Epimorphisms and Dominions. ${ }^{11}$

J. M. Howie
Department of Mathematics, The University, Glasgow W. 2, Scotland

AND
J. R. Isbell

Case Institute of Technology, Cleveland, Ohio
Communicated by Graham Higman
Received May 2, 1965.

This is a sequel to an earlier paper [3]; the account will, however, be almost self-contained. Our object here is to present certain results about dominions in the category of semigroups, in particular about absolutely closed and saturated semigroups.

Recalling the principal definitions in [3], we say that a subsemigroup A of a semigroup B dominates an element d in B if, for an arbitrary semigroup C and arbitrary homomorphisms $f, g: B \rightarrow C, f(a)=g(a)$ for every a in A implies $f(d)=g(d)$. The set of elements of B dominated by A is a subsemigroup of B containing A, which we call the dominion of A. If the dominion of A is the whole of B we say that A is epimorphically embedded in B (for the inclusion mapping is an epimorphism in the usual categorical sense of being right cancellable). If a semigroup S is its own dominion in whatever semigroup it is embedded we call it absolutely closed; if S cannot be (properly) epimorphically embedded in any semigroup we call it saturated. It is shown in [3] (Example 3.3) that a saturated semigroup need not be absolutely closed.

The key to all the results in this paper is the "zigzag" theorem (2.3) in [3]. The commutative analog, which is not a corollary, is proved in Section 1. The proof in the commutative case is in fact a good deal simpler, being free of any appeal to topology.
Section 2 deals with absolutely closed semigroups. It follows from a result in [2] that groups are absolutely closed. Here we show that certain broader

[^0]classes of regular semigroups (including inverse semigroups and full transformation semigroups) are absolutely closed. It does not seem unreasonable to hope for a complete theory of absolute closure for commutative semigroups, but we are far from achieving such an end. Theorem 3.9 in [3] and Theorem 2.6 in the present paper give (respectively) necessary conditions and sufficient conditions for a commutative semigroup to be absolutely closed.

In Section 3 we study saturated semigroups. All the results concern commutative semigroups; about the noncommutative case almost nothing is known, and the example (3.6) in [3], of a finite idempotent semigroup that is not saturated, indicates that a theory of noncommutative saturated semigroups would look very different from the commutative theory. We can state a reasonably concise necessary and sufficient condition for a finitely generated commutative semigroup S to be saturated: it must be "inverse closed", which is to say that an element a in S has an inverse if (for x, y in S^{1}) $a^{2} x=a^{2} y$ implies $a x=a y$. (Here and elsewhere S^{1} denotes the semigroup S with a unit adjoined if necessary.)

1. Zigzags

The zigzag theorem (2.3) of [3] carries over to commutative semigroups, but the commutative theorem is not a corollary, since it might a priori be easier for a subsemigroup of a commutative semigroup to dominate an element with respect to homomorphisms into commutative semigroups.

If A is a subsemigroup of a (not necessarily commutative) semigroup B, a system of equalities

$$
\begin{gather*}
d=a_{0} y_{1}, \quad a_{0}=x_{1} a_{1} \\
a_{2 i-1} y_{i}=a_{2 i} y_{i+1}, \quad x_{i} a_{2 i}=x_{i+1} a_{2 i+1} \quad(i=1,2, \ldots, m-1) \\
a_{2 m-1} y_{m}=a_{2 m}, \quad x_{m} a_{2 m}=d \tag{1}
\end{gather*}
$$

with $a_{0}, a_{1}, \ldots, a_{2 m}$ in A and $x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{m}$ in B will be called a zigzag of length m in B over A with value d. By the spine of the zigzag we shall mean the set of elements $a_{0}, a_{1}, \ldots, a_{2 m}$ (in that order).

Theorem 1.1. A subsemigroup A of a commutative semigroup B dominates an element d in B if and only if either $d \in A$ or there exists a zigzag in B over A with value d.

Proof. We use Lemma 1.1 of [3]. In commutative semigroups the free sum $S_{*} T$ of two objects S and T can be described as follows: first form $S^{(1)}$
and $T^{(1)}$ by adjoining an extra identity element 1 to each of S and T (whether or not they already have identities); then form the direct product of $S^{(1)}$ and $T^{(1)}$; then remove the element $(1,1)$.

It is a routine matter to show that if a zigzag exists with value d, then ($i_{1}(d), i_{2}(d)$) belongs to the congruence \mathfrak{A}^{*} on $B * B$ generated by

$$
\mathfrak{A}=\left\{\left(i_{1}(a), i_{2}(a)\right) ; a \in A\right\} .
$$

Conversely, suppose that A dominates d, so that $\left(i_{1}(d), i_{2}(d)\right) \in \mathfrak{Z a}^{*}$. Thus there is a sequence

$$
\begin{equation*}
(1, d) \rightarrow \cdots \rightarrow(d, 1) \tag{2}
\end{equation*}
$$

of elementary \mathfrak{A}-transitions (in the sense of Clifford and Preston ([I], Section 1.4)) connecting ($1, d$) and ($d, 1$). Now, if

$$
\begin{equation*}
(x, y) \rightarrow(z, t) \tag{3}
\end{equation*}
$$

is an \mathfrak{A}-transition, then either

$$
(x, y)=(p, q)(a, 1)(r, s) \quad \text { and } \quad(z, t)=(p, q)(1, a)(r, s)
$$

or

$$
\begin{gathered}
(x, y)=(p, q)(1, a)(r, s) \quad \text { and } \quad(z, t)=(p, q)(a, 1)(r, s) \\
\left(p, q, r, s \in S^{(1)}\right)
\end{gathered}
$$

Let us call an \mathfrak{U}-transition of the first type an r-step (since the a moves right); one of the second type will be called an l-step. By commutativity we have that $x=z a$ and $a y=k$ if the \mathfrak{H}-transition (3) is an r-step; and $x a=z$ and $y=a t$ if it is an l-step. It is clear that two r-steps (corresponding to a and a^{\prime}, respectively) performed in succession can be collapsed to a single r-step (corresponding to $a^{\prime} a$); a similar remark applies to l-steps. Hence we may assume that r - and l-steps occur alternately in the sequence (2). Since the element 1 has no divisors in A, the first and last \mathfrak{V}-transitions of the sequence (2) must be l-steps. There must therefore be an odd number (say $2 m+1$) of steps, the corresponding factorizations being necessarily of the form

$$
\begin{gathered}
d=a_{0} y_{1}, \quad a_{0}=x_{1} a_{1}, \\
a_{1} y_{1}=-a_{2} y_{2}, \quad x_{1} a_{2}=x_{2} a_{3}, \\
\cdots \\
a_{2 m-3} y_{m-1}=a_{2 m-2} y_{m}, \quad x_{m-1} a_{2 m-2}=x_{m} a_{2 m-1}, \\
a_{2 m-1} y_{m}=a_{2 m}, \quad x_{m} a_{2 m}=d,
\end{gathered}
$$

with all a_{i} in A. This completes the proof of the theorem.

We end this section with two remarks on zigzags, which we shall have occasion to use later.

Lemma 1.2. Let A be a subsemigroup of a semigroup B and suppose that A dominates an element d in $B \backslash A$. Let (1) be a zigzag of minimum length with value d. Then
(i) $x_{1} a_{2} \notin A$ and $a_{2 m-2} y_{m} \notin A$; in particular, a_{2} is neither equal to nor leftdivisible by a_{1}, and $a_{2 m-2}$ is neither equal to nor right-divisible by $a_{2 m-1}$;
(ii) neither of the following two configurations can arise ($a^{\prime}, a^{n} \in A^{1}$):
(a) $\quad a_{2 i-1}=a_{2 i} a^{\prime}, \quad a^{\prime \prime} a_{2 i}=a_{2 i+1} \quad(i=2,3, \ldots, m-1) ;$
(b) $\quad a_{2 i}=a^{\prime} a_{2 i+1}, \quad a_{2 i+1} a^{\prime \prime}=a_{2 i+2} \quad(i=1,2, \ldots, m-2)$.

Proof. (i) If $x_{1} a_{2} \in A$, we can clearly begin a shorter zigzag with $d=\left(x_{1} a_{2}\right) y_{2}$ instead of $d=a_{0} y_{1}$. Similarly, if $a_{2 m-2} y_{m} \in A$, we can end a shorter zigzag with $x_{m-1}\left(a_{2 m-2} y_{m}\right)=d$.
(ii) If we have the equalities (a), it follows easily that

$$
x_{i-1} a_{2 i-2}=x_{i+1} a^{*}, \quad a^{*} y_{i}=a_{2 i+2} y_{i+2}
$$

where $a^{*}=a^{\prime \prime} a_{2 i-1}=a_{2 i+1} a^{\prime}=a^{\prime \prime} a_{2 i} a^{\prime}$. Thus the zigzag can be shortened. This is also the case if we have the equalities (b).

2. Absolutely Closed Semigroups

Two zigzags in a semigroup B over a subsemigroup A will be called equivalent if they have the same spine. Two such zigzags must in fact have the same value; for if

$$
\begin{gather*}
d^{\prime}=a_{0} t_{1}, \quad a_{0}=z_{1} a_{1}, \\
a_{2 i-1} t_{i}=a_{2 i} t_{i+1}, \quad z_{i} a_{2 i}=z_{i+1} a_{2 i+1} \quad(i=1,2, \ldots, m-1), \\
a_{2 m-1} t_{m}=a_{2 m}, \quad z_{m} a_{2 m}=d^{\prime} \tag{4}
\end{gather*}
$$

is a zigzag equivalent to the zigzag (1), then

$$
d=a_{0} y_{1}=z_{1} a_{1} y_{1}=z_{1} a_{2} y_{2}=z_{2} a_{3} y_{2}=\cdots=z_{m} a_{2 m}=d^{\prime}
$$

A zigzag (1) will be called left-inner if $x_{1}, x_{2}, \ldots, x_{m} \in A$. Clearly in such a case $d=x_{m} a_{2 m} \in A$. A useful notion in the investigation of absolutely closed semigroups is that of a left-isolated semigroup, that is, a semigroup A with the property that any zigzag over it (in any containing semigroup B)
is equivalent to a left-inner zigzag. Obviously, by virtue of the zigzag theorem in [3]:

Lemma 2.1. Left-isolated semigroups are absolutely closed.

It turns out to be fairly easy to show that certain classes of semigroups are left-isolated; hence by the lemma they are absolutely closed. Much of this discussion is not symmetric; it is of course the case that the left-right duals of our theorems also hold.

First, consider a left-simple semigroup, that is, a semigroup A in which for every a, b, in A there exists a solution in A of the equation $x a=b$. Any zigzag (1) over A is equivalent to a left-inner zigzag (4), where $t_{i}=y_{i}$ for all i, z_{1} is any solution in A of the equation $x a_{1}=a_{0}, z_{2}$ is any solution in A of $x a_{3}=z_{1} a_{2}$, and so on. Thus we have

Theorem 2.2. Left-simple semigroups are absolutely closed.
Less trivial is the case of an inverse semigroup, defined as a semigroup A in which for every a there exists a unique x (called the inverse of a and in what follows denoted by \tilde{a}) such that

$$
a x a=a, \quad x a x=x
$$

It is known (see [1, Section 1.9] for this and other standard results on inverse semigroups) that idempotents commute in such a semigroup. Also, $a \bar{a}$ and $\bar{a} a$ are idempotent,

$$
\vec{a}=a, \quad \overline{a b}=\bar{b} \bar{a},
$$

$\bar{e}=e$ if e is idempotent, and $\bar{a} e a$ is idempotent for any element a and any idempotent e.

Theorem 2.3. Inverse semigroups are absolutely closed.

Proof. We show that any zigzag (1) over an inverse semigroup A is equivalent to a left inner zigzag (4), in which $t_{i}=y_{i}$ for every i. For $r=1,2, \ldots, m$, let $z_{r}=a_{0} u_{r}$, where

$$
u_{r}=\bar{a}_{1} a_{2} \bar{a}_{3} a_{4} \cdots \bar{a}_{2 r-3} a_{2 r-2} \bar{a}_{2 r-1}
$$

Then clearly

$$
a_{0}=x_{1} a_{1}=x_{1} a_{1} \bar{a}_{1} a_{1}=a_{0} \bar{a}_{1} a_{1}=z_{1} a_{1}
$$

We will show that $z_{r} a_{2 r}=z_{r+1} a_{2 r+1}$ for $r=1,2, \ldots, m-1$. First we show inductively that

$$
\begin{equation*}
z_{r}=x_{r} \bar{u}_{r} u_{r} \quad(r=1,2, \ldots, m-1) \tag{5}
\end{equation*}
$$

The result is immediate for $r=1$. Also,

$$
\begin{align*}
x_{r} & =z_{r-1} a_{2 r-2} \bar{a}_{2 r-1} \\
& =x_{r-1} \bar{u}_{r-1} u_{r-1} a_{2 r-2} \bar{a}_{2 r-1} \\
& =x_{r-1}\left(\bar{u}_{r-1} u_{r-1}\right)\left(a_{2 r-2} \bar{a}_{2 r-2}\right) a_{2 r-2} \bar{a}_{2 r-1} \\
& =x_{r-1} a_{2 r-2} \bar{a}_{2 r-2} \bar{u}_{r-1} u_{r-1} a_{2 r-2} \bar{a}_{2 r-1} \tag{1}\\
& =x_{r} a_{2 r-1} \bar{a}_{2 r-2} \bar{u}_{r-1} u_{r-1} a_{2 r-2} \bar{a}_{2 r-1} \\
& =x_{r} \bar{u}_{r} u_{r}
\end{align*}
$$

$$
=x_{r-1} a_{2 r-2} \bar{a}_{2 r-2} \bar{u}_{r-1} u_{r-1} a_{2 r-2} \bar{a}_{2 r-1} \quad \text { (since idempotents commute) }
$$

hence formula (5) is proved.
It now follows that

$$
\begin{align*}
z_{r} a_{2 r} & =x_{r} \bar{u}_{r} u_{r} a_{2 r} \\
& =x_{r}\left(\bar{u}_{r} u_{r}\right)\left(a_{2 r} \bar{a}_{2 r}\right) a_{2 r} \\
& =x_{r} a_{2 r} \bar{a}_{2 r} \bar{u}_{r} u_{r} a_{2 r} \\
& =x_{r+1} a_{2 r+1} \bar{a}_{2 r} \bar{u}_{u} u_{r} a_{2 r} \tag{1}\\
& =x_{r+1} a_{2 r+1}\left(\bar{a}_{2 r+1} a_{2 r+1}\right)\left(\bar{a}_{2 r} \bar{u}_{r} u_{r} a_{2 r}\right) \\
& =x_{r+1} a_{2 r+1} \bar{a}_{2 r} \bar{u}_{r} u_{r} a_{2 r} \bar{a}_{2 r+1} a_{2 r+1} \\
& =x_{r+1} \bar{u}_{r-1} u_{r+1} a_{2 r+1} \\
& =z_{r+1} a_{2 r+1}
\end{align*}
$$

This completes the proof.
The example (3.6) in [3] shows that not every regular semigroup is absolutely closed. Indeed it shows much more than this; to find a regular semigroup that is not absolutely closed one need look no further than the 2×2 rectangular band (see [1], p. 25). This will follow from Theorem 2.9.

The full transformation semigroup on a ground set G is defined to consist of all mappings of G into itself, with composition of mappings as the semigroup operation.

Theorem 2.4. Full transformation semigroups are absolutely closed.
Proof. Again we show that if A, a full transformation semigroup (with ground set G) is embedded in an arbitrary semigroup B, then any zigzag in B over A is equivalent to a left-inner zigzag. Suppose we have a zigzag (1). Then, for $i=1,2, \ldots, m$, from the existence of $b_{i}, b_{i-1}, \ldots, b_{1}, c_{i}, c_{i-1}, \ldots, c_{1}$ in A such that

$$
\begin{gather*}
a_{2 i-1} b_{i}=a_{2 i-1} c_{i} \\
a_{2 i-2} b_{i}=a_{2 i-3} b_{i-1}, \quad a_{2 i-2} c_{i}=a_{2 i-3} c_{i-1} \\
a_{2 i-4} b_{i-1}=a_{2 i-5} b_{i-2}, \quad a_{2 i-4} c_{i-1}=a_{2 i-5} c_{i-1} \tag{6}\\
\cdots \\
a_{2} b_{2}=a_{1} b_{1}, \quad a_{2} c_{2}=a_{1} c_{1}
\end{gather*}
$$

we can deduce that $a_{0} b_{1}=a_{0} c_{1}$. For, beginning with $a_{2 i-1} b_{i}=a_{2 i-1} c_{i}$, we can successively deduce

$$
\begin{aligned}
& x_{i} a_{2 i-1} b_{i}=x_{i} a_{2 i-1} c_{i}, \\
& x_{i-1} a_{2 i-2} b_{i}=x_{i-1} a_{2 i-2} c_{i}, \\
& x_{i-1} a_{2 i-3} b_{i-1}=x_{i-1} a_{2 i-3} c_{i-1}, \\
& x_{i-2} a_{2 i-4} b_{i-1}=x_{i-2} a_{2 i-4} c_{i-1}, \\
& \ldots \\
& x_{1} a_{1} b_{1}=x_{1} a_{1} c_{1}, \\
& a_{0} b_{1}=a_{0} c_{1} .
\end{aligned}
$$

Now let p be some fixed element of G. For $i=1,2, \ldots, m$, define $z_{i} \in A$ as follows: if there exist $g_{i}, g_{i-1}, \ldots, g_{1}$ in G such that

$$
\begin{gather*}
g=a_{2 i-1}\left(g_{i}\right), \quad a_{2 i-2}\left(g_{i}\right)=a_{2 i-3}\left(g_{i-1}\right), \\
a_{2 i-4}\left(g_{i-1}\right)=a_{2 i-5}\left(g_{i-2}\right), \ldots, a_{2}\left(g_{2}\right)=a_{1}\left(g_{i}\right), \tag{7}
\end{gather*}
$$

then $z_{i}(g)=a_{0}\left(g_{1}\right)$; otherwise $z_{i}(g)=p$. Then z_{i} is a well-defined mapping of G into itself. For suppose that $h_{i}, h_{i-1}, \ldots, h_{1}$ is another sequence of elements in G satisfying the conditions (7). Then for $k=1,2, \ldots, i$ define the elements b_{k}, c_{k} of A by

$$
b_{k}(g)=g_{k}, \quad c_{k}(g)=h_{k} \quad \text { for every } g \text { in } G
$$

We obtain the equalities (6), and so it follows that $a_{0} b_{1}=a_{0} c_{1}$, i.e., that $a_{0}\left(g_{1}\right)=a_{0}\left(h_{1}\right)$.

Also, $z_{i+1} a_{2 i+1}(g)=a_{0}\left(g_{1}\right)$ if there exist $g_{i}, g_{i-1}, \ldots, g_{1}$ such that

$$
\begin{gather*}
a_{2 i}(g)=a_{2 i-1}\left(g_{i}\right), \quad a_{2 i-2}\left(g_{i}\right)=a_{2 i-3}\left(g_{i-1}\right), \\
a_{2 i-4}\left(g_{i-1}\right)=a_{2 i-5}\left(g_{i-2}\right), \ldots, a_{2}\left(g_{2}\right)=a_{1}\left(g_{1}\right), \tag{8}
\end{gather*}
$$

and cquals p otherwisc. But Eqs. (8) constitutc exactly the condition under which $z_{i} a_{2 i}(g)=a_{0}\left(g_{1}\right)$. Hence

$$
z_{i} a_{2 i}=z_{i+1} a_{2 i+1} \quad(i=1,2, \ldots, m-1)
$$

and so (taking $t_{i}=y_{i}$ for every i) we have a left-inner zigzag (4) equivalent to the original zigzag (1). This completes the proof.

Corollary 2.5 (cf. [3], Corollary 1.8). Every finite semigroup is embeddable in a finite absolutely closed semigroup.

To describe the next class of absolutely closed semigroups we require some preliminary definitions. Some of these are already in [3], but we shall repeat them here for convenience. If c and d are two distinct elements of a
semigroup S, then, following Sutov [5], we shall call c a potential left divisor of d if, for every, a, b, in S^{1},

$$
a c=b c \quad \text { implies } \quad a d=b d .
$$

S will be called left-division-ordered if all potential left-divisors are actual divisors, and left-totally division-ordered if it is left-division-ordered and if, for any two distinct elements x and y in S, either x is a left-divisor of y or y is a left-divisor of x. The dual definitions are obvious. A semigroup will be called totally division-ordered if it is both left- and right-totally divisionordered.

We know ([3], Theorems 3.9 and 3.10) that absolutely closed commutative semigroups are division-ordered, but that not all division-ordered commutative semigroups are absolutely closed. The next theorem identifies a class of (not necessarily commutative) division-ordered semigroups that are absolutely closed.

Theorem 2.6. Totally division-ordered semigroups are absolutely closed.

Proof. Let A, a totally division-ordered semigroup, be embedded in a semigroup B, and let d be an element in the dominion of A. Suppose that $d \in B \backslash A$ and that (1) is a zigzag of minimum length with value d.

By Lemma 1.2 (i), a_{2} is neither equal to nor left-divisible by a_{1}; hence a_{1} is left-divisible by a_{2}. By part (ii) of the same lemma it follows that a_{3} is neither equal to nor right-divisible by a_{2}; hence a_{2} is right-divisible by a_{3}. Hence a_{4} is neither equal to nor left-divisible by a_{3}; hence a_{3} is left-divisible by a_{4}; and so on. We end with the statement that $a_{2 m}$ is neither equal to nor left-divisible by $a_{2 m-1}$. But $a_{2 m}=a_{2 m-1} y_{m}$, so that $a_{2 m-1}$ is a potential (and hence an actual) left-divisor of $a_{2 m}$. This is a contradiction and so A is absolutely closed.

Corollary 2.7. Finite monothetic semigroups are absolutely closed.
Proof. If A is such a semigroup, then (see [1], Section 1.6]) A is commutative and has distinct elements

$$
x, x^{2}, \ldots, x^{r}, x^{r+1}, \ldots, x^{r+m-1}
$$

where

$$
x^{r}=x^{r+m}
$$

The set of elements $\left\{x^{r}, x^{r+1}, \ldots, x^{r+m-1}\right\}$ is a subgroup K of A. It is clear that if y and z are two distinct elements of A, then either y divides z or z divides y. It remains to verify that a semigroup of this type is division-ordered.

Let $c=x^{k}$ and $d=x^{l}$ be two distinct elements of A, and suppose that c is a potential divisor of d :

$$
a c=b c \quad \text { implies } \quad a d=b d
$$

for all a, b in A^{1}. If $k \geqslant r$, take $a=1$ and $b=x^{m}$. Then $a c=b c$ and so $a d=b d$; that is, $x^{l}=x^{l+m}$. It follows that $l \geqslant r$ and so both c and d are in the subgroup K, where divisibility is automatic. If $k<r$, take $a=x^{r-k}$ and $b=x^{r-k+m}$. Then $a c=b c$ and so $a d=b d$: that is, $x^{r-k+l}=x^{r-k+l+m}$. It follows that $r-k+l \geqslant r$ and so (k and l being, by assumption, distinct) $l>k$. Thus c is a divisor of d.

Notice that the infinite monothetic semigroup is certainly not absolutely closed, being epimorphically embeddable in an infinite cyclic group. However, in([3], Example 3.4), the infinite monothetic semigroup is embedded as a retract in a semigroup A which is not only (as stated in [3]) saturated, but even (as is easily verified) totally division-ordered. We conclude that a retract of an absolutely closed semigroup need not even be saturated. We do not know whether a direct product of two absolutely closed semigroups must be saturated, but it need not be absolutely closed: the direct product of two (monothetic) 2 -element zero semigroups is a 4 -element zero semigroup, which is not division ordered.

In a semigroup S we shall call an element u a unit if $u S=S u=S$. Clearly if S is finite then the set of nonunits in S is a subsemigroup.

Theorem 2.8. If the subsemigroup of nonunits of a finite semigroup S is absolutely closed, then so is S.

Proof. Suppose that S is embedded in a semigroup T, that $d \in T \backslash S$ is in the dominion of S, and that (1) is a zigzag of minimum length with value d. By Lemma 1.2 (ii), no $a_{j}(j=2,3, \ldots, 2 m-2)$ can have the property $a_{j} S=S a_{j}=S$. By part (i) of the same lemma, a_{g} is not left-divisible by a_{1} and so $a_{1} S \neq S$; similarly, $S a_{2 m-1} \neq S$. Finally, $a_{0} S=x_{1} a_{1} S$ cannot contain any more elements than $a_{1} S$ and so must be properly contained in S; similarly, $S a_{2 m} \neq S$.

We have shown that the zigzag (1) must in fact be a zigzag over the subsemigroup of nonunits of S. The result follows.

The next theorem implies in particular that the 2×2 rectangular band is not absolutely closed.

Theorem 2.9. If a semigroup S contains elements a_{1}, a_{2}, a_{3} such that $a_{1} S \cap a_{2} S=S a_{2} \cap S a_{3}=\emptyset$, then S is not absolutely closed.
Proof. Consider the free semigroup $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ and let
$P=S *\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Let T be the factor semigroup of P by the congruence generated by

$$
\Re=\left\{\left(a_{1}, x_{1} a_{1}\right),\left(a_{1} y_{1}, a_{2} y_{2}\right),\left(x_{1} a_{2}, x_{2} a_{3}\right),\left(a_{3} y_{2}, a_{3}\right)\right\}
$$

We show that S is embedded in T with dominion properly containing S. Consider a sequence of elementary \mathfrak{R}-transitions conducted in P and beginning on an element of S. Any element of P obtained by performing such a sequence is of the type

$$
w^{1} z^{1} w^{2} z^{2} \cdots w^{n}
$$

where $w^{1}, w^{2}, \ldots, w^{n}$ are (perhaps empty) elements in S and each of z^{1}, z^{2}, \ldots, z^{n-1} is either x_{1} or y_{2}; moreover if $z^{i}=x_{1}$ and w^{i+1} is nonempty, then $w^{i+1} \in a_{1} S$, and if $z^{i}=y_{2}$ and w^{i} is nonempty, then $w^{i} \in S a_{3}$. It is not hard to prove this by induction: the crucial point is that the second and third relations in \Re can never be used, since

$$
a_{1} S \cap a_{2} S=S a_{2} \cap S a_{3}=\emptyset
$$

As a consequence, two elements p and q in S are equal (in S) if they are connected by a sequence of elementary \Re-transitions in P; for we can produce an "image" sequence of equalities in S simply by leaving out all x_{1} 's and y_{2} 's. Hence $S \subset T$.

Moreover, we can conclude that the element $d=a_{1} y_{1}$ of T is not in S, since the corresponding element of P is not of the form described above. However,

$$
\begin{aligned}
& d=a_{1} y_{1}, \quad a_{1}=x_{1} a_{1}, \\
& a_{1} y_{1}=a_{2} y_{2}, \quad x_{1} a_{2}=x_{2} a_{3}, \\
& a_{3} y_{2}=a_{3}, \quad x_{2} a_{3}=d
\end{aligned}
$$

is a zigzag in T over S with value d. Thus d is dominated by S and so S is not absolutely closed.

3. Saturated Semigroups

In this section we shall be concerned exclusively with commutative semigroups.

In a commutative semigroup S, define S_{1} to be S, S_{2} to be the set of all clements having potential divisors in $S^{2}, S_{\alpha+1}$ as the set of all elements having potential divisors in $S_{\alpha} \cdot S$, and S_{λ} as $\bigcap\left\{S_{\alpha}: \alpha<\lambda\right\}$ if λ is a limit ordinal. Then $S_{1} \supseteq S_{2} \supseteq \cdots$ and so the descent must stabilize at some ordinal τ. We define $K=K(S)$ as $\cap\left\{S_{\alpha}: \alpha \leqslant \tau\right\}$. Then K is an ideal of S.

Theorem 3.1. If S is a commutative semigroup and $K(S)$ satisfies the minimum condition on principal ideals, then S is saturated.

It is convenient to lay out the proof of this theorem in a series of lemmas, all of which hold under the hypothesis that S is properly epimorphically embedded in some semigroup U. We shall eventually derive a contradiction.

Before starting on the lemmas, we note that some power of each element a in K lies in a subgroup of K; for the descending sequence of principal ideals generated in turn by a, a^{2}, a^{3}, \ldots must stabilize, and so for some n we have that a^{n} is a multiple $a^{2 n} c$ of $a^{2 n}$. It follows that a^{n} lies in the maximal subgroup containing the idempotent $a^{n} c$.

Lemma 3.1.1. If $d \in U \backslash S$, then every multiple of d that lies in S must necessarily lie in K.

Proof. Suppose, by way of contradiction, that some $s=d u$ is in S_{β} but not in $S_{\beta+1}$, and choose s to make β as small as possible. Since S dominates the whole of U by hypothesis, there is a zigzag over S with value d; in particular, $d=a_{0} y_{1}=x_{1} a_{1} y_{1}$. Since $d \in U \backslash S$ we can choose the zigzag to be as short as possible, in which case $x_{1} \in U \backslash S$. Thus $x_{1} a_{1}=a_{0}$ is a multiple of x_{1} lying in S; hence $x_{1} a_{1}=a_{0} \in S_{\beta}$.

Now $s=a_{0} \cdot y_{1} u$, and either $y_{1} u=a_{0}{ }^{\prime} \in S$ or $y_{1} u=a_{0}{ }^{\prime} y_{1}^{\prime}$ by the zigzag theorem (since the embedding of S in U is by assumption epimorphic). In either case $a_{0} a_{0}{ }^{\prime}$ is a potential divisor of s, and $a_{0} a_{0}{ }^{\prime} \in S_{\beta} \cdot S$. Hence $s \in S_{\beta+1}$, a contradiction.

Lemma 3.1.2. Every element b in $U \backslash S$ is a multiple of an idempotent f in K.
Proof. By the zigzag theorem, $b=a_{0} y_{1}=x_{1} a_{1} y_{1}$, where $a_{0}, a_{1} \in S$. In fact by the previous lemma, $a_{0}=x_{1} a_{1} \in K$. If B is the set (non-empty, by virtue of the preceding remark) of elements in K dividing b, consider the set \mathfrak{B} of principal ideals of K generated by the elements of B, and let k be any element in B for which the principal ideal generated by k is minimal in \mathfrak{B}. Then $b=k z$ for some z in $U S$.

Notice now that we have shown incidentally that every element in $U \backslash S$ is a multiple of some element in K. Applying this to z, we find that $z=k^{\prime} u$, where $k k^{\prime}$ generates a principal ideal in K no smaller than that generated by k; hence, by virtue of the minimality assumption on k, we have that $k=k k^{\prime} l$ for some l in K. In fact $k=k\left(k^{\prime} l\right)^{r}$ for $r=1,2, \ldots$. Now for some n there exists $k^{\prime \prime}$ in K such that $\left(k^{\prime} l\right)^{2 n} k^{\prime \prime}=\left(k^{\prime} l\right)^{n}$. Thus $\left(k^{\prime} l\right)^{n}$ is a multiple of an idempotent $f==\left(k^{\prime} l\right)^{n} k^{\prime \prime}$ in K. Hence $k=k\left(k^{\prime} l\right)^{n}$ is a multiple of f and so $b=f b$ as requircd.

We shall have occasion shortly to draw attention to the exact manner in which this divisor was found.

For two idempotents e, f in K we shall write $f \leqslant e$ if the principal ideal generated by f is contained in that generated by e, or (equivalently) if $e f=f$. There can be no infinite descending chain of idempotents in K.

Lemma 3.1.3. For each b in $U \backslash S$ there is a smallest idempotent e in K dividing b.

Proof. If $e_{1} b=b$ and $e_{2} b=b$ then $e_{1} e_{2} b=b$. Thus the set F of idempotent divisors of b in K is a subsemilattice of the semilattice of all idempotents in K. Clearly F can have no infinite descending chain and so there must be a least element e in F.

Now fix b, and note that $e S=e K$ (since K is an ideal). Note also that $e K$ is properly contained in $e U$, since $b \in e U \backslash e K$.

Lemma 3.1.4. The subsemigroup eK is epimorphically embedded in eU.
Proof. Because of commutativity, if a zigzag exists in U over S with value d, then a zigzag exists in $e U$ over $e S(=e K)$ with valuc ed.

In the final lemma, H_{e} denotes the maximal subgroup of K containing e.
Lemma 3.1.5. There exists an element z in e $U \backslash e K$ whose only divisors in $e K$ are the elements of H_{e}.

Proof. Applying the argument used to prove Lemma 3.1.2, we find an element k in $e K$ and an element z in $e U \backslash e K$ such that $b=k z$. If k^{\prime} is a divisor of z in $e K$, then (again as in the proof of Lemma 3.1.2) there exists $k^{*}\left(=\left(k^{\prime}\right)^{n-1} l^{n} k^{n}\right)$ in K such that $k^{\prime} k^{*}=f$, an idempotent in K. This f is an idempotent factor of b and so $e \leqslant f$. Hence $k^{\prime}\left(k^{*} e\right)=f e=e$ and so $k^{\prime} \in H_{c}$. Thus z is the element we require.

We can now complete the proof of the theorem. By the last lemma, any zigzag in $e U$ over $e K$ with value z must in fact be a zigzag over H_{b}. But H_{θ}, being a group, is absolutely closed and so we have a contradiction.

We remark that a simplified version of this proof (in which Lemma 3.1.1 is unnecessary and in which S replaces K in the other lemmas) establishes

Theorem 3.2. A commutative semigroup satisfying the minimum condition on principal ideals is saturated.

An interesting property of domination in commutative semigroups is given by the next theorem.

Theorem 3.3. If a commutative semigroup S is embedded epimorphically in a commutative semigroup U, then S^{n} dominates every element of $U \backslash S$, for every positive integer n.

Proof. The result follows from two lemmas, in which all semigroups are assumed to be commutative.

Lemma 3.3.1. If U is the dominion of S in T, then S^{n} dominates U^{n}.
Proof. Let $u=u^{1} u^{2} \cdots u^{n}$ be an element of U^{n} (where $u^{i} \in U$ for each i). Then for $i=1,2, \ldots, n$, we have a zigzag

$$
\begin{array}{rlrl}
u^{i} & =a_{0}{ }^{i} y_{1}{ }^{i}, & a_{0}{ }^{i} & =x_{1}{ }^{i} a_{1}{ }^{i}, \\
a_{1}{ }^{i} y_{1}{ }^{i} & =a_{2}{ }^{i} y_{2}{ }^{i}, & x_{1}{ }^{i} a_{2}{ }^{i} & =x_{2}{ }^{i} a_{3}{ }^{i}, \\
\ldots & & \\
a_{2 m-1}^{i} y_{m}{ }^{i} & =a_{2 m}^{i}, & x_{m}{ }^{i} a_{2 m}^{i} & =u^{i},
\end{array}
$$

since we can easily arrange for all the n zigzags to have the same length by inserting repetitions if necessary. Using commutativity we obtain a zigzag of the form (1) over S^{n} with value u, where

$$
\begin{array}{ll}
x_{r}=x_{r}{ }^{1} x_{r}^{2} \cdots x_{r}{ }^{2} & (r=1,2, \ldots, m) . \\
y_{r}=y_{r}^{1} y_{r}^{2} \cdots y_{r}{ }^{2} & (r=1,2, \ldots, m) . \\
a_{r}=a_{r}{ }^{1} a_{r}^{2} \cdots a_{r}{ }^{2} & (r=0,1, \ldots, 2 m) .
\end{array}
$$

Lemma 3.3.2. If S is embedded epimorphically in U, then $U \backslash S \subseteq U^{n}$.
Proof. Let d be an element of $U \backslash S$ and let (1) be a zigzag of minimum length with value d. Then $d=x_{1} a_{1} y_{1}$, where $x_{1}, y_{1} \in U \backslash S$. Thus $d \in U^{3}$. The same argument can now be applied to x_{1} (or y_{1}); clearly in this way we show that $d \in U^{n}$ for any positive integer n.

A further simple consequence of the lemmas is
Corollary 3.4. If S^{n} is saturated for some positive integer n, then S is saturated.

For if S were epimorphically embedded in U, then S^{n} would be epimorphically embedded in U^{n}. Thus $U \backslash S \subseteq U^{n}=S^{n} \subseteq S$ and so $S=U$.

Theorem 3.1 gives a sufficient condition for a commutative semigroup to be saturated. The next result gives a necessary condition. First, let us call a commutative semigroup inverse closed if an element a in S has an inverse (in the usual semigroup sense) whenever a^{2} is a potential divisor of a.

'Theorem 3.5. Commutative saturated semigroups are inverse closed.

Proof. Let S be a saturated semigroup and suppose that there exists a in S such that a^{2} is a potential divisor of a, but a has no inverse. Then a^{2} is not an actual divisor of a, for $a=a^{2} x$ would imply that $x^{2} a$ was an inverse of a. By a result of Sutov [5] (see also [3], Theorem 3.9) one can embed S in a
semigroup T containing an element x such that $a^{2} x=a$. The element $x a$. of T does not belong to S, for if it did we should have that a^{2} was a diviso of a in S. Hence the subsemigroup U generated in T by S and $x a x$ properl: contains S. However, there is a zigzag
$x a x=a(x a x)^{2}, \quad a=(x a x)^{2} a^{3}, \quad a^{3}(x a x)^{2}=a, \quad(x a x)^{2} a=x a:$
in U over S with value $x a x$ and so the dominion of S in U (being a subsemi group of U) must coincide with U. That is, S is embedded epimorphicall: in U, in contradiction to our supposition that S is saturated.

A converse to Theorem 3.5 can be stated for finitely generated semigroups
Theorem 3.6. A finitely generated, commutative, inverse closed semigrou ${ }_{1}$ is saturated.

Proof. We show that a semigroup S satisfying these conditions must alst satisfy the minimum condition on principal ideals, which is sufficient b, Theorem 3.2.

First, by a result of Rédei [4], all congruences on S are finitely gencrated that is, every congruence is generated by a finite subset of $S \times S$. It follow: that from every subset of $S \times S$ generating a given congruence ρ on S we can extract a finite subset which still generates ρ. There cannot exist ar infinite ascending chain of congruences on S, for if $\rho_{1} \subset \rho_{2} \subset \rho_{3} \subset \cdots$ were such a chain, we could choose a finite set of gencrators \Re_{i} for each ρ_{i} such tha $\Re_{1} \subset \Re_{2} \subset \Re_{3} \subset \cdots$. Then $\bigcup \rho_{i}$ would be a congruence on S having an infinits set $\bigcup \Re_{i}$ of generators no finite subset of which would suffice to generate it.

In S, by virtue of commutativity, the relation $\rho(a)$ defined by

$$
(x, y) \in p(a) \quad \text { if } \quad x a=y a
$$

is a congruence (for any element a in S). Moreover,

$$
\rho(a) \subseteq \rho\left(a^{2}\right) \subseteq \rho\left(a^{3}\right) \subseteq \cdots
$$

and so for some n we must have that

$$
\rho\left(a^{n-1}\right)=\rho\left(a^{n}\right)=\rho\left(a^{n+1}\right)=\cdots=\rho\left(a^{2 n}\right)=\cdots
$$

It follows that $a^{2 n}$ is a potential divisor of a^{n} : the only case that is not immediately obvious is where $a^{2 n}=a^{2 n} y$ for some y in S, in which case we observe that $(a, a y) \in \rho\left(a^{2 n-1}\right)=\rho\left(a^{n-1}\right)$, so that $a^{n}:=a^{n} y$ as required. Since S is inverse closed, there must therefore exist b in S such that $a^{2 n} b=a^{n}$.

Writing e for the idempotent $a^{n} b$, we note that a^{n} belongs to the maximal subgroup H_{e}. Also
$a^{n+1} e=a^{2 n+1} b=a \cdot a^{n}=a^{n+1} \quad$ and $\quad a^{n+1} \cdot a^{n-1} b^{2}=a^{2 n} b^{2}=e^{2}=e ;$
hence $a^{n+1} \in H_{e}$ also. Thus a^{n-1} divides a^{n}.

Applying this argument to each member of any finite set $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ of generators of S, we find that there is (for $j=1,2, \ldots, m$) a positive exponent $e(j)$ such that $g_{j}^{e(j)+1}$ divides $g_{j}^{e(j)}$.

Now suppose that elements $s_{1}, s_{2}, s_{3}, \ldots$ of S generate an infinite descending sequence of principal ideals, where

$$
s_{i}=g_{1}^{p_{1}} g_{2}^{p_{i 2}} \cdots g_{m}^{D_{i m}} \quad(i=1,2,3, \ldots)
$$

with $p_{i j} \geqslant 0$. We can suppose that for $j=1,2, \ldots, m$,

$$
p_{1 j} \leqslant p_{2 j} \leqslant p_{3 j} \leqslant \cdots
$$

Now for each j, either $p_{i j}$ stops increasing, so that $p_{i j} \leqslant q_{j}$ (say) for every i, or else $p_{i j}$ increases indefinitely. We can assume that the first possibility occurs for $j=1,2, \ldots, r$ and the second for $j=r+1, r+2, \ldots, m$. For each j between 1 and r, let $i(j)$ be the smallest i for which $p_{i j}=q_{j}$; let

$$
q=\max \{i(j): j=1,2, \ldots, r\}
$$

Thus in every member of the sequence

$$
s_{q}, s_{q+1}, s_{a+2}, \ldots,
$$

g, $(1 \leqslant j \leqslant r)$ occurs with exponent q_{j}. For $j=r+1, r+2, \ldots, m$, let l_{j} be the smallest $i>q$ for which $p_{i j} \geqslant e(j)$; let

$$
l=\max \left\{l_{j}: j=r+1, r+2, \ldots, m\right\}
$$

'Ihen s_{i} divides s_{l} if $i>l$, a contradiction to our assumption that the elements $s_{1}, s_{2}, s_{3}, \ldots$ generate an infinite descending sequence of principal ideals. This completes the proof.

References

1. Clffrord, A. H. and Preston, G. B. "The Algebraic Theory of Semigroups," Vol. 1 [MathematicalSurveys of the American Mathematical Society (7th in Serics)]. Amcrican Mathematical Society. Providence, Rhode Island, 1961.
2. Howie, J. M. Embedding theorems with amalgamation for semigroups. Proc. London Math. Soc., Ser 312 (1962), 511-534.
3. Isbell, J. R. Epimorphisms and dominions. In "Procecdings of the Conference on Categorical Algebra, La Jolla, 1965," pp. 232-246. Lange \& Springer, Berlin, 1966.
4. Reinei, L. Theorie der endlich erzeugbaren kommutativen Halbgruppen. Hamburg. Math. Einzelschrift. Heft, 41, Wurtzburg, 1963.
5. Sutov, E. G. Potential divisibility in commutative semigroups. Izv. Vyshikh. Uchebn. Zavedenii Mat. 41 (1964), 162-168 (in Russian).

[^0]: ${ }^{1}$ The authors acknowledge support from the National Science Foundation Grant GP1791 to Tulane University.

