval. A diagonalisation argument and the Ascoli–Arzelà theorem can then be

employed to show that there is a weakly convergent subsequence fU ðnkÞ* g
whose limit is the required solution. The uniqueness follows by the result of
Mohari. &

Remark. In the examples below we shall take S to be unitary since we will be

constructing unitary cocycles. Thus SnL is closable with SnL ¼ Sn %L: Also, from

(3.3), it follows that Dom %L* Dom K ; and that the extension of ð�SnLÞjD to Dom

K in the proof is nothing but the restriction of �Sn %L to this domain.

The next result gives some sufficient conditions that imply that the solution Un to
ðLÞ constructed above is an isometry process. The conditions are by no means
optimal, in particular they are not necessary, but are written in such a way as to be
easily applicable to our examples in the next section.

Corollary 3.2. Let ðL;H;SÞ be a triple of operators as above, and suppose that the

conditions of Proposition 3.1 hold, with Un the contraction process that is the strong

solution to ðLÞ0: Suppose further that the operator S is unitary, and that there is a

positive self-adjoint operator M on h and a constant kX0 such that:

(i) Dom KCDom M1=2; and Dom K is a core for M1=2;
(ii) Sn %LðDom K2ÞCDom M1=2;
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(iii) 2 Re/M1=2u;M1=2KuSþ jjM1=2Sn %Lujj2pkjjM1=2ujj2 8uADom K2; and

(iv) Dom MCDom Ln %L; and jj %LujjpjjM1=2ujj 8uADom M;

where K denotes the closure of ð� 1
2
LnL þ iHÞjD: Then Un is an isometric process.

Proof. Apply Theorem 4.4 of [ChF] to deduce that the minimal QDS associated to

(L)0 is conservative, and so Un is an isometry process by Proposition 2.5. &

Perhaps one of the more difficult things to check in order to be able to apply
Theorem 2.3 is that the form inequality for yF ðCEÞ in (iv) holds for all values of E in
an interval of the form ð0; dÞ: Proposition 3.4 below shows that this will be the case if
the analogous form inequality holds for yF ðCÞ; and if the commutators of C with L

and S are sufficiently well-behaved. The following lemma eases the algebraic burden
of the proof of this result.

Lemma 3.3. Let B be a unital associative algebra and suppose that c; rAB satisfy

Ecr ¼ Erc ¼ 1� r for some E > 0: For any a; bAB the linear maps ta;b and oa;b on B

defined by

ta;bðxÞ ¼ a½x; b� and oa;bðxÞ ¼ ½a; x�b ðxABÞ

satisfy

ta;bðrcrÞ ¼ r2ta;bðcÞr2 � rð1� rÞta;bðcÞð1� rÞr � Er½c; a�r2½b; c�r

þ Erð1� rÞ½c; a�r½b; c�ð1� rÞr � Er2½c; a�r½b; c�r2

and

oa;bðrcrÞ ¼ r2oa;bðcÞr2 � rð1� rÞoa;bðcÞð1� rÞr � Er½c; a�r2½b; c�r

þ Erð1� rÞ½c; a�r½b; c�ð1� rÞr � Er2½c; a�r½b; c�r2:

Proof. The relations satisfied by c and r imply that ½x; r� ¼ Er½c; x�r and hence

½x; r2� ¼ Er2½c; x�r þ Er½c; x�r2 for all xAB: These identities and those already given
lead to the following chain of equalities:

ta;bðrcrÞ ¼ a½rcr; b� ¼ arc½r; b� þ ar½c; b�r þ a½r; b�cr

¼ arð1� rÞ½b; c�r þ ar½c; b�r þ ar½b; c�ð1� rÞr

¼ � r2a½b; c�r � ½a; r2�½b; c�r þ ra½b; c�ð1� rÞr þ ½a; r�½b; c�ð1� rÞr

¼ r2ta;bðcÞr � Er2½c; a�r½b; c�r � Er½c; a�r2½b; c�r

þ rta;bðcÞðr � 1Þr þ Er½c; a�r½b; c�ð1� rÞr
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¼ r2ta;bðcÞr2 � rð1� rÞta;bðcÞð1� rÞr � Er½c; a�r2½b; c�r

þ Erð1� rÞ½c; a�r½b; c�ð1� rÞr � Er2½c; a�r½b; c�r2;

giving the identity for ta;b: The one for oa;b follows by an almost identical

proof. &

Remark. If B is assumed to be involutive and c and r are self-adjoint, then the

identity for o can be derived from that for t since oa;bðxÞ ¼ tbn;anðxnÞn:

Proposition 3.4. Let ðL;H;SÞ be a triple of operators as above, and suppose that there

exists a positive, invertible, self-adjoint operator C; a dense subspace *D of h; and

constants 0odo1 and b3; b4X0 such that the following hold:

(i) REð *DÞC *D for all 0oEod; and *D is contained in the domain of the following

operators:

LnL;LnS; ½C;L�; ½C;H�;CS:

(ii) The form yF ðCÞ defined on *D satisfies the following inequality:

�b3iðCÞpyF ðCÞpb3iðCÞ:

(iii) For all uA *D; jjC�1=2½C;L�ujjpb4jjC1=2ujj:
(iv) For all uA *D; jj½C;S�ujjpb4jjC1=2ujj:

Then for all 0oEod the form yF ðCEÞ is well-defined on *D and satisfies

yF ðCEÞp2ðb3 þ b4ÞiðCEÞ:

Proof. We shall use the preceding lemma to rewrite each component yabðCEÞ :¼
yF ðCEÞab of the form (3.1). This is possible, since in the notation of the lemma (and

ignoring domain problems for now) we have

y00ðXÞ ¼Ln½1
2
L;X � þ ½1

2
Ln;X �L þ ½iH;X �

¼ t
Ln;

1
2

L
ðX Þ þ o1

2
Ln;L

ðXÞ þ oiH;1ðX Þ

and, similarly,

y01 ¼ oLn;S; y01 ¼ tSn;L; y11 ¼ t
Sn;

1
2

S
þ o1

2
Sn;S

;

noting for y11 that SnS ¼ 1: Now note that the issue of domains is covered for

us by condition (i). Indeed, each component yabðCEÞ is a well-defined sesquilinear

form on *D; and moreover so is each of the terms such as t
Ln;

1
2

L
ðCEÞ: For example,
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we have

y01ðCEÞ ¼ oLn;SðRECREÞ ¼ ½Ln;RECRE�S

which should really be thought of as the form

*D � *D U ðu; vÞ//Lu;RECRESvS�/RECREu;LnSvS;

which is well-defined since CRE is bounded and *DCDom L-Dom LnS: Lemma 3.3
allows us to rewrite this as

y01ðCEÞ ¼R2
E y

0
1ðCÞR2

E � REð1� REÞy01ðCÞð1� REÞRE

� ERE½C;Ln�R2
E ½S;C�RE þ EREð1� REÞ½C;Ln�RE½S;C�ð1� REÞRE

� ER2
E ½C;Ln�RE½S;C�R2

E

and again each of the terms on the right-hand side, plus those appearing in the
derivation of the above, make good sense courtesy of condition (i). The adjoint

identity holds for y10ðCEÞ;

y00ðCEÞ ¼R2
E y

0
0ðCÞR2

E � REð1� REÞy00ðCÞð1� REÞRE

� ERE½C;Ln�R2
E ½L;C�RE þ EREð1� REÞ½C;Ln�RE½L;C�ð1� REÞRE

� ER2
E ½C;Ln�RE½L;C�R2

E ;

and the identity for y11ðCEÞ is got by changing y00 to y11 and L to S in the above. Thus,

each component yabðCEÞ defines a sesquilinear form on *D; and the quadratic form

yF ðCEÞ is well-defined on *D with

yF ðCEÞ ¼R1
E yF ðCÞR1

E � R2
E yF ðCÞR2

E � ER1
EfEðCÞR1

E þ ER2
EfEðCÞR2

E

� E
RE½C;Ln�R2

E ½L;C�RE RE½C;Ln�R2
E ½S;C�RE

RE½C;Sn�R2
E ½L;C�RE RE½C;Sn�R2

E ½S;C�RE

" #
; ð3:4Þ

where

R1
E ¼

R2
E 0

0 R2
E

" #
; R2

E ¼
REð1� REÞ 0

0 REð1� REÞ

" #

and

fEðCÞ ¼
½C;Ln�RE½L;C� ½C;Ln�RE½S;C�
½C;Sn�RE½L;C� ½C;Sn�RE½S;C�

" #

are all positive operator matrices or forms.
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Now RE and 1� RE are positive contractions, and EREpC�1 for each E > 0: Thus

for any u ¼ ½u0; u1�?A *D" *D and 0oEodo1;

fEðCÞðuÞ ¼ jjR1=2
E ½L;C�u0jj2 þ 2 Re/R1=2

E ½C;L�u0;R1=2
E ½S;C�u1S

þ jjR1=2
E ½S;C�u1jj2

p 2fjjR1=2
E ½C;L�u0jj2 þ jj½C;S�u1jj2g

p 2E�1fjjC�1=2½C;L�ujj2 þ jj½C;S�vjj2g

p 2E�1b4iðCÞðuÞ;

by inequalities (iii) and (iv). Thus the last three terms of (3.4) are bounded above by

2b4R
2
E iðCÞR2

E : The result now follows since for all 0oEod we have R2
ECR2

EpCE and

REð1� REÞCð1� REÞREpCE: &

Theorem 3.5. Let ðL;H;SÞ be a triple of operators as above and suppose that

there is a positive, invertible, self-adjoint operator C such that the hypotheses of

Propositions 3.1 and 3.4 hold. Suppose also that the following conditions hold for some

0od0od:

(i) For each 0oEod0 there is a dense subspace DECD such that ðCEÞ1=2ðDEÞCD;

and such that the restrictions of the operators LnðCEÞ1=2;LðCEÞ1=2 and ð� 1
2
LnL þ

iHÞðCEÞ1=2 to DE are bounded.
(ii) Dom C1=2CDom� 1

2L
nL � iH-Dom %L-Dom LnS:

Then U ; the adjoint of the process from Proposition 3.1, is a strong solution to

ðRÞ0 on Dom C1=2: Moreover, if Dom C1=2-Dom½F � is a core for C1=2 then U is

isometric.

Proof. Since the hypotheses of Propositions 3.1 and 3.4 and the additional
conditions above hold it follows that all of the requirements of Theorem 2.3 are

fulfilled, and so the contraction process U is a strong solution to ðRÞ0 for the

operator matrix F on the domain Dom C1=2: If Dom C1=2-Dom½F � is a core for

C1=2 then Corollary 2.4 can be applied to show that U is an isometry process since
yF ð1Þ ¼ 0: &

4. Examples

Birth and death processes: Let h ¼ l2ðZÞ; with standard orthonormal basis ðenÞnAZ;

and let W be the unitary right shift given by Wen ¼ enþ1: Let N be the number
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operator on l2ðZÞ; that is

Dom N ¼ ðunÞ: unAC;
X
nAZ

n2junj2oN

( )
; NðunÞ ¼ ðnunÞ:

Then for any function l : Z-C the operator denoted lðNÞ is defined by

Dom lðNÞ ¼ ðunÞ: unAC;
X
nAZ

jlðnÞunj2oN

( )
; lðNÞðunÞ ¼ ðlðnÞunÞ:

Let D0 ¼ Linfeng; so then D0CDom lðNÞ for any function l; and is in fact a core
for lðNÞ:
Define the triple ðL;H;SÞ and the reference operator C by

L ¼ WlðNÞ; H ¼ 0; S ¼ W ; C ¼ N2 þ 1;

and note that D0 is an invariant subspace for all these.

Now LnL ¼ jlj2ðNÞ; a positive self-adjoint operator for which D0 is a core, so we

can apply Proposition 3.1 and Corollary 3.2 (with D ¼ D0;M ¼ jlj2ðNÞ; and k ¼ 0)

to obtain an isometric process Un that is a strong solution to ðLÞ0 on D0:

For any function j : Z-C; the form yF ðjðNÞÞ is well-defined on D0: Indeed, it is

actually possible to regard yF ðjðNÞÞ as an operator on h"h with domain D0"D0;
and it can be written

yF ðjðNÞÞ ¼
%lðNÞ
1

" #
ðjðN þ 1Þ � jðNÞÞ½lðNÞ 1�:

We now restrict our attention to functions l for which there is some b > 0 such that

jlðnÞj2pbðjnj þ 1Þ 8nAZ:

Since

�ð2jNj þ 1Þp½ðN þ 1Þ2 þ 1� � ½N2 þ 1� ¼ 2N þ 1p2jNj þ 1;

it follows readily that the form yF ðCÞ satisfies the inequality in part (ii) of

Proposition 3.4 on the domain D0: Also, note that on D0

½C;L� ¼ ½N2;W �lðNÞ ¼ WðW nN2W � N2ÞlðNÞ ¼ Wð2N þ 1ÞlðNÞ;

which is relatively bounded by C3=4; so that (iii) follows, and similarly

½C;S� ¼ WðW nN2W � N2Þ ¼ Wð2N þ 1Þ;
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from which part (iv) follows. Thus, we can apply Proposition 3.4 to get that yF ðCEÞ
satisfies a form inequality of the correct type on *D :¼ D0:

Finally, the growth condition on l implies that Dom C1=2 is contained in the

subspace Domjlj2ðNÞ-Dom lðNÞ-Dom %lðNÞW n; so conditions (i) and (ii) of

Theorem 3.5 are satisfied with DE ¼ D0: Thus, there is a strong unitary solution to
the QSDE

dUt ¼ ½� 1
2
jlj2ðNÞ dt � %lðNÞ dAt þ WlðNÞ dAw

t þ ðW � 1Þ dLt�Ut

on Dom C1=2; since D0CDom½F �; and D0 is a core for C1=2:
If we consider the algebra lNðZÞCBðhÞ acting by pointwise multiplication,

then

y00ðjðNÞÞ ¼ jlj2ðNÞfjðN þ 1Þ � jðNÞg; jAlNðZÞ;

and so the flow X/Un
t ðX#1ÞU gives a realisation of the classical pure birth

process with intensity jlj2; since the generator y00 is of the appropriate form.

Replacing the triple above by

L ¼ W nmðNÞ; H ¼ 0; S ¼ W n;

with m : Z-C subject to the same growth condition, and setting C ¼ N2 þ 1 once
more, we obtain a strong unitary solution to the QSDE

dUt ¼ ½� 1
2
jmj2ðNÞ dt � %mðNÞ dAt þ W nmðNÞ dAw

t þ ðW n � 1Þ dLt�Ut;

on Dom C1=2: This time

y00ðjðNÞÞ ¼ jmj2ðNÞfjðN � 1Þ � jðNÞg;

and so we have a realisation of the classical pure death process with
intensity m:
By increasing the number of noise dimensions to two we are able to realise a

combined birth and death process. Let F be the operator matrix

F ¼
� 1

2
jlj2ðNÞ � 1

2
jmj2ðNÞ �%lðNÞ � %mðNÞ

WlðNÞ W � 1 0

W nmðNÞ 0 W n � 1

2
64

3
75:
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Then for any function j : Z-C the operator matrix yF ðjðNÞÞ (with domain

containing D0"D0"D0) decomposes as

jlj2ðNÞ %lðNÞ 0

lðNÞ 1 0

0 0 0

2
64

3
75iðþÞ þ

jmj2ðNÞ 0 %mðNÞ
0 0 0

mðNÞ 0 1

2
64

3
75ið�Þ; ð4:1Þ

where iðþÞ ¼ iðjðN þ 1Þ � jðNÞÞ and ið�Þ ¼ iðjðN � 1Þ � jðNÞÞ: Viewing each

component as a 2� 2 matrix, the estimates above together with Proposition 3.4

show that there is some b0 > 0 such that yF ðCEÞpb0iðCEÞ; where C ¼ N2 þ 1 as
before. So now appealing directly to Theorem 2.3 (rather than Theorem 3.5),
Corollary 2.4 and Proposition 2.5 (or, rather, a two-dimensional version of
Corollary 3.2), we can show that there is a unitary process U that is a strong
solution to

dUt ¼ ½� 1
2
ðjlj2ðNÞ þ jmj2ðNÞÞ dL0

0ðtÞ � %lðNÞ dL0
1ðtÞ � %mðNÞ dL0

2ðtÞ

þ WlðNÞ dL1
0ðtÞ þ W nmðNÞ dL2

0ðtÞ þ ðW � 1Þ dL1
1ðtÞ

þ ðW n � 1Þ dL2
2ðtÞ�Ut:

Then note from (4.1) that y00ðjðNÞÞ has the required form for the cocycle

X/Un
t ðX#1ÞUt to be a realisation of the birth and death process with intensities

l and m:
The inverse harmonic oscillator: Let h ¼ l2ðZþÞ; where Zþ ¼ f0; 1; 2;yg; equipped

with the standard basis ðenÞnX0: Let W be the isometric right shift, Wen ¼ enþ1; and

D0 ¼ Linfeng: Define the triple ðL;H;SÞ and reference operator C by

L ¼ lðNÞW ; H ¼ mðNÞ; S ¼ 1; C ¼ N2 þ 1

for functions l : Zþ-C and m : Zþ-R; and assume that there is some c > 0 such
that

maxfjlðnÞj2; jmðnÞjgpcðn þ 1Þ 8nX0:

So now for any function j : Zþ-C; the components of yF ðjðNÞÞ (whose domains
contain D0) are

y00ðjðNÞÞ ¼ jlj2ðN þ 1ÞfjðN þ 1Þ � jðNÞg; y11ðjðNÞÞ ¼ 0;

y10ðjðNÞÞ ¼ lðNÞ½jðNÞ;W � ¼ y01ð %jðNÞÞn:

In particular, if we take jðNÞ ¼ C ¼ N2 þ 1; then

y00ðCÞ ¼ ð2N þ 1Þjlj2ðN þ 1Þ;
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and

½C;L� ¼ y10ðCÞ ¼ lðNÞ½N2;W � ¼ lðNÞðWW n þ P0ÞN2W � lðNÞWN2

¼ lðNÞWð2N þ 1Þ;

where P0 ¼ 1� WW n is the projection onto Ce0; so that P0N
2W ¼ 0: Thus ½C;L� is

relatively bounded by C3=4: These observations allow us to apply Propositions 3.1
and 3.4, and Theorem 3.5 to prove the existence of an isometric process U that is a
strong solution to

dUt ¼ ½ð� 1
2
jlj2ðN þ 1Þ � imðNÞÞ dt � W n %lðNÞ dAt þ lðNÞW dAw

t �Ut:

If, further, we assume the existence of 0oc0pc such that

c0npjlðnÞj2pcðn þ 1Þ 8nX0;

then Dom K ¼ Dom N and we can apply Corollary 3.2 with M ¼ cðN þ 1Þ and

k ¼ c to deduce that U is a unitary process. As a particular example we take lðnÞ ¼
�in1=2; mðnÞ ¼ 0: Then equation ðRÞ0 reads

dUt ¼ ½� 1
2
BBw dt � iB dAt � iBw dAw

t �Ut;

where Bw ¼ N1=2W and B ¼ WnN1=2 are the usual creation and annihilation
operators on h: As shown in [Wal], this equation arises by considering the interaction
of an inverse oscillator in a heat bath and taking the singular coupling limit. A strong
solution of the QSDE is constructed in [Wal] by use of Maassen kernels, and
analytical difficulties such as investigating the range of the Ut are surmountable there
because of the simple algebraic structure of the equation for this special choice of l
and m:

Perturbations of Hamiltonian evolutions: Let h ¼ L2ðRÞ: We shall use the

following vector spaces of functions on R : Ck
b ðRÞ; the space of bounded

continuous functions with bounded continuous derivatives up to the
order k; CN

c ðRÞ; the space of infinitely differentiable functions with compact

support; and HkðRÞ; the space of functions in h that have weak derivatives

up to order k in h: Let s; r and x (resp. Z) be R-valued functions in C4
bðRÞ

(resp. C5
bðRÞ), m a positive constant, and define the triple ðL;H;SÞ as operators on

H2ðRÞ by

Lu ¼ su0 þ ru; Hu ¼ � 1

2m
u00 � i

2
ðZu0 þ ðZuÞ0Þ þ xu; S ¼ 1

for uAH2ðRÞ: So then Ln; restricted to H2ðRÞ; satisfies

Lnu ¼ �su0 þ ðr� s0Þu:
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Under the assumption jjs2jj
N
om�1 it can be shown that � 1

2L
nL þ iH; restricted

to H4ðRÞ; is closable and that its closure is the generator of a strongly continuous
contraction semigroup [Kat, Theorem 2.7, p. 499]. Moreover, its domain coincides

with H2ðRÞ: So we can apply Proposition 3.1 with D ¼ H4ðRÞ to obtain a

contraction process Un that is a solution to ðLÞ0 on D:
Define the reference operator to be the positive self-adjoint operator C with

domain H4ðRÞ given by

Cu ¼ uð4Þ þ u:

Lemma 4.1. The hypotheses of Proposition 3.4 hold for the triple ðL; H; SÞ and the

reference operator C when we put *D ¼ H8ðRÞ:

Proof. Since *D ¼ Dom C2 it follows that it is invariant under each RE; and clearly *D

is contained in the domains of LnL; Ln; ½C;L� and ½C;H�; so that (i) holds. Also, (iv)
holds trivially.
As a first step for verifying (ii) we compute the commutator i½H;C�: Denoting by @

the differentiation operator,

½Z@ þ @Z;C� ¼ ½Z; @4�@ þ @½Z; @4�

¼ � Z0@4 � 2@Z0@3 � 2@2Z0@2 � 2@3Z0@ � @4Z0

¼ � 3@Z0@3 � 2@2Z0@2 � 3@3Z0@ þ Z00@3 � @3Z00

¼ � 8@2Z0@2 þ 3@Z00@2 � 3@2Z00@ � @2Zð3Þ � @Zð3Þ@ � Zð3Þ@2

¼ � 8@2Z0@2 � 4@Zð3Þ@ � @2Zð3Þ � Zð3Þ@2

and

½x;C� ¼ �2@x0@2 � 2@2x0@ � @xð3Þ � xð3Þ@:

By the Cauchy–Schwarz inequality

j/u; ½Z@ þ @Z;C�uSjp 8jjZ0jj
N
jj@2ujj2 þ 4jjZð3Þjj

N
jj@ujj2 þ 2jjZð3Þjj

N
jjujjjj@2ujj

p 8jjZ0jj
N
jj@2ujj2 þ 6jjZð3Þjj

N
jj@2ujjjjujj

p ð8jjZ0jj
N

þ 3jjZð3Þjj
N
Þ/u;CuS

and

2j/u; ½x;C�uSjpð6jjx0jj
N

þ 3jjxð3Þjj
N
Þ/u;CuS

F. Fagnola, S.J. Wills / Journal of Functional Analysis 198 (2003) 279–310306



for all uA *D: Thus, we obtain

2j/u; i½H;C�uSjpð8jjZ0jj
N

þ 6jjx0jj
N

þ 3jjZð3Þjj
N

þ 3jjxð3Þjj
N
Þ/u;CuS:

Similarly,

½C;L� ¼
X

0pa;bp2

@ajab@
b;

where

j22 ¼ 4s0; j11 ¼ sð3Þ; j10 ¼ j01 ¼ rð3Þ; j00 ¼ 0;

j12 ¼ 2r0 � 2s00; j21 ¼ 2r0; j20 ¼ 0; j02 ¼ sð3Þ;

so again even though C is a differential operator of order 4, and L a differential
operator of order 1, their commutator has order 4. Taking adjoints, we have

½Ln;C� ¼
X

0pa;bp2

ð�1Þaþb@bjab@
a:

Therefore, the term of order 5 in @ of the differential operator

y00ðCÞ ¼ ½Ln;C�L þ Ln½C;L�

must come from

�@s@2j22@
2 þ @2j22@

2s@;

and in fact its coefficient vanishes, so that y00ðCÞ is actually of order at most 4. The
same arguments used in the estimate of j/u; i½H;C�uSj yield the inequalities

j/u; f½Ln;C�L þ Ln½C;L�guSjpc/u;CuS; j/v; y10ðCÞuSjpc/u; iðCÞuS

for all u; vA *D (and where we have set u ¼ ½u; v�T), and for some constant c that
depends only on s; r and their derivatives up to the order 4. Thus, the inequality in
part (ii) of Proposition 3.4 holds for

b3 ¼ 3c þ 4jjZ0jj
N

þ 3jjx0jj
N

þ 3
2
jjZð3Þjj

N
þ 3

2
jjxð3Þjj

N
:
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Finally, to show that (iii) holds, note that @a0C�1@a is a contraction for all
0pa; a0p2; and so

jjC�1=2½C;L�ujj2 ¼
X

0pa;b;a0;b0p2

/@a0ja0b0@
b0u;C�1@ajab@

buS

¼
X

0ra;b;a0;b0p2

ð�1Þa
0
/ja0b0@

b0u; ð@a0C�1@aÞjab@
buS

p 9c0
X

0rb;b0p2

jj@b0ujjjj@bujj;

where c0 ¼ max0ra;bp2jjjabjj
2
N
: Thus

jjC�1=2½C;L�ujj2p9c0
X

0pbp2

jj@bujj
 !2

p27c0
X

0pbp2

jj@bujj2p81
2 c0/u;CuS:

This proves the lemma. &

Now note that Dom C1=2CDom� 1
2
LnL7iH-Dom L-Dom Ln; and so setting

DE ¼ H4ðRÞ for all E we see that the conditions of Theorem 3.5 hold, noting part (b)
of the remarks after Theorem 2.3. Thus, there is an isometric process U that is a
strong solution to

dUt ¼ ðLn dAt � L dAw
t þ K dtÞUt

on Dom C1=2 ¼ H2ðRÞ: That U is a coisometry process can be shown by applying
the arguments of [ChF], Section 5.1, where it is shown that the QDS associated to the
model of heavy ion collision from [AlF] is conservative, this time taking M to be a

multiple of �@2 þ 1:
The above argument can be modified by taking

Hu ¼ � i

2
ðZu0 þ ðZuÞ0Þ;

and in this case we no longer need to impose the bound on jjs2jj to show that K; the

closure of � 1
2
LnL þ iH; is the generator of a strongly continuous contraction

semigroup (see, for example, [F5], Theorem A.3). The rest of the calculation above

can then be applied directly to prove the existence of an isometric solution to ðRÞ0 for
this new form of H: Moreover, it can be shown as in [F5, Chapter 4], that this
solution is unitary. If we consider the algebra LNðRÞ acting by pointwise
multiplication on h; then since we have

y00ð f Þ ¼ 1
2
s2f 00 þ ðss0 � srþ ZÞf 0;
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we see that the flow X/Un
t ðX#1ÞUt gives a realisation of a diffusion process with

covariance s and drift ss0 � srþ Z:
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