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This is a sequel to an earlier paper [3]; the account will, however, be almost 
seK-contained. Our object here is to present certain results about dominions 
in the category of semigroups, in particular about absolutely closed and satu- 
rated semigroups. 

Recalling the principal definitions in [3], we say that a subsemigroup A 
of a semigroup 3 dominates an element din B if, for an arbitrary semigroup C 
and arbitrary homomorphisms f, g : B + C, f(a) = g(a) for every a in A 
implies f (d) = g(d). Th e set of elements of B dominated by A is a subsemi- 
group of B containing A, which we call the dominion of A. If the dominion of A 
is the whole of B we say that A is epinwrphically embedded in B (for the 
inclusion mapping is an epimorphism in the usual categorical sense of being 
right cancellable). If a semigroup S is its own dominion in whatever semi- 
group it is embedded we call it absolutely cZosed; if S cannot be (properly) 
epimorphically embedded in any semigroup we call it saturated. It is shown 
in [3] (Example 3.3) that a saturated semigroup need not be absolutely 
closed. 

The key to all the results in this paper is the “zigzag” theorem (2.3) in [3]. 
The commutative analog, which is not a corollary, is proved in Section 1. 
The proof in the commutative case is in fact a good deal simpler, being free 
of any appeal to topology. 

Section 2 deals with absolutely closed semigroups. It follows from a result 
in [2] that groups are absolutely closed. Here we show that certain broader 
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classes of regular semigroups (including inverse semigroups and full trans- 
formation semigroups) are absolutely closed. It does not seem unreasonable 
to hope for a complete theory of absolute closure for commutative semi- 
groups, but we are far from achieving such an end. Theorem 3.9 in [3] and 
Theorem 2.6 in the present paper give (respectively) necessary conditions 
and sufficient conditions for a commutative semigroup to be absolutely 
closed. 

In Section 3 we study saturated semigroups. All the results concern com- 
mutative semigroups; about the noncommutative case almost nothing is 
known, and the example (3.6) in [3], of a finite idempotent semigroup that 
is not saturated, indicates that a theory of noncommutative saturated semi- 
groups would look very different from the commutative theory. We can 
state a reasonably concise necessary and sufficient condition for a finitely 
generated commutative semigroup S to be saturated: it must be 
“inverse closed”, which is to say that an element a in S has an inverse if 
(for X, y in Sl) a2x = a*y implies ax = uy. (Here and elsewhere S denotes 
the semigroup S with a unit adjoined if necessary.) 

1. ZIGZAGS 

The zigzag theorem (2.3) of [3] carries over to commutative semigroups, 
but the commutative theorem is not a corollary, since it might u priori be 
easier for a subsemigroup of a commutative semigroup to dominate an element 
with respect to homomorphisms into commutative semigroups. 

If A is a subsemigroup of a (not necessarily commutative) semigroup B, 
a system of equalities 

d = %YI 9 a0 = %a, , 

+&1yi = a&i+1 , V2i = xi+F2i+l (i = 1, 2 ,..., m - l), 

+,n-o,=~, xmaz,=d (1) 

with a, , a, ,..., uti in A and x1 , x2 ,..., X, , yt , y2 ,..., ym in B will be called a 
zigzag of length m in B over A with value d. By the spine of the zigzag we shall 
mean the set of elements a,, a, ,..., a, (in that order). 

THEOREM 1.1. A subsemigraup A of a commutative semigroup B dominates 
an element din B if and only if either d E A or there exists a zigzag in B over A 
with value d. 

Pmof. We use Lemma 1.1 of [3]. I n commutative semigroups the free 
sum S*T of two objects S and T can be described as follows: first form S(l) 
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and T(1) by adjoining an extra identity element 1 to each of S and T (whether 
or not they already have identities); then form the direct product of S’r) 
and T(l); then remove the element (1, I). 

It is a routine matter to show that if a zigzag exists with value d, then 
(G(d), i,(d)) belongs to the congruence U* on B*B generated by 

2l = {(i&i), i&z)); a E A). 

Conversely, suppose that A dominates d, so that (i,(d), i,(d)) E II*. Thus 
there is a sequence 

(1, 4 - ... + (d, 1) (21 

of elementary X-transitions (in the sense of Clifford and Preston ([I], Sec- 
tion 1.4)) connecting (1, d) and (d, 1). Now, if 

(x, Y> -+ (G 4 (3) 

is an ‘U-transition, then either 

OK- 

(X? Y> = (P, 9) (4 1) (f, 4 and (z, t) = (Pa 9) (1, Q) (f, J) 

(XI Y) = (P> d (L4 (19 4 and (z, t> = (P? q) (4 1) (y14 

(A 4, I, 3 E S’“). 

Let us call an VI-transition of the first type an ~-step (since the a moves right); 
one of the second type will be called an Z-step. By commutativity we have 
that x = zu and uy = k if the Z-transition (3) is an r-step; and xu = z and 
y = at if it is an I-step. It is clear that two r-steps (corresponding to a and a’, 
respectively) performed in succession can be collapsed to a single r-step 
(corresponding to u’a); a similar remark applies to Z-steps. Hence we may 
assume that I- and l-steps occur alternately in the sequence (2). Since the 
element 1 has no divisors in A, the first and last %-transitions of the sequence 
(2) must be Z-steps. There must therefore be an odd number (say 2m + 1) 
of steps, the corresponding factorizations being necessarily of the form 

d = uoyl , a, = Vl , 

qY,=%Yy,, x1u2 -7 X#, ) 

. . . 

a2m-3~,n-l = a+dh , X,-1a2m-2 = %n~Zfn-l > 

azm.-om = ah , ~,a,, = 4 

with dl a, in A. This completes the proof of the theorem. 
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We end this section with two remarks on zigzags, which we shall have 
occasion to use later. 

LEMMA 1.2. Let A be a subsemigroup of a sem@oup B and suppose that A 
dominates an element d in B\A. Let (I) be a zigzag of minimum length with 
value d. Then 

(i ) xIa2 $ A and azm+ym 6 A; in particular, a2 is neither equal to nor left- 
dierisible by a, , and azrnpz is neither equal to nor right-divisible by azrnmI; 

(ii) neither of the following two configurations can arke (a’, a” E Al): 

(a> a2i--1 = a2ia’, anazi = aziY1 (i = 2, 3,..., m - 1); 

(b) a2i = a’a2i+l , a2i+pn = a2i+2 (i = 1, 2 ,..., m - 2). 

Proof. (i) If xla2 E A, we can clearly begin a shorter zigzag with 
d = (xla2)y2 instead of d = a,y, . Similarly, if azm+ym E A, we can end a 
shorter zigzag with x,,+I(a,-2ym) = d. 

(ii) If we have the equalities (a), it follows easily that 

* Xi-la2i-2 = Xi +la , a 
* Yi = a2i+2Yi+2 f 

where a* = a”a2i-l = a2iila’ = a”a,ia’. Thus the zigzag can be shortened. 
This is also the case if we have the equalities (b). 

2. ABSOLUTELY CLOSED SEMICROUPS 

Two zigzags in a semigroup B over a subsemigroup A will be called 
equivalent if they have the same spine. Two such zigzags must in fact have 
the same value; for if 

B = a& , a0 I= zla, , 

a,i-lti = a&i+1 , W2i = 3+@2i+l (i = 1, 2 ,..., m - I), 

am-ltm = a2m , .z,ahn = d (4) 

is a zigzag equivalent to the zigzag (l), then 

d = %y, = zla,y, = .zIao2 = zfiyz = *** = z,ahn = d’. 

A zigzag (1) will be called left-inner if x1 , x2 ,..., x, E A. Clearly in such a 
case d = x,a2, E A. A useful notion in the investigation of absolutely 
closed semigroups is that of a left-isolated semigroup, that is, a semigroup A 
with the property that any zigzag over it (in any containing semigroup B) 
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is equivalent to a left-inner zigzag. Obviously, by virtue of the zigzag theorem 
in [3]: 

b?MMA 2.1. Left-isolated semigroups are absolutely closed. 
It turns out to be fairly easy to show that certain classes of semigroups are 

left-isolated; hence by the lemma they are absolutely closed. Much of this 
discussion is not symmetric; it is of course the case that the left-right duals 
of our theorems also hold. 

First, consider a left-simple semigroup, that is, a semigroup A in which 
for every a, b, in A there exists a solution in A of the equation xa = b. 
Any zigzag (1) over A is equivalent to a left-inner zigzag (4), where ti = yZ 
for all i, zr is any solution in A of the equation xa, = a,, , zs is any solution 
in A of xaa = Z1a, , and so on. Thus we have 

THEOREM 2.2. Left-simple semigroups are absolutely closed. 
Less trivial is the case of an inverse semig~oup, defined as a semigroup A 

in which for every a there exists a unique x (called the inverse of a and in 
what follows denoted by 6) such that 

axa=a, xax = x. 

It is known (see [I, Section I.91 for this and other standard results on inverse 
scmigroups) that idempotents commute in such a semigroup. Also, ti and 
Ga are idempotent, 

Q’ = a, ab = rlc, 

t? = e if e is idempotent, and d e a is idempotent for any element a and any 
idempotent e. 

THEOREM 2.3. Inverse semigroups are absolutely closed. 

Proof. We show that any zigzag (1) over an inverse semigroup A is 
equivalent to a left inner zigzag (4), in which ti = yi for every i. For 
Y = 1, 2,..., m, let Z, = a,u, , where 

Then clearly 

u, = a,azaaa, e-0 a2r-3a2r--2a2r-l - 

a, = xlal = x,a,&a, = a,61a, = zlal , 

We will show that z,.aZT = zr+la2r+l for Y = 1,2,..., m - 1. First we show 
inductively that 

z, = x,li+.u, (Y = 1, 2 ,..., 111 - 1). (5) 
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The result is immediate for T = 1. Also, 

"r = %-1%v42r-1 

(since idempotents commute) 

PY (1)l; 

hence formula (5) is proved. 
It now follows that 

= x,+la2r+la2rur~~2~2++la2r-(-1 

= xr+lz7,.Llur+la2r, 1 

.= .z,+la2r.!.1 

This completes the proof. 
The example (3.6) in [3] shows that not every regular semigroup is absolu- 

tely closed. Indeed it shows much more than this; to find a regular semigroup 
that is not absolutely closed one need look no further than the 2 x 2 rectan- 
gular band (see [Z], p. 25). This will follow from Theorem 2.9. 

The full transformation semigroup on a ground set G is defined to consist 
of all mappings of G into itself, with composition of mappings as the semi- 
group operation. 

THEOREM 2.4. Full transformation semigroups are absolutely closed. 

Proof. Again we show that if A, a full transformation semigroup (with 
ground set G) is embedded in an arbitrary semigroup B, then any zigzag in B 
over A is equivalent to a left-inner zigzag. Suppose we have a zigzag (I). 
Then, for i = 1, 2 ,..., m, from the existence of bi , b,-r ,..., b, , ci , ciml ,..., c1 
in -4 such that 

t22i-lbi - +f-lCi , 

a&i = a2i-$i-1 , Q-2Ci = +i-&-l , 

a,,-.@,-, - a2i-sbi-2 , Q-&-l = a2i--jCi-1 , (6) 
. . . 

45 = a,& , ati2 = wl , 
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we can deduce that a&, = a,,c, . For, beginning with a,& = u+ici , 
we can successively deduce 

xia,i-,bi = xiaHdlci , 

Xi-IQ-&i = Xi-lU2id#i 9 

xi-,a,i-&-, = xi-lazi-sci-1 7 

xi-p,i-$i-, = xi-+2i--4ci-l > 

Now let p be some fixed element of G. For i = 1,2,..., m, define zi E A 
as follows: if there exist gi , gi, ,..., g, in G such that 

g = u2i--l(i?i), a2i-2(gi) ‘= a2i-2(gi-l)9 

a2i-*(gi-l) = a2i-5(gi-2),***, %k2) = alkl), (7) 

then .s((g) = u,,(g,); otherwise z,(g) = p. Then xi is a well-defined mapping 
of G into itself. For suppose that hi , hi-i ,..., h, is another sequence of 
elements in G satisfying the conditions (7). Then for K = 1,2,..., i define 
the elements b, , ck of A by 

b,(g) = g, 3 c&9 = h, for every g in G. 

We obtain the equalities (6), and so it follows that a,b, = aOcl , i.e., that 

%(&) = %W* 
Also, zi+iaa<.+i(g) .--_ aa if there exist gi , gimr ,..., gi such that 

%i(g) = a2i-l(gih a2i-2(gi) = %-&i-l>, 

a2G&-l) = u2i--5(gi-2)7***, a2(g2) = al(&>, (8) 

and equals p otherwise. But Eqs. (8) constitute exactly the condition under 
which Xi&g) = %(gJ. Hence 

Zia2i = zi fla2i+l (i .-: 1, 2 ,..., m - 1), 

and so (taking ti = yi for every i) we have a left-inner zigzag (4) equivalent 
to the original zigzag (1). This completes the proof. 

COROLLARY 2.5 (cf. [3], Corollary 1.8). Ikery $nite semigroup zk embed- 
dab.& in a finite absolutely closed semigroup. 

To describe the next class of absolutely closed semigroups we require 
some preliminary definitions. Some of these are already in [3], but we shall 
repeat them here for convenience. If c and d are two distinct elements of a 
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semigroup S, then, following $utov [5], we shall call c a potential left divimr 
of d if, for every, a, b, in S1, 

ac = bc implies ad = bd. 

S will be called lef-d&&m-ordered if all potential left-divisors are actual 
divisors, and left-totally division-ordered if it is left-division-ordered and if, 
for any two distinct elements x and y in S, either x is a left-divisor of y or y 
is a left-divisor of x. The dual definitions are obvious. A semigroup will be 
called totally division-ordered if it is both left- and right-totally division- 
ordered. 

We know ([3], Theorems 3.9 and 3.10) that absolutely closed commutative 
semigroups are division-ordered, but that not all division-ordered commu- 
tative semigroups are absolutely closed. The next theorem identifies a class 
of (not necessarily commutative) division-ordered semigroups that are 
absolutely closed. 

THEOREM 2.6. Totally ditiion-ordered semigroups are absolutely closed. 

Proof. Let A, a totally division-ordered semigroup, be embedded in a 
semigroup B, and let d be an element in the dominion of A. Suppose that 
d E B\A and that (1) is a zigzag of minimum length with value d. 

By Lemma 1.2 (i), a2 is neither equal to nor left-divisible by %; hence a, 
is left-divisible by u2. By part (ii) of the same lemma it follows that a, is 
neither equal to nor right-divisible by a,; hence a2 is right-divisible by a3. 
Hence a4 is neither equal to nor left-divisible by a,; hence a3 is left-divisible 
by a,; and so on. We end with the statement that azrn is neither equal to nor 
left-divisible by azrndl . But ah = azm-om , so that am-l is a potential 
(and hence an actual) left-divisor of azm _ This is a contradiction and so A 
is absolutely closed. 

COROLLARY 2.7. Finite mono&tic semigroups are absolutely closed. 

Proof. If A is such a scmigroup, then (see [I], Section 1.61) A is commu- 
tative and has distinct elements 

x, x 2 ,..., x’, X’fl,..., xr++l, 

where 

The set of elements {xp, x7+-l,..., ~‘+~-l} is a subgroup K of A. It is clear 
that if y and z are two distinct elements of A, then either y divides z or z 
divides y. It remains to verify that a semigroup of this type is division-ordered. 
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Let c = xB and d = x2 be two distinct elements of A, and suppose that c 
is a potential divisor of d: 

ac = bc implies ad = bd 

for all a, b in A’. If k >, r, take a = 1 and b = xm. Then ac = bc and so 
ad = bd, that is, x2 = xztm. It follows that I >, r and so both c and d are 
in the subgroup K, where divisibility is automatic. If K < Y, take a = x’-~ 
and b = x?-~+~. Then ac = bc and so ad = bd: that is, xr-k+r = xr-k+r*. 
It follows that r - k f 1 3 r and so (k and 1 being, by assumption, distinct) 
1 > k. Thus c is a divisor of d. 

Notice that the infinite monothetic semigroup is certainly not absolutely 
closed, being epimorphically embeddable in an infinite cyclic group. However, 
in ([3], Example 3.4), the infinite monothetic semigroup is embedded as aretract 
in a semigroup A which is not only (as stated in [3]) saturated, but even 
(as is easily verified) totally division-ordered. We conclude that a retract 
of an absolutely closed semigroup need not ewn be saturated. We do not know 
whether a direct product of two absolutely closed semigroups must be 
saturated, but it need not be absolutely closed: the direct product of two 
(monothetic) 2-element zero semigroups is a 4-element zero semigroup, 
which is not division ordered. 

In a semigroup S we shall call an element u a unit if US = Su = S. 
Clearly if S is finite then the set of nonunits in S is a subsemigroup. 

THEOREM 2.8. If the subsemi@up of nonunits of a $nite semigroup S is 
absolutely closed, then so U S. 

Proof. Suppose that S is embedded in a semigroup T, that d E T\S is 
in the dominion of S, and that (1) is a zigzag of minimum length with value d. 
By Lemma 1.2 (ii), no aj (j = 2, 3,..., 2m - 2) can have the property 
ajS = Saj = S. By part (i) of the same lemma, a2 is not left-divisible by a, 
and so a,S # S; similarly, Sa,-, # S. Finally, a,S = x,a,S cannot contain 
any more elements than a,S and so must be properly contained in S; simi- 
larly, Sasm # S. 

We have shown that the zigzag (1) must in fact be a zigzag over the sub- 
semigroup of nonunits of S. The result follows. 

The next theorem implies in particular that the 2 x 2 rectangular band 
is not absolutely closed. 

THEOREM 2.9. If a semigroup S contains elements a,, a2, a3 such that 
a,S n a,S = Sa, n Sa, = 8, then S is not absolutely closed. 

Proof. Consider the free sembzroup {x1 , x2 ,Y1 , y21 and let 
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p = S*{x* ,x2 rY1, Ys }. Let T be the factor semigroup of P by the congruence 
generated by 

We show that S is embedded in T with dominion properly containing S. 
Consider a sequence of elementary %-transitions conducted in P and begin- 
ning on an element of S. Any element of P obtained by performing such a 
sequence is of the type 

w'z'w2z2 . ..&a 9 

where wr, w2,..., wfl are (perhaps empty) elements in S and each of ~9, x2,..., 
sn-* is either xl or y2; moreover if 9 = x1 and wi”l is nonempty, 
then wi+l E a,S, and if 9 = y2 and wi is nonempty, then wi E Sa, . It is not 
hard to prove this by induction: the crucial point is that the second and third 
relations in R can never be used, since 

a,S n a,S = Sa, n Sa, = !J. 

As a consequence, two elements p and q in S are equal (in S) if they are 
connected by a sequence of elementary %-transitions in P; for we can produce 
an “image” sequence of equalities in S simply by leaving out all x1’s and 
yz)s. Hence SC T. 

Moreover, we can conclude that the element d = qyl of T is not in S, 
since the corresponding element of P is not of the form described above. 
However, 

d = ~1, a, = Vl , 

%Yl = %Ya ) X,Q, = x24 , 

wn =a3, xfi=d 

is a zigzag in T over S with value d. Thus d is dominated by S and so S is not 
absolutely closed. 

3. SATURATED SEMIGROUPS 

In this section we shall be concerned exclusively with commutative semi- 
groups. 

In a commutative semigroup S, define S, to be S, S, to be the set of all 
elements having potential divisors in S2, S.+r as the set of all elements 
having potential divisors in S;S, and S2 as n {S, : 01 < X} if X is a limit 
ordinal. Then S, 2 S, 1 *** and so the descent must stabilize at some ordinal 
7. M7e define K = K(S) as n (S, : 01< T}. Then K is an ideal of S. 
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THEOREM 3.1. If S is a commutative sem@up and K(S) satisj?es the 
minimum condition on principal ideals, then S is saturated. 

It is convenient to lay out the proof of this theorem in a series of lemmas, 
all of which hold under the hypothesis that S is properly epimorphically 
embedded in some semigroup U. We shall eventually derive a contradiction, 

Before starting on the lemmas, we note that some power of each element a 
in K lies in a subgroup of K; for the descending sequence of principal ideals 
generated in turn by a, a2, a3,... must stabilize, and so for some n we have 
that an is a multiple a% of a 2n. It follows that an lies in the maximal subgroup 
containing the idempotcnt a%. 

LEMMA\ 3.1.1. If d E U\S, then every multiple of d that lies in S must 
necessarily lie in K. 

Proof. Suppose, by way of contradiction, that some s = du is in S, 
but not in Ss.;, , and choose s to make /? as small as possible. Since S dominates 
the whole of U by hypothesis, there is a zigzag over S with value d; in particu- 
lar, d = a,y, = xla,y, . Since d E Ui,S we can choose the zigzag to be as 
short as possible, in which case x1 E U\,S. Thus xlal = a,, is a multiple of x1 
lying in S; hence xlal = a, E S, . 

Now s = a0 * ylu, and either y,u = aO’ E S or ylu = a,‘yy,’ by the zigzag 
theorem (since the embedding of S in U is by assumption epimorphic). In 
either case a,a,’ is a potential divisor of s, and aOa,,’ E S, - S. Hence s E S,,., , 
a contradiction. 

LEMMA 3.1.2. Every element b in U\S is a multiple of an idempotent f in K. 

Proof. By the zigzag theorem, b = a,y, = qa,y, , where a, , % E S. In 
fact by the previous lemma, a.,, = xlal E K. If B is the set (non-empty, by 
virtue of the preceding remark) of elements in K dividing b, consider the set 
b of principal ideals of K generated by the elements of B, and let K be any 
element in B for which the principal ideal generated by k is minimal in 8. 
Then 0 = kz for some z in i&S’. 

Notice now that we have shown incidentally that every element in U\S is a 
multiple of some element in K. Applying this to Z, we find that z = Ku, 
where K/z’ generates a principal ideal in K no smaller than that generated by k; 
hence, by virtue of the minimality assumption on h, we have that k = kk’l 
for some I in K. In fact k -= k(k’1)’ for I = 1, 2,... . Now for some n there 
exists k” in K such that (k’l)‘” k” = (K’I)“. Thus (K’l)n is a multiple of an 
idempotent f == (k’l)” k” in K. Hence k = k(k’1)” is a multiple off and so 
b =fb as required. 

We shall have occasion shortly to draw attention to the exact manner in 
which this divisor was found. 
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For two idempotents e, f in K we shall write f < e if the principal ideal 
generated by f is contained in that generated by e, or (equivalently) if ef = f. 
There can be no infinite descending chain of idempotents in K. 

LEMMA 3.1.3. For each b in U\S there is a smallest idempotent e in K 
dividing b. 

Proof. If e,b = b and e,b = b then ele& = b. Thus the setF of idempotent 
divisors of b in K is a subsemilattice of the semilattice of all idempotents in 
K. Clearly F can have no infinite descending chain and so there must be a 
least element e in F. 

Now fix b, and note that eS = eK (since K is an ideal). Note also that eK 
is properly contained in eU, since b E eU\eK. 

LEMMA 3.1.4. The subsemigroup eK 2s epimorphically embedded in eU. 

Proof. Because of commutativity, if a zigzag exists in U over S with value 
d, then a zigzag exists in eU over eS (= eK) with value ed. 

In the final lemma, H, denotes the maximal subgroup of K containing e. 

LEMMA 3.1 S. There exists an element z in eU\eK whose only divisors in eK 
are the elements of H, . 

Proofm Applying the argument used to prove Lemma 3.1.2, we find an 
element k in eK and an element z in eU’,eK such that b = kz. If k’ is a 
divisor of z in eK, then (again as in the proof of Lemma 3.1.2) there exists 
k* (== (k’)+Ynk”) in K such that k’k* = f, an idempotent in K. This f is an 
idempotent factor of b and so e <f. Hence k’(k*e) = fe = e and so k’ E H, . 
Thus z is the element we require. 

We can now complete the proof of the theorem. By the last lemma, any 
zigzag in eU over eK with value z must in fact be a zigzag over H, . But H, , 
being a group, is absolutely closed and so we have a contradiction. 

We remark that a simplified version of this proof (in which Lemma 3.1.1 
is unnecessary and in which S replaces K in the other lemmas) 
establishes 

THEOREM 3.2. A commutative sem@oup satisfying the minimum condition 
on principal ideals is saturated. 

An interesting property of domination in commutative semigroups is 
given by the next theorem. 

THEOREM 3.3. If a commutative semigroup S is embedded epimorphically 
in a commutative semigroup U, then Sn dominates every element of U\S, for 
every positive integer n. 
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Proof. The result follows from two lemmas, in which all semigroups are 
assumed to be commutative. 

LEMMA 3.3.1. If U is the dominion of 5’ in T, then Sn dominates Un. 

Proof. Let u = u1u2 e-0 ZP be an element of Un (where ui E U for each i). 

Then for i = 1,2 ,..., n, we have a zigzag 

ui = a,dy,i, Qo’ = xl%zl*, 

fzliyli = a2iy2i, xliaZt = ~~~a..~, 
. . . 

a.&ymi = a& , xmiaim = ui, 

since we can easily arrange for all the n zigzags to have the same length by 
inserting repetitions if necessary. Using commutativity we obtain a zigzag 
of the form (1) over Sn with value II, where 

x, = x,1x,2 ‘.. x,n (Y = 1, 2 ,..., m). 

Yr = Yrk2 ***YT* (Y = 1, 2 ,..., m). 
a =Qla2 . . . r t-7 a,” (r = 0, l)..., 274. 

LEMMA 3.3.2. If S is embedded epimorphically in U, then U\S L Un. 

Proof. Let d be an element of lJ\S and let (1) be a zigzag of minimum 
length with value d. Then d = xlaly, , where x1 , yr E U’J. Thus d E Us. 
The same argument can now be applied to x1 (or yr); clearly in this way we 
show that d E U” for any positive integer n. 

A further simple consequence of the lemmas is 

COROLLARY 3.4. If S” is saturated for some positive integer n, then S is 
saturated. 

For if S were epimorphically embedded in U, then Sn would be cpimor- 
phically embedded in W. Thus U\S C U” = Sn C S and so S = U. 

Theorem 3.1 gives a sufficient condition for a commutative semigroup to 
be saturated. The next result gives a necessary condition. First, let us call a 
commutative semigroup inverse closed if an clement CI in S has an inverse 
(in the usual semigroup sense) whenever a2 is a potential divisor of a. 

THEOREM 3.5. Commutative saturated semigroups are inverse closed. 

Proof. Let S be a saturated semigroup and suppose that there exists a 
in S such that a2 is a potential divisor of a, but Q has no inverse. Then a2 is 
not an actual divisor of a, for a = $x would imply that x2u was an inverse of a. 
By a result of Sutov [S] ( see also [3], Theorem 3.9) one can embed S in a 
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semigroup T containing an element x such that a2x = a. The element xa 
of T does not belong to S, for if it did we should have that a2 was a diviso 
of a in S. Hence the subsemigroup U generated in T by S and xax proper1 
contains S. However, there is a zigzag 

xax = a(xax)2, a =I (xax)’ as, ayxax)2 = a, (xax)2 a = xa: 

in U over S with value xax and so the dominion of S in U (being a subsemi 
group of U) must coincide with U. That is, S is embedded epimorphicall: 
in U, in contradiction to our supposition that S is saturated. 

A converse to Theorem 3.5 can bc stated for finitely generated semigroups 

THEOREM 3.6. A finitely generated, commutative, inverse closed semigroq 
is saturated. 

Proof. We show that a semigroup S satisfying these conditions must also 
satisfy the minimum condition on principal ideals, which is sufficient b! 
Theorem 3.2. 

First, by a result of KCdei [4], all congruences on S are finitely generated 
that is, every congruence is generated by a finite subset of S x S. It follow: 
that from every subset of S x S generating a given congruence p on S w( 
can extract a finite subset which still generates p. There cannot exist ar 
infinite ascending chain of congruences on S, for if p1 C p2 C pa C --a were 
such a chain, we could choose a finite set of generators 911i for each pi such tha: 
%lc%2c913c-~ . Then u pi would be a congruence on S having an infinite 
set u ‘9$ of generators no finite subset of which would suffice to generate it 

In S, by virtue of commutativity, the relation p(a) defined by 

(x, y) Ep(a) if xa = ya 

is a congruence (for any element a in S). Moreover, 

p(a) c p(a2) c p(a”) c *-- 

and so for some n we must have that 

p(&l) = p(a”) = p(@ll) E .*a = p(@) E *** . 

It follows that u2n is a potential divisor of a a: the only case that is not imme- 
diately obvious is where a 2n = a2”y for some y in S, in which case we observe 
that (a, uy) E ~(a~‘+~) = ~(a”-‘), so that an L= any as required. Since S is 
inverse closed, there must therefore exist b in S such that a‘% = an. 

Writing e for the idempotent anb, we note that a” belongs to the maximal 
subgroup E-I, . Also 

&-le ca2n+lb za .an = an+' and &I'-' . @-lb" =a2nb2 mm-2 _ e. 
3 

hence an+l E H, also. Thus an-‘-l divides a”. 
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Applying this argument to each member of any finite set {g, ,g, ,..., gm} 
of generators of S, we find that there is (forj = 1, 2,..., N) a positive exponent 
e(j) such that &‘j’+’ divides g;(j). 

Now suppose that elements sr , ss , sa ,... of S generate an infinite descending 
sequence of principal ideals, where 

Si = g~lg;i’ . . . g;,tm (i = I, 2, 3 ,... ), 

with pij > 0. We can suppose that for j = 1, 2 ,..., m, 

Now for each j, either pij stops increasing, so that pi, ,< qj (say) for every i, 
or else pij increases indefinitely. We can assume that the first possibility occurs 
for j = 1, 2,..., Y and the second for j = Y + 1, T + 2 ,..., m. For each j 
between 1 and T, let i(j) be the smallest i for which pij = qj; let 

q = max (i(j) : j = I, 2 ,..., r}. 

Thus in every member of the sequence 

g, (1 < j < Y) occurs with exponent qj . For j = Y i- 1, Y + 2 ,..., m, let 1, 
be the smallest i > q for which plj > e(j); let 

l=max{lj:j=r+1,r+2 ,..., m}. 

Then Si divides sI if i > 1, a contradiction to our assumption that the elements 
.CI 9 s:! , s3 ,*** gcncrate an infinite descending sequence of principal ideals. 
This completes the proof. 
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