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Epstein-Barr virus (EBV) is a ubiquitous human gamma herpesvirus that infects more than 90% of the

world’s population. EBV infection causes several human diseases, including infectious mononucleosis,

autoimmune disorders, and a number of malignancies. Interestingly, evidence accumulated over the

past 10 years supports the role for EBV as a pathogenic agent of periodontal disease because bacterial

activities alone do not explain several of its clinical characteristics. Despite this, it remains unclear how

EBV is reactivated in the oral cavity and how activated EBV leads to the progression of periodontal

diseases. We focused on the microbial interaction between bacteria and viruses in the etiology of

infectious disease and found that the periodontal pathogen Porphyromonas gingivalis could induce EBV

reactivation via chromatin modification. Our observations provide evidence for a possible microbial

interaction between bacteria and EBV that may contribute to the pathogenesis of EBV-related diseases.

This review describes the molecular mechanisms involved in the maintenance of EBV latency and its

reactivation by periodontopathic bacteria. In addition, we discuss possible mechanisms by which EBV

reactivation may facilitate progression of periodontal disease in infected individuals.

& 2012 Japanese Association for Oral Biology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Epstein-Barr virus (EBV), a gamma-herpesvirus, infects a
majority (490%) of the adult human population worldwide [1].
EBV infection causes several human diseases, including infectious
ciation for Oral Biology. Published

obiology, Nihon University
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ai).
mononucleosis, autoimmune disorders, and a number of malig-
nancies, including Burkitt’s lymphoma, Hodgkin’s disease, naso-
pharyngeal carcinoma, and gastric adenocarcinoma [1,2]. Similar
to other herpesvirus, EBV establishes a persistent infection in the
human host, and its life cycle has lytic and latent phases [1,3].
EBV is transmitted from person to person via saliva, and the virus
passes through the oropharyngeal epithelium to B-lymphocytes,
where it establishes a lifelong latent infection [1,3]. Although the
elucidation of the molecular mechanism involved in maintaining
EBV latency and its reactivation have been a central focus of EBV
by Elsevier B.V. All rights reserved.
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Fig. 1. Interactions between bacteria and viruses in the oral cavity. The oral cavity

is colonized by a wide variety of and numerous microbes, including oral bacteria,

viruses, and fungi. In addition to host–microbial interactions, the interactions of

herpesviruses, such as EBV and HCMV, with periodontopathic bacteria have the

potential to contribute to periodontal disease pathogenesis.
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research, a causal relationship between co-infection with EBV and
bacteria and the disruption of viral latency is not well understood.

Periodontal disease, a complex chronic inflammatory disorder
that involves interactions of specific bacteria and cellular host
responses, is among the most prevalent microbial diseases in
humans [4]. Severe periodontitis can result in loosening of teeth,
occasional pain and discomfort, impaired mastication, and eventual
tooth loss. Specific bacterial species, mostly gram-negative bacteria
such as Porphyromonas gingivalis, Fusobacterium nucleatum, Aggrega-

tibacter actinomycetemcomitans, Tannerella forsythia, and Treponema

denticola show a close association with periodontitis [4,5]. Period-
ontopathic bacterial infections and their associated bacterial pro-
ducts, such as lipopolysaccharide and fimbriae, stimulate host
immune responses and result in the production of inflammatory
mediators and matrix metalloproteinases, which leads to connective
tissue destruction and bone loss [4,5].

Interestingly, the concept that herpesviruses such as EBV and
human cytomegalovirus (HCMV) are involved in the etiology of
several types of severe periodontal disease has been proposed [5].
However, the process by which latent EBV is re-activated in the
oral cavity, and how activated EBV contributes to the progression
of periodontal disease remains unclear. We demonstrated a
relationship between microbial interaction and etiology of infec-
tious diseases and found that P. gingivalis can induce EBV
reactivation via epigenetic regulation (Fig. 1) [6].

In the present review, we describe the current understanding
of the relationship between periodontopathic bacteria and the
molecular mechanisms of EBV reactivation. In addition, we dis-
cuss how this relationship may pertain to the etiology of period-
ontal diseases.
Fig. 2. Induction of the EBV lytic switch transactivator ZEBRA involving epigenetic

regulation. The latent form of EBV can be induced to enter the lytic replication

cycle by treatment with various inducers such as HDAC inhibitors (e.g., butyric

acid and trichostatin A), TPA, and antibodies against immunoglobulins. These

inducers lead to increased transcription of the early EBV gene, BZLF1, which

encodes ZEBRA, a sequence-specific DNA-binding protein that is a member of the

bZIP family of leucine-zipper transcriptional activators. In the latent state,

hypoacetylation of histone proteins in the BZLF1 promoter by HDACs is primarily

involved in the maintenance of EBV latency. Upon cellular stimulation, local

histones are acetylated, the negative regulators are dismissed together with HDAC

proteins, and BZLF1 transcription is initiated. ZEBRA can transactivate both early

and late EBV genes, thereby inducing the lytic cycle cascade.
2. Histone deacetylation and acetylation are involved in the
establishment and disruption of viral latency

Previous studies have shown that novel mechanisms of epi-
genetic regulation, such as histone modification, play an important
role in the maintenance and disruption of viral latency [7,8]. It is
well known that post-translational modifications of the N-terminal
region of each core histone play an important role in the control of
the structural organization of chromatin and its transcriptional
status [7]. The histone N-terminal tail region protrudes from the
center of the nucleosome, where it interacts with other nuclear
proteins and is subjected to numerous post-translational modifica-
tions, including acetylation, methylation, phosphorylation, and ubi-
quitination [7]. Particularly, Lys acetylation of histones at lysine
residues by histone acetyltransferases (HAT), including cyclic AMP-
responsive enhancer binding protein-binding protein (CBP) and
p300, and deacetylation by histone deacetylases (HDACs) play a
central role in switching between ‘‘open’’ and ‘‘closed’’ chromatin
[7,8].

Human immunodeficiency virus-1 (HIV-1) gene expression is
regulated by histone modification during the lytic and latent
stages of infection [9,10]. Our group and others have reported that
transcriptional repressors recruit HDACs to the 50 long terminal
repeat of HIV-1 and consequently maintain HIV-1 latency by
repressing transcription of HIV-1 proviruses [9–11]. In contrast,
activation of HIV-1 gene expression by cell stimulation induced
by mediators such as HDAC inhibitors and tumor necrosis factor-
a is correlated with local histone acetylation, which dismisses the
negative regulator/HDAC protein complexes, thus initiating tran-
scription [9–11]. In addition, recent studies have shown that a
switch between the lytic and latent stages of herpesvirus infec-
tion is determined by the viral chromatin status [3,12,13].
Furthermore, hepatitis B virus replication is associated with
specific epigenetic marks, such as histone acetylation or deacety-
lation [14]. In the next section, we describe the role of histone
modification during EBV replication.
3. Molecular mechanism of the maintenance of EBV latency
at the transcriptional level

Reactivation of latent EBV is associated with progeny virus
production and several human diseases [1]. Therefore, elucidation
of the molecular mechanisms that promote or disrupt EBV latency
will be required to understand the pathobiology of EBV infection
and to develop preventive measures or novel therapies. The
transition of EBV from latency to the lytic replication cycle is
regulated by the master transcription factor, ZEBRA (also known
Z, Zta, or EB1), which is encoded by the viral gene BZLF1 (Fig. 2)
[3,13]. ZEBRA can transactivate both early and late EBV genes,
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thereby inducing the lytic cycle cascade [3,15]. In the latent stage
of infection, the ZEBRA protein is not detectable and only a
limited group of viral genes are expressed [3,15].

It has become increasingly clear that post-translational mod-
ification of DNA-associated histone proteins by HAT and HDAC in
the BZLF1 promoter plays an important role in the maintenance
and disruption of EBV latency [3,13,15]. For example, the cellular
Sp1/Sp3 protein complex and myocyte enhancer binding factor-2
(MEF2D) are associated with HDAC molecules (HDAC1, 2, 4, 5, and 7),
and they recruit these molecules to the BZLF1 promoter [16–18].
These complexes lead to hypoacetylation of local histones and
establishment of transcriptional latency [16–18]. Although it is
known that BZLF1 transactivation is induced by a variety of stimuli,
including HDAC inhibitors, 12-O-tetradecanoylphorbol-13-acetate,
anti-immunoglobulin, and calcium ionophore, a causal relationship
between bacterial infection and the disruption of EBV latency has not
been established [3,13,15].
4. Positive relationship between EBV and periodontal disease

There is a complex relationship between herpesviruses, such
as EBV and HCMV, and severe periodontal disease [5]. Notably,
EBV infection, HCMV infection, EBVþHCMV co-infection are
frequently detected in various types of periodontal diseases, such
as adult periodontitis, juvenile periodontitis, acute necrotizing
ulcerative gingivitis, and HIV-associated periodontitis [5,19–21].
Indeed, more EBV DNA was found in gingival crevicular fluid and
saliva of periodontal patients than in an otherwise healthy control
group [5,19–21]. Slots and his collaborators showed that viral
DNA is detected in 60%–80% of aggressive periodontal lesions and
15%–20% of gingival lesions or normal periodontal sites [21]. Our
own unpublished data support these previous findings. In addi-
tion, many reports indicate that EBV prevalence in periodontitis
patients correlated with periodontal pocket depth [21–24].
Furthermore, bacterial and viral co-infections were also reported
to be more frequent in deep periodontal pockets. P. gingivalis, T.

forsythia, EBV-1, HCMV, A. actinomycetemcomitans, and EBV-2
were detected in 95%, 75%, 72.5%, 50%, 12.5%, and 10% of sites
with probing pocket depths deeper than 6 mm, respectively [22].
Higher concentrations of P. gingivalis bacilli were found in EBV-
positive periodontal patients [21–24]. These observations suggest
a relationship between periodontitis and EBV as well as period-
ontopathic bacteria.
5. Reactivation of latent EBV infection by P. gingivalis involves
histone acetylation

Butyric acid, a metabolite generated by bacteria during their
growth, inhibits HDAC enzymatic activity [25]. We previously
reported that butyric acid secreted extracellularly by P. gingivalis

could be involved in periodontal disease [26,27]. In addition, the
presence of high concentrations of butyric acid in periodontal
pockets has been demonstrated [28]. Since HDAC contributes to
the maintenance of EBV latency and butyric acid is involved in
reactivation of the ‘‘repressed’’ chromatin [3,25], we hypothesized
that P. gingivalis reactivates EBV. We observed that P. gingivalis

clearly induced ZEBRA expression at the transcriptional level
(Fig. 3) [6]. Because no such activity was found with P. gingivalis

bacteria or bacterial components such as lipopolysaccharide and
fimbriae, this activity could be ascribable to bacterial culture
supernatant, which can induce Lys acetylation of histone H3 in
the BZLF1 promoter. Although P. gingivalis produces several short-
chain fatty acids (SCFAs), we found that only butyric acid
accelerates ZEBRA induction and histone H3 acetylation in
EBV-infected cells [6]. In addition, the highest concentration of
butyric acid was produced by another periodontogenic bacterium,
F. nucleatum (Fig. 3). The supernatants from F. nucleatum similarly
induced ZEBRA expression and lysine acetylation of histone H3.
Our findings indicated that H3 histone acetylation and ZEBRA
induction is ascribable to butyric acid contained in bacterial
culture supernatants. In a chromatin immunoprecipitation assay,
we observed that HDAC1, HDAC2, and HDAC7 were present in the
core BZLF1 promoter region (from �176 to þ61) [6], but are
dissociated from the promoter concomitantly with acetylated
histone H3 upon stimulation with P. gingivalis culture super-
natant. These observations suggest that P. gingivalis acts as an
inducer of EBV reactivation by stimulating histone acetylation
and HDAC dissociation from the BZLF1 promoter in latently
infected cells.
6. Concluding remarks and future perspectives

6.1. Possible mechanisms of EBV reactivation in the oral cavity

The mechanism that regulates the switch between latency and
lytic replication is a central problem in EBV pathogenesis, and the
trigger responsible for this switch in vivo is not well understood.
Previous reports demonstrated that co-infection with EBV and
other pathogens, such as malaria and HIV in EBV-infected indivi-
duals, is associated with increased EBV replication [29–31].
Evidence over the past decade supports a role for periodontal
diseases as a risk factor for several systemic diseases, including
heart disease, diabetes, and pre-term birth [4,32,33]. We pre-
viously reported that periodontal diseases might contribute to
AIDS progression [9,34]. These findings have shown that period-
ontopathic bacterial infections may be causative factors in
numerous systemic diseases. Our observations suggest that per-
iodontopathic bacteria may also be risk factors for EBV reactiva-
tion in infected individuals.

We found that P. gingivalis can induce ZEBRA expression by
stimulating acetylation of histones and HDAC dissociation from
the BZLF1 promoter in latently infected cells, and that butyric acid
may be responsible for this effect [6]. Previous studies support
our hypothesis that the concentrations of butyric acid in affected
dental plaques (4.7–13.8 mM) [35,36] and in periodontal pockets
of periodontal disease patients (2.670.4 mM) are more than
sufficient to induce virus re-activation [28]. In contrast, concen-
trations of butyric acid are below detection limits in healthy sites
[28]. In addition, several studies have shown that activation of
ZEBRA expression and lytic EBV replication following intra-
peritoneal injection of butyric acid in some EBV tumors in vivo
[37,38]. These observations imply that butyric acid has a role in
EBV reactivation in individuals with latent EBV infections, and
therefore, may contribute to clinical progression of EBV-related
diseases, including periodontal disease.
6.2. Possible causal relationship between bacteria and EBV in

periodontitis progression

It has become increasingly clear that herpesviruses are
involved in the etiology of severe periodontal diseases, because
bacterial activities alone do not explain several clinical character-
istics of the diseases. In fact, a pure bacterial cause of aggressive
periodontitis cannot explain why the disease tends to develop in a
bilaterally symmetrical pattern, and why vertical bone resorption
can advance close to the apex at one tooth, while barely affecting
the periodontium of an adjacent tooth sharing the same inter-
proximal space [39]. The emerging concept in the etiology of



Fig. 3. Porphyromonas gingivalis facilitates EBV reactivation via chromatin remodeling. (A) Induction of ZEBRA by the culture supernatants of P. gingivalis W83 (P. g. csp).

EBV-infected Daudi cells were incubated with or without P. g. csp (25, 50, or 100 ml/ml), P. gingivalis W83 bacilli, or bacterial growth medium alone (medium) for 48 h. The

lysates were harvested, and ZEBRA protein levels were assessed by western blotting. (B) Butyric acid concentrations in the culture supernatant of various bacteria were

measured by gas chromatography. P. gingivalis and F. nucleatum produced high concentrations of butyric acid. (C) Effects of culture supernatants of various

periodontopathic bacteria on latent EBV reactivation. Daudi cells were incubated with culture supernatant from indicated bacteria (10% v/v) for 48 h, and ZEBRA proteins

were detected. Among the bacteria, only butyric-acid producing species could induce ZEBRA expression. (D) Hyperacetylation of histones by P. gingivalis and butyric acid.

The cells were incubated with P. g. csp, P. g. bacilli, medium- or short-chain fatty acids, and the concentrations of acetylated histone H3 proteins were determined by

western blotting. P. g. csp, culture supernatant of P. gingivalis W83 (modified from Reference [6]).
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periodontal disease such as ‘‘periodontopathic virus’’ is also
supported by the following evidence. Antiviral treatment resulted
in decreased EBV detection and an improved periodontal condi-
tion [5,24]. Although emerging evidence implicated EBV in
periodontal disease progression, the underlying mechanisms
remain unclear. Our research provides evidence for a possible
microbial interaction between EBV and periodontopathic bacteria
in periodontal disease pathogenesis. Because the regulation of the
switch from latency to reactivation is an initial key step in EBV
infection, our observations suggest that butyric acid-producing
periodontopathic bacteria have the potential to trigger EBV
reactivation in the oral cavity of infected individuals. In addition,
inflammatory cytokines such as IL-1, IL-6, and IL-8 play an
important role in periodontal disease pathogenesis and increased
concentrations of cytokines in sera from EBV-infected patients
have been reported [4,5]. The envelope protein and genomic DNA
of EBV can stimulate inflammatory cytokines in primary human
monocytes [40,41]. We also found that EBV protein, which is
produced only during the lytic phase, induced greater activation
of nuclear factor-kB and production of IL-6 and IL-8 from human
gingival fibroblasts when compared with the stimulation of LPS
by P. gingivalis (unpublished data). These observations suggest
that EBV is intimately interrelated with the various stages of
periodontal disease progression.

We assume that microbial synergy by the interaction between
periodontopathic bacteria and EBV leads to the following negative
chain of pathological events in the oral cavity (Fig. 4): (1) period-
ontopathic anaerobic bacteria, such as P. gingivalis and F. nucle-

atum, produce butyric acid; (2) butyric acid induces EBV
reactivation; (3) EBV produces inflammatory cytokines and
impairs local host defenses; (4) increased severity of period-
ontopathic bacterial infection; (5) increased inflammatory
cytokine production by the synergistic effects of EBV and period-
ontopathic bacteria; and (6) periodontal disease escalation.

Although further studies are required, we suggest that an
increased understanding of the role that viral infections play in
the pathogenesis of periodontal diseases will lead to new treat-
ments and superior prevention methods.



Fig. 4. Microbial synergy by EBV–bacterial interaction in periodontal disease

pathogenesis. There is a possibility that a ‘‘negative chain reaction’’ by EBV and

periodontopathic bacteria contributes to the etiology of severe periodontitis. It is

expected that future basic clinical studies will determine whether the concept of

‘‘periodontopathic virus’’ is applicable to the etiology of periodontitis. We are

currently researching the role of viral infections in the progression of periodontal

diseases.
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