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This is a sequel to an earlicr paper [3]; the account will, however, be almost
self-contained. Our object here is to present certain results about deminions
in the category of semigroups, in particular about absolutely closed and satu-
rated semigroups.

Recalling the principal definitions in [3], we say that a subsemigroup 4
of a semigroup B dominates an element d in B if, for an arbitrary semigroup C
and arbitrary homomorphisms f,g: B— C, f(a) = g(a) for every a in 4
implies f(d) = g(d). The set of elements of B dominated by A is a subsemi-
group of B containing 4, which we call the domsnion of A. If the dominion of 4
is the whole of B we say that A4 is epimorphically embedded in B (for the
inclusion mapping is an epimorphism in the usual categorical sense of being
right cancellable). If a semigroup S is its own dominion in whatever semi-
group it is embedded we call it absolutely closed; if S cannot be (properly)
epimorphically embedded in any semigroup we call it saturated. It is shown
in [3] (Example 3.3) that a saturated semigroup need not be absolutely
closed.

The key to all the results in this paper is the “zigzag” theorem (2.3) in [3].
The commutative analog, which is not a corollary, is proved in Section 1.
The proof in the commutative case is in fact a good deal simpler, being free
of any appeal to topology.

Section 2 deals with absolutely closed semigroups. It follows from a result
in [2] that groups are absolutely closed. Here we show that certain broader

1 The authors acknowledge support from the National Science Foundation Grant
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8 HOWIE AND ISBELL

classes of regular semigroups (including inverse semigroups and full trans-
formation semigroups) are absolutely closed. It does not seem unreasonable
to hope for a complete theory of absolute closure for commutative semi-
groups, but we are far from achieving such an end. Theorem 3.9 in [3] and
Theorem 2.6 in the present paper give (respectively) necessary conditions
and sufficient conditions for a commutative semigroup to be absolutely
closed.

In Section 3 we study saturated semigroups. All the results concern com-
mutative semigroups; about the noncommutative case almost nothing is
known, and the example (3.6) in [3], of a finite idempotent semigroup that
is not saturated, indicates that a theory of noncommutative saturated semi-
groups would look very different from the commutative theory. We can
state a reasonably concise necessary and sufficient condition for a finitely
generated commutative semigroup S to be saturated: it must be
“inverse closed”, which is to say that an element @ in S has an inverse if
(for x, y in S?) a®>x = @%y implies ax = ay. (Here and elsewhere S* denotes
the semigroup S with a unit adjoined if necessary.)

1. Ziczacs

The zigzag theorem (2.3) of [3] carries over to commutative semigroups,
but the commutative theorem is not a corollary, since it might a priori be
easier for a subsemigroup of a commutative semigroup to dominate an element
with respect to homomorphisms into commutative semigroups.

If A4 is a subsemigroup of a (not necessarily commutative) semigroup B,
a system of equalities

d = agy, , Ay = %14,
i) = Vit Xilos = X;4140i47 (i=12..,m—1)
Qm—1Ym = Gom » Xmlom = d (1)
with @ , @y ,e-r, Ggm in 4 and x; , Xy yees, Xy, V1 V2 5eeer Vg i B will be called a

ztgzag of length m in B over A with value d. By the spine of the zigzag we shall
mean the set of elements a, , 4, ,..., @,, (in that order).

Tueorem 1.1. A subsemigroup A of a commutative semigroup B dominates
an element d in B if and only if either d € A or there exists a zigzag in B over A
with value d.

Proof. We use Lemma 1.1 of [3]. In commutative semigroups the free
sum S*T of two objects S and T can be described as follows: first form S
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and T by adjoining an extra identity element 1 to each of S and T' (whether
or not they already have identities); then form the direct product of S%
and TW); then remove the element (1, 1).

It is a routine matter to show that if a zigzag exists with value d, then
(t2(d), 75(d)) belongs to the congruence A* on BxB generated by

U = {(ir(a), iz(a)); @ € 4}.

Conversely, suppose that A4 dominates d, so that (i,(d), 7,(d)) € ¥*. Thus
there is a sequence

(L, d)— >4 1) 2)

of elementary U-transitions (in the sense of Clifford and Preston ([I], Sec-
tion 1.4)) connecting (1, d) and (4, 1). Now, if

(%,5)—> (3, 1) (3

is an Y-transition, then either

(%y)=(p,9)(a 1)(r,5) and (t=0Eq9,a)(s

or

(x, y) = (P’ Q) (l’ a) (” s) and (2,8) = (P, q) (a, 1) (7, 9)
(. g, 1,5 SN,

Let us call an U-transition of the first type an r-step (since the a moves right);
one of the second type will be called an Il-step. By commutativity we have
that x = za and ay = k if the Y-transition (3) is an r-step; and xa = z and
y = at if it is an l-step. It is clear that two r-steps (corresponding to a and o',
respectively) performed in succession can be collapsed to a single r-step
(corresponding to a’a); a similar remark applies to l-steps. Hence we may
assume that 7- and [-steps occur alternately in the sequence (2). Since the
elernent 1 has no divisors in A4, the first and last U-transitions of the sequence
(2) must be l-steps. There must therefore be an odd number (say 2m + 1)
of steps, the corresponding factorizations being necessarily of the form

d = ayy,, QG = %14y,

&Y =7 43Yq, X8 = Xol3 ,

Apm—3Ym—-1 = %om—2Vm » Xm—14om—2 = ¥mlom—1 »
Aom1Ym = Qopm » Xplym = d,

with all @, in 4. This completes the proof of the theorem.
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We end this section with two remarks on zigzags, which we shall have
occasion to use later.

Levma 1.2. Let A be a subsemigroup of a semigroup B and suppose that A
dominates an element d in B\A. Let (1) be a zigzag of minimum length with
value d. Then

(1) x4, ¢ A and ayn_oy,, ¢ A; tn particular, a, is neither equal to nor left-
divisible by a, , and a,,,_, is neither equal to nor right-divisible by ay,,_,;

(ii) neither of the following two configurations can arise (a’, a" € 4%):

(a) azi._1 =ayua, @ay=ay., (F=273,.m—1);

(b) @y =d'ayyy, Gya" =ay,, (E=1,2,.,m—2)

Proof. (i) If xa,€4d, we can clearly begin a shorter zigzag with

d = (%,a,) y, instead of d = ayy, . Similarly, if a,,_,y, € A, we can end a
shorter zigzag with x,,_(@gp_0¥,.) = d.

(i1) If we have the equalities (a), it follows easily that
— * *yy
Xy = %3947, A’y = AgivoYive

where a* = a"a,; | = ay;,,a4’ = a"aya’. Thus the zigzag can be shortened.
This is also the case if we have the equalities (b).

2. ABsOLUTELY CLOSED SEMIGROUPS

Two zigzags in a semigroup B over a subsemigroup 4 will be called
equivalent if they have the same spine. Two such zigzags must in fact have
the same value; for if

I’
d' = ay,, 4 = 314,
gty = Ayt Ry = iyl (t=1,2,..,m—1),

Ao _tm == Qg gy = d’ 4)
is a zigzag equivalent to the zigzag (1), then
d = @)y = 2,4, = 2 BYy = ZfgYy = " = Zplly = d. .

A zigzag (1) will be called left-inner if x;, x, ,..., %,, € A. Clearly in such a
case d = Xpa,, € A. A useful notion in the investigation of absolutely
closed semigroups is that of a left-isolated semigroup, that is, a semigroup 4
with the property that any zigzag over it (in any containing semigroup B)
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is equivalent to a left-inner zigzag. Obviously, by virtue of the zigzag theorem
in [3]:

LeMMA 2.1, Left-isolated semigroups are absolutely closed.

It turns out to be fairly easy to show that certain classes of semigroups are
left-isolated; hence by the lemma they are absolutely closed. Much of this
discussion is not symmetric; it is of course the case that the left-right duals
of our theorems also hold.

First, consider a left-simple semigroup, that is, a semigroup 4 in which
for every a, b, in A4 there exists a solution in 4 of the equation xa = b.
Any zigzag (1) over A is equivalent to a left-inner zigzag (4), where #; = y,
for all ¢, 2, is any solution in 4 of the equation xa, = 4, , 2, is any solution
in 4 of xa, = z,a,, and so on. Thus we have

THEOREM 2.2. Left-simple semigroups are absolutely closed.

Less trivial is the case of an tnverse semigroup, defined as a semigroup A
in which for every a there exists a unique x (called the inverse of a and in
what follows denoted by &) such that

axa = a, xax = x.

It is known (see [/, Section 1.9] for this and other standard results on inverse
semigroups) that idempotents commute in such a semigroup. Also, e and
da are idempotent,

a = a, ab = b,

& = ¢ if ¢ is idempotent, and & e a is idempotent for any element 4 and any
idempotent e.

TreorRem 2.3.  Inverse semigroups are absolutely closed.

Proof. We show that any zigzag (1) over an inverse semigroup A is
equivalent to a left inner zigzag (4), in which #, =y, for every i For
r=1,2,..,m, let 2, = ayu, , where

Uy = @,058304 " Qgr_g09, oy, -
Then clearly

a, = x,a, = x,a,0,ay, = ayd,a, = 3,4, .

We will show that z,4,, = 2,,,a,.,, for r =1, 2,..., m — 1. First we show
inductively that

2, = X,u, (r=12..,m—1) (%)
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The result is immediate for r = 1. Also,

3y = Rp1Qar—9Q3r1
= Xyl _1Uy_1@2r oy

= %p_y (U1, _1) (Ar_oar_2) Azr_olry

= Xp_1Q9_o@or_olly_1Ur_ 189, o@ar_y (since idempotents commute)
= Xy, Aoy oty U1 @9 ooy [by (1)];
= X 2.u,

hence formula (5) is proved.
It now follows that

Bylgy = Xl Uy,
= x,(z?,u,) (aZTd2r) o
= Xy, Qo Aoy
= Xy Qg1 Qo U oy [by (D]-
= Xy y1@9r-3(@or 11887+1) (sl hrtlyy)
= Xp418gr11@ar Uy A dor 41801 41
= Xpyylly. U181y
= Rr11@ara1

This completes the proof.

The example (3.6) in [3] shows that not every regular semigroup is absolu-
tely closed. Indeed it shows much more than this; to find a regular semigroup
that is not absolutely closed one need look no further than the 2 X 2 rectan-
gular band (see [1], p. 25). This will follow from Theorem 2.9.

The full transformation semigroup on a ground set G is defined to consist
of all mappings of G into itself, with composition of mappings as the semi-
group operation.

THEOREM 2.4. Full transformation semigroups are absolutely closed.

Proof. Again we show that if 4, a full transformation semigroup (with
ground set G) is embedded in an arbitrary semigroup B, then any zigzag in B
over A is equivalent to a left-inner zigzag. Suppose we have a zigzag (1).
Then, for i = 1, 2,..., m, from the existence of b, , &;_; ,..., by, €y €;_1 yeory €4
in A4 such that

Agi1b; = g1,
Agi_oh; = @y 3bi 4, i9Ci = AgigCi—1

Ay 4biy = Qg shi s, Aoi—4Ci—1 = Bgi5Ci1 (6)

ahy, = a;b, , Axly = @46y
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we can deduce that egh, = a4, . For, beginning with a,, b, = ay;_sc;,
we can successively deduce
Xil9; 1Dy = X895 161
X 1@y obi = ®i1@5; 5,
X; 1@y gbi g = Xy 1855 5€iy s

X olpi—gbin = Xi_oloi oCiy s

xab, = x4,
aghy = aye, .

Now let p be some fixed clement of G. For i = 1, 2,..., m, define 2, € 4
as follows: if there exist g;, g; ; ,..., g1 in G such that

g = a5 4(8:) y; 5(8:) = 9i—5(8i-1)

@yi—4(8i1) = Agi-s(giohr B8) = ai(81), (7
then z,(g) = a,(g,); otherwise z,(g) = p. Then z; is a well-defined mapping
of G into itself. For suppose that &;, k;_y,..., h, is another sequence of

elements in G satisfying the conditions (7). Then for 2 =1, 2,..., 7 define
the elements &, , ¢, of 4 by

b(g) =8, g =h,  foreveryginG.

We obtain the equalities (6), and so it follows that g, = ay, , i.e., that

ay(gy) = ao(hy).
Also, 2;,1a,;,,(g) — ay(g,) if there exist g;, g;_, ,..., g, such that
a5:(8) = @a:4(8:); @gi-o(8:) = @pi—5(8i1);
@gia(8i-1) = Bgi-5(gi-0)s-nr 4x(82) = ax(1), (8)

and equals p otherwise. But Eqs. (8) constitute exactly the condition under
which 2;a5,(g) = ay(g;). Hence

Ry = Z;qloi1q (f~=12..,m—1)

and so (taking #; = ¥, for every ¢) we have a left-inner zigzag (4) equivalent
to the original zigzag (1). This completes the proof.

CoroLLARY 2.5 (cf. [3], Corollary 1.8). FEvery finite semigroup is embed-
dable in a finite absolutely closed semigroup.

To describe the next class of absolutely closed semigroups we require
some preliminary definitions. Some of these are already in [3], but we shall
repeat them here for convenience. If ¢ and d are two distinct elements of a
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semigroup S, then, following Sutov [5], we shall call ¢ a potential left divisor
of d if, for every, a, b, in S,

ac =bc  implies  ad = bd.

S will be called left-division-ordered if all potential left-divisors are actual
divisors, and left-totally division-ordered if it is left-division-ordered and if,
for any two distinct elements x and y in S, either x is a left-divisor of y or y
is a left-divisor of x. The dual definitions are obvious. A semigroup will be
called totally division-ordered if it is both left- and right-totally division-
ordered.

We know ([3)], Theorems 3.9 and 3.10) that absolutely closed commutative
semigroups are division-ordered, but that not all division-ordered commu-
tative semigroups are absolutely closed. The next theorem identifies a class
of (not necessarily commutative) division-ordered scmigroups that are
absolutely closed.

TueoreM 2.6. Totally division-ordered semigroups are absolutely closed.

Proof. Let A, a totally division-ordered semigroup, be embedded in a
semigroup B, and let d be an element in the dominion of 4. Suppose that
d € B\A and that (1) is a zigzag of minimum length with value d.

By Lemma 1.2 (i), a, is neither equal to nor left-divisible by ¢;; hence a;
is left-divisible by a,. By part (ii) of the same lemma it follows that a; is
neither equal to nor right-divisible by a,; hence a, is right-divisible by a; .
Hence a, is neither equal to nor left-divisible by a,; hence a; is left-divisible
by a,; and so on. We end with the statement that a,,, is neither equal to nor
left-divisible by a,,_; . But ap, = dypyVm, sO that a,, , is a potential
(and hence an actual) left-divisor of a,, . This is a contradiction and so 4
is absolutely closed.

CoroLLARY 2.7. Finite monothetic semigroups are absolutely closed.

Proof. If A issuch a semigroup, then (see [1], Section 1.6]) 4 is commu-
tative and has distinct elements

x, X%, &7, A7HL | xrtm-l
where

x" = xTtm,

The set of clements {x7, x™1,..., x™+™-1} is a subgroup K of 4. It is clear
that if y and z are two distinct elements of 4, then either y divides z or z
divides y. It remains to verify that a semigroup of this type is division-ordered.
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Let ¢ = x* and d = &' be two distinct elements of A4, and suppose that ¢
is a potential divisor of d:

ac =bc  implies ad =bd

for all ¢, bin AL If kR > 7, take a = 1 and b = x™. Then ac = bc and so
ad = bd; that is, x* = x*™, It follows that ! > r and so both ¢ and d are
in the subgroup K, where divisibility is automatic. If & < r, take @ == x™*
and b = x™**™, Then ac = bc and so ad = bd: that is, x™¥+! = gr—k+lim,
It follows that » — & + I > 7 and so (% and [ being, by assumption, distinct)
I > k. Thus c is a divisor of d.

Notice that the infirite monothetic semigroup is certainly not absolutely
closed, being epimorphically embeddable in an infinite cyclic group. However,
in([3], Example 3.4), the infinite monothetic semigroup is embedded asaretract
in a semigroup A which is not only (as stated in [3]) saturated, but even
(as is easily verified) totally division-ordered. We conclude that a retract
of an absolutely closed semigroup need not even be saturated. We do not know
whether a direct product of two absolutely closed semigroups must be
saturated, but it need not be absolutely closed: the direct product of two
{monothetic) 2-element zero semigroups is a 4-element zero semigroup,
which is not division ordered.

In a semigroup S we shall call an clement u a unit if uS = Su=S.
Clearly if S is finite then the set of nonunits in .S is a subsemigroup.

Tueorem 2.8. If the subsemigroup of nonunits of a finite semigroup S is
absolutely closed, then so is S.

Proof. Suppose that S is embedded in a semigroup T, that d e T\S is
in the dominion of .S, and that (1) is a zigzag of minimum length with value 4.
By Lemma 1.2 (ii), no a; (j =2, 3,...,2m — 2) can have the property
;S = Sa; = S. By part (i) of the same lemma, a, is not left-divisible by a,
and so 4,§ #~ S; similarly, Sa,,,_, 5= S. Finally, @,S = x,4,S cannot contain
any more clements than 4,5 and so must be properly contained in S; simi-
larly, Say, # S.

We have shown that the zigzag (1) must in fact be a zigzag over the sub-
semigroup of nonunits of S. The result follows.

The next theorem implies in particular that the 2 X 2 rectangular band
is not absolutely closed.

THEOREM 2.9. If a semigroup S contains elements a, , a,, ag such that
a,S N a,S = Sa, N Sa; =, then S is not absolutely closed.

Proof.  Consider the free semigroup {x;,%,,%,,¥s} and let
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P = Sx{x, , %, , ¥1 , ¥a}. Let T be the factor semigroup of P by the congruence
generated by

R ={(a; , ;a), (@)1, @:Y2), (%192 , ¥2a3), (3372 ,05)}-

We show that S is embedded in T with dominion properly containing S.
Consider a sequence of elementary R-transitions conducted in P and begin-
ning on an element of S. Any element of P obtained by performing such a
sequence is of the type

wizle?a? - gn,

where @', @2,..., " are (perhaps empty) elements in S and each of 2, 22,...,
2"1 is either x; or y,; moreover if 2* =x, and w'*! is nonempty,
then wit! € @, S, and if 2* = y, and @ is nonempty, then «* € Saq; . It is not
hard to prove this by induction: the crucial point is that the second and third
relations in R can never be used, since

a,S N a,S = Sa, N Sa, = 0.

As a consequence, two elements p and ¢ in .S are equal (in S) if they are
connected by a sequence of elementary ®-transitions in P; for we can produce
an “image’ sequence of equalities in .S simply by leaving out all x,’s and
yo's. Hence SCT.

Moreover, we can conclude that the element d = a;y, of T is not in S,
since the corresponding element of P is not of the form described above.
However,

d =ayy,, a, = x4 ,
4G Y1 = @Y X8y = Xpdj3
a3y, = a3, X0y =d

is a zigzag in T over S with value d. Thus d is dominated by S and so S is not
absolutely closed.

3. SATURATED SEMIGROUPS

In this section we shall be concerned exclusively with commutative semi-
groups.

In a commutative semigroup S, define S, to be S, S, to be the set of all
clements having potential divisors in S2, S,., as the set of all elements
having potential divisors in S,S, and S, as ({S,: o <A} if A is a limit
ordinal. Then §, 2 S, 2 -*- and so the descent must stabilize at some ordinal
7. We define K = K(S) as ({5, : « < 7}. Then K is an ideal of S.
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TueoreMm 3.1. If S is a commutative semigroup and K(S) satisfies the
memimum condition on principal ideals, then S is saturated.

It is convenicnt to lay out the proof of this theorem in a series of lemmas,
all of which hold under the hypothesis that S is properly epimorphically
embedded in some semigroup U. We shall eventually derive a contradiction.

Before starting on the lemmas, we note that some power of each element a
in K lies in a subgroup of K; for the descending sequence of principal ideals
generated in turn by 4, a?, &3,... must stabilize, and so for some # we have
that 4™ is a multiple @*c of 4?*. It follows that a” lies in the maximal subgroup
containing the idempotent a™c.

Lemyva 3.1.1. If de U\S, then every multiple of d that Hes in S must
necessarily lie in K.

Proof. Suppose, by way of contradiction, that some s =du is in S,
but notin S, , and choose s to make B as small as possible. Since S dominates
the whole of U by hypothesis, there is a zigzag over S with value &; in particu-
lar, d = ayy, = x,a,, . Since d € UiS we can choose the zigzag to be as
short as possible, in which case x, € U\S. Thus x,e; = a, is a multiple of x,
lying in S; hence x,a) = gy € Sp .

Now 5 = a, - y,u, and either y,u = a;’ € S or y,u = ay'y,’ by the zigzag
theorem (since the embedding of S in U is by assumption epimorphic). In
either case a,a,’ is a potential divisor of s, and aga,” € Sg - S. Hence s € Sg, 4 ,
a contradiction.

Lemma 3.1.2.  Every element b in U\S is a multiple of an idempotent f in K.

Proof. By the zigzag theorem, b = a,y, = x,a4,y, , where g5, a4, € S. In
fact by the previous lemma, @, == x,a, € K. If B is the set (non-empty, by
virtue of the preceding remark) of elements in K dividing b, consider the set
%B of principal ideals of K generated by the elements of B, and let k be any
element in B for which the principal ideal generated by % is minimal in B.
Then b = kz for some z in U\S.

Notice now that we have shown incidentally that every element in U\S is a
multiple of some element in K. Applying this to 2, we find that 2 = &',
where kk’ generates a principal ideal in K no smaller than that generated by k;
hence, by virtue of the minimality assumption on %k, we have that & = k&'l
for some I in K. In fact k = k(R'l)" for r = 1, 2,.... Now for some n there
exists &” in K such that (R'[)?* k" = (k'[)*. Thus (k'l)* is a multiple of an
idempotent f == (K'[)» " in K. Hence & = k(K'])* is a multiple of f and so
b = fb as required.

We shall have occasion shortly to draw attention to the exact manner in
which this divisor was found.

481/6/1-2
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For two idempotents e, f in K we shall write f < ¢ if the principal ideal
generated by f is contained in that generated by e, or (equivalently) if ef = f.
There can be no infinite descending chain of idempotents in K.

LemmA 3.1.3. For each b in U\S there is a smallest idempotent e in K
dividing b.

Proof. Ifeb = bandeyp = bthen e,e,b = b. Thus the set F of idempotent
divisors of 4 in K is a subsemilattice of the semilattice of all idempotents in
K. Clearly F can have no infinite descending chain and so there must be a
least element e in F.

Now fix b, and note that eS = eX (since X is an ideal). Note also that eX
is properly contained in eU, since b € eU\eK.

Lemma 3.1.4.  The subsemigroup eK is epimorphically embedded in eU.

Proof. Because of commutativity, if a zigzag exists in U over S with value
d, then a zigzag exists in eU over &S (= eK) with value ed.
In the final lemma, H, denotes the maximal subgroup of K containing e.

LemMA 3.1.5.  There extsts an element z in eU\eK whose only divisors in eK
are the elements of H, .

Proof. Applying the argument used to prove Lemma 3.1.2, we find an
element % in eK and an element z in eU\eK such that b = kz. If ' is a
divisor of z in eK, then (again as in the proof of Lemma 3.1.2) there exists
k* (= (R')»~1"k") in K such that &'k* = £, an idempotent in K. This fis an
idempotent factor of b and so e < f. Hence k'(k*e) = fe =eand so k' € H, .
Thus z is the element we require.

We can now complete the proof of the theorem. By the last lemma, any
zigzag in eU over eK with value 2 must in fact be a zigzag over H, . But H, ,
being a group, is absolutely closed and so we have a contradiction.

We remark that a simplified version of this proof (in which Lemma 3.1.1
is unnecessary and in which S replaces K in the other lemmas)
establishes

THEOREM 3.2. A commutative semigroup satisfying the minimum condition
on principal ideals is saturated.

An interesting property of domination in commutative semigroups is
given by the next theorem.

THeoREM 3.3. If a commutative semigroup S is embedded epimorphically
in a commutative semigroup U, then S™ dominates every element of U\S, for
every positive integer n.
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Proof. The result follows from two lemmas, in which all semigroups are
assumed to be commutative.

LevMa 3.3.1.  If U is the dominion of S in T, then S™ dominates U™.
Proof. Letu = wuw'u? --- u" be an element of U~ (where #* € U for each i).

Then for i = 1, 2,..., n, we have a zigzag

ul —_ ao‘lyll’ aol P xllal‘l’

o'yt = a'ys’, X'y = Xotay',
i i id i
Gm—1Ym = Qm > Xy Aoy = U,

since we can easily arrange for all the # zigzags to have the same length by
inserting repetitions if necessary. Using commutativity we obtain a zigzag
of the form (1) over S™ with value u, where

%, = x x20x," (r =1,2,..,m).
Ve =7 " (r=12,..,m).
a, =ata’ - a" (r =0, 1,..., 2m).

Lemma 3.3.2. If S is embedded epimorphically in U, then U\S C U™

Proof. Let d be an element of U\S and let (1) be a zigzag of minimum
length with value d. Then d = x,4,y, , where %, , y, € U\S. Thus d e U3,
The same argument can now be applied to x, (or ¥,); clearly in this way we
show that d € U™ for any positive integer n.

A further simple consequence of the lemmas is

CoroLrLary 3.4. If Sn is saturated for some positive integer n, then S is
saturated.

For if S were epimorphically embedded in U, then S® would be epimor-
phically embedded in U, Thus UNSC U =S"C S and so S =U.

Theorem 3.1 gives a sufficient condition for a commutative semigroup to
be saturated. The next result gives a necessary condition. First, let us call a
commutative semigroup inverse closed if an clement @ in S has an inverse
(in the usual semigroup sense) whenever a? is a potential divisor of a.

TueoreM 3.5. Commutative saturated semigroups are inverse closed.

Proof. Let S be a saturated semigroup and suppose that there exists
in S such that @® is a potential divisor of @, but a has no inverse. Then 4? is
not an actual divisor of a, for 2 = a%x would imply that x%a was an inverse of a.
By a result of Sutov [5] (see also [3], Theorem 3.9) one can embed S in a
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semigroup T containing an element x such that 4%x = a. The element xa.
of T does not belong to S, for if it did we should have that a® was a diviso
of @ in S. Hence the subsemigroup U generated in T by S and xax properl:
contains S. Howecver, there is a zigzag

xax = a(xax)?, a = (xax)? a®, @*(xax)? = a, (xax)? a = xa:

in U over S with value xax and so the dominion of S in U (being a subsemi
group of U) must coincide with U. That is, S is embedded epimorphicall:
in U, in contradiction to our supposition that S is saturated.

A converse to Theorem 3.5 can be stated for finitely generated semigroups

TueoreM 3.6. A finitely generated, commutative, inverse closed semigrou;
15 saturated.

Proof. We show that a semigroup S satisfying these conditions must alsc
satisfy the minimum condition on principal ideals, which is sufficient by
Theorem 3.2.

Tirst, by a result of Rédei [4], all congruences on S are finitely generated
that is, every congruence is generated by a finite subset of S X S. It follow:
that from every subset of S X S generating a given congruence p on S we
can extract a finite subset which still generates p. There cannot exist ar
infinite ascending chain of congruences on S, for if p, C p, Cpg C -+ werc
such a chain, we could choose a finite set of generators R, for each p; such tha
R, C R, C R, C -, Then | ) p; would be a congruence on S having an infinite
set {J R, of generators no finite subset of which would suffice to generate it.

In S, by virtue of commutativity, the relation p(a) defined by

(x, y) € p(a) if xa=ya
is a congruence (for any element a in S). Moreover,
p(a) € p(a*) C p(a®) € -
and so for some # we must have that
pla) = pla®) = pla) = -+ = pl@") = -

It follows that 42" is a potential divisor of a”: the only casc that is not imme-
diately obvious is where a®® = 4°"y for some ¥ in .S, in which case we obscrve
that (a, ay) € p(a®~1) = p(a™!), so that a” -=a™y as required. Since S is
inverse closed, there must therefore exist b in S such that @**b = a®.

Writing e for the idempotent a”h, we note that a™ belongs to the maximal
subgroup H, . Also

atle = @*t1h = a - @» = q™*! and artl - qnm1p? = ginht = ¢ = ¢;

hence a**! € H, also. Thus a™! divides a®.
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Applying this argument to cach member of any finite set{g, , g, ,..., &}
of generators of S, we find that there is (for j = 1, 2,..., m) a positive exponent
e( f) such that g¢9'*! divides g¢"”.

Now suppose that elements s, , 55, 5 ,... of S generate an infinite descending
sequence of principal ideals, where

$; :gi’tlg;ﬂ ...g'?ll'm (i S5 ]’ 2, 3"“)’
with p,; > 0. We can suppose that forj = 1, 2,..., m,

P15 S Poy S Pay < 0

Now for each j, either p,; stops increasing, so that p,; < ¢; (say) for every 1,
or else p,; increases indefinitely. We can assume that the first possibility occurs
for j = 1,2,...,7 and the second for j =7+ 1, »r + 2,...;,m. For each j
between 1 and 7, let i( §) be the smallest i for which p,; = g¢;; let

g =max{i(j):j=1,2,..,r}
Thus in every member of the sequence

Sq s Sq+1 s Sqagaeer s

g; (1 <j <r) occurs with exponent ¢;. For j =7 41, v + 2,...,m, let [;
be the smallest 7 > ¢ for which p,; = e(j); let

=max{l;,:j=r+1,r +2,..,m.

Then s, divides s, if £ > [, a contradiction to our assumption that the elements
$ys S3, S3,... generate an infinite descending sequence of principal ideals.
This completes the proof.
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