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1. The results

Consider the Liénard vector field

ẋ = y − F (x), ẏ = −G ′(x), (1.1)

where F and G are polynomials of degree m + 1 and n + 1 respectively. It is related with the second
order Liénard equation via the formulas f (x) = F ′(x), g(x) = G ′(x). The principal problem concerning
the system (1.1) is to find a maximal number H(m,n) of its limit cycles (a special case of the Hilbert’s
16th problem). In this paper we study a weaker problem, we ask about the number of small limit
cycles.
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We assume that the origin x = y = 0 is a singular point of the center or focus type. Therefore

F (x) = a1x + · · · + am+1xm+1, G(x) = b2x2 + · · · + bn+1xn+1, (1.2)

where a2
1 < 8b2. We can also assume that

b2 = 1. (1.3)

When we introduce the local analytic variable

u = √
G(x) = x + · · · ,

then the system (1.1) becomes orbitally equivalent to

u̇ = y − Φ(u), ẏ = −2u, Φ = c1u + c2u2 + · · · . (1.4)

Here the series

X = c1Y 1/2 + c2Y + c3Y 3/2 + · · · (1.5)

is the Puiseux expansion at the point X = Y = 0 of the curve

C : X = F (x), Y = G(x). (1.6)

It is well known, see [3], that the system (1.1) (equivalently, the system (1.4)) has center at the
origin if and only if c1 = c3 = · · · = 0, i.e. Φ(u) = Φ̃(u2) is an even function. From the algebraic
point of view this means that the curve (1.6) is multiply covered (or non-primitive). By the Lüroth
theorem (see [7]) we have F (x) = F̃ ◦ ω(x), G(x) = G̃ ◦ ω(x) for a polynomial ω(x) = x2 + · · · . From
the dynamical point of view this means that the system (1.4) is time–reversible and the system (1.1)
is rationally reversible, i.e. it can be pushed forward via the map (x, y) → (ω(x), y).

The coefficients c1, c3, c5, . . . are called the essential Puiseux quantities of the singularity X = Y = 0
of the curve C (see [1]). They are related with the Poincaré–Lyapunov quantities g1, g3, . . . , which
appear in the Taylor expansion of the Poincaré return map

r → P (r) = r + g1r(1 + · · ·) + g3r3(1 + · · ·) + · · · , r → 0+, (1.7)

from the section {(x, y) = (r,0): r � 0)} to itself. Namely, g j are proportional to c j with coefficients
depending only on j. We refer the reader to [5] for details.

Since the fixed points of the map (1.7) correspond to the limit cycles of the Liénard vector field, the
essential Puiseux quantities of the curve C become responsible for the small amplitude limit cycles of
the system (1.1).

The quantities c j and g j depend on the coefficients ak and bl in the polynomials F and G
(see (1.2)). In fact, they are polynomials in a = (a1, . . . ,am+1) and b = (b3, . . . ,bn+1), e.g. for b2 = 1.
So the expansion (1.6) varies with varying (a,b). This variation results in bifurcation of fixed points of
the map P (r) from the point r = 0 (the generalized Hopf bifurcation). For instance, when g2ν+1 �= 0
and the coefficients g1, g3, . . . , g2ν−1 vary independently, then they can be chosen such that either

0 < g1 � −g3 � g5 � · · · � ±g2ν+1, or

0 < −g1 � g3 � −g5 � · · · � ∓g2ν+1. (1.8)

Thus one finds exactly ν limit cycles of small amplitude.
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Since g j(a,b) are real polynomials, one cannot ensure free choice of signs, like in (1.8) (although
the functions g j may be independent).

C. Christopher and S. Lynch in [5] introduced the following quantities:

Ĥ(m,n)—the maximal number of limit cycles which can bifurcate from the origin;
H∗(m,n)—the maximal cyclicity of the focus at x = y = 0, i.e. max{ν: c1 = c3 = · · · = c2ν−1 = 0 �=

c2ν+1};
ĤC(m,n)—the maximal number of limit cycles bifurcating from the origin in the complex sense, i.e.

1
2 × maximal number of zeroes ri �= 0 of the function P (r) − r for r ∈ (C,0) (counted with
multiplicities);

H∗
C
(m,n)—the maximal cyclicity of x = y = 0 in the complex sense.

In the definitions of ĤC(m,n) and H∗
C
(m,n) one assumes complex coefficients ai,b j and considers

the complex foliation defined by (1.1) in (C2, (0,0)).
We have the following simple relations

Ĥ(m,n) � H∗(m,n) � H∗
C
(m,n) = ĤC(m,n). (1.9)

In [4] Cristopher and Lloyd proved the general inequality

H∗
C
(m,n) � 1

2
mn. (1.10)

In the proof they used the Bezout theorem for estimating the number of finite solutions of the fol-
lowing system

F (x) − F (x′)
x − x′ = G(x) − G(x′)

x − x′ = 0. (1.11)

In [5] Christopher and Lynch stated several conjectures concerning the above quantities. To for-
mulate them we introduce the space X of curves of the form (1.6) with F , G like in (1.2), thus
X 
 Cm+n+1. This space is acted on by a group G of equivalences of curves, generated by:

– rescalings x → αx, X → β X , Y → γ Y ;
– elementary Cremona transformations X → X + const · Y j , 1 � j � [(m + 1)/(n + 1)], if n � m; or

of the form Y → Y + const · X j if m < n.

These changes have no influence on the property of vanishing of successive coefficients c2 j−1.
Therefore the equations c1 = c3 = · · · = c2ν−1 = 0 can be regarded as equations on the quotient space
X /G . They define varieties in X composed of whole orbits of the action of G on X .

If n � m and m+1
n+1 /∈ Z then there exists one (exceptional) orbit, which contains the quasi-

homogeneous curve F (x) = xm+1, G(x) = xn+1, of dimension 2 + [m+1
n+1 ]; other orbits have dimension

3 + [m+1
n+1 ]. If (m + 1) = k(n + 1) then the orbit of the curve F (x) = xm+1, G(x) = xn+1 has dimension

1 + k and other orbits have dimension 3 + k. Also for m < n there is such division.
Since we assume b2 �= 0, the first case for n � m (i.e. with quasi-homogeneous curve) occurs

when n = 1 (and G(x) = x2). But here c j = a j and the problem is elementary: we have Ĥ(m,1) =
ĤC(m,n) = [m

2 ], where [·] denotes the integer part. When m,n � 2 we have the following

Conjecture 1. (See [5].)

1. ĤC(m,n) = ĤC(n,m) = m + n − 2 − [m+1
n+1 ] for 2 � n � m;

2. Ĥ(m,n) = Ĥ(n,m);
3. H∗(m,n) = H∗(n,m).
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Remark 1. In [5] one finds the following conjectured bounds ĤC(m,n) = [n(m+2)
n+1 ]+n−3 for 2 � n < m

(which agrees with the above) and ĤC(n,n) = 2n − 4 + [ 2
n ] (which is stronger than above).

Christopher and Lynch proved the formula Ĥ(m,2) = [ 2m+1
3 ] = m−[m+1

3 ], using some Petrov’s [15]

ideas. They also proved that Ĥ(m,3) = 2[ 2(m+2)
8 ] when 3 � m � 50 and ĤC(m,3) = [ 3(m+2)

4 ] when
6 � m � 50. They found examples where ĤC(m,3) > Ĥ(m,3) (e.g. ĤC(7,3) = 7 and Ĥ(7,3) = 6).

Also other computer calculations confirm the above conjecture.

We do not prove the Christopher–Lynch conjecture in this paper (although initially we aimed at
it). We are able to show the following quadratic bounds for H∗

C
(m,n). Introduce the number

δmax = δmax(m,n) = 1

2

(
mn − gcd(m + 1,n + 1) + 1

); (1.12)

in the next section we interpret δmax as the maximal number of double points of a curve of the
form (1.6). The following result slightly improves the Christopher–Lloyd bound and is proved in the
next section.

Theorem 1. If m,n � 2 then H∗
C

� δmax − 1.

In the next result we replace the factor 1
2 in (1.10) and (1.12) with 1

4 . We prove it in Section 3.

Theorem 2. If m,n � 2 and the curve C has one-branch singularity at X = Y = 0 then

H∗
C

� 1

4
(mn + 3m + 3n + 1).

Remark 2. The bound from Theorem 2 still holds true when more than one branches of C go through
X = Y = 0. However the proof is more involved. Namely, the proof of Lemma 7 below becomes much
more technical.

2. Double points of a curve via a Hamiltonian vector field

If A ⊂ (C2,0) is a germ of holomorphic curve defined by H(X, Y ) = 0 then the (complex) Hamil-
tonian vector field

V H = H ′
Y ∂X − H ′

X∂Y

is tangent to A. Below we shall regard V H as a real vector field in R4 (i.e. with real time). One can
check that the real field V H is also Hamiltonian with Re H as the Hamilton function, but with respect
to the symplectic structure given by d Re X ∧ d Re Y − d Im X ∧ d Im Y .

We denote W := V H |A . If 0 is an isolated singular point of A, then we consider the normalization
N : Ã → A; thus each topological component Ã j , j = 1, . . . , r of Ã (preimage of an analytic component
A j of A) is a disc. The pull-back W̃ := N∗W = (N∗)−1W ◦ N of the vector field W is a vector field
on the smooth manifold Ã with isolated equilibrium points p j ∈ N−1(0), j = 1, . . . , r. Thus one can
define the indices ip j W̃ .

We call the quantity

δ0 = δ0(A) := 1

2

∑
j

i p j W̃ (2.1)

the number of double points of A hidden at 0. In the literature δ0 is sometimes called the δ-invariant of
the singularity or the virtual number of double points. The next lemma justifies this definition.



2526 M. Borodzik, H. Żołądek / J. Differential Equations 245 (2008) 2522–2533
Lemma 1. The number δ0 equals to the number of simple double points of a typical perturbation N ′ of the
normalization map N : Ã1  · · ·  Ãr → C2 .

Proof. If, after perturbation, in the disc Ã j there remain only preimages of simple double points then
the number of such preimages equals to the sum of indices of the vector field W̃ ′| Ã j

= (N ′)∗V H ′ | Ã j
,

where H ′ defines the perturbed curve. But this is exactly the index of the field W̃ ′ along ∂ A j . The
latter index equals the index of the field W̃ | Ã j

at p j .
Summing-up all this over j we get twice the number of double points of the perturbation. �

Lemma 2. We have

δ0(A) =
∑

j

δ0(A j) +
∑
i< j

(Ai · A j)0, (2.2)

where (Ai · A j)0 is the intersection number at 0 of the components Ai and A j . In particular,

δ0(A) � 1

2
r(r − 1) � r − 1. (2.3)

Proof. Let N : (C,0) → (A j,0), z → (X(z), Y (z)) be the local parametrization (normalization) of A j .
Assume also that the coordinates X, Y are such that A j does not lie in the line X = 0. Then we
get ż = (dX/dz)−1(∂ H/∂Y )|A j and ip j W̃ = ordz=0(dX/dz)−1(∂ H/∂Y )|A j . If H = H1 · · · Hr , where H j

defines A j , then ordz=0(dX/dz)−1(∂ H/∂Y )|A j equals

ordz=0(dX/dz)−1(∂ H j/∂Y )|A j +
∑
i �= j

ordz=0 Hi |A j = 2δ0(A j) +
∑
i �= j

(Ai · A j)0.

This gives Eq. (2.2). �
Consider now the curve C of the form (1.6), where we assume that am+1b2bn+1 �= 0.

Lemma 3. The quantity ν for the curve (1.6) such that c1 = c3 = · · · = c2ν−1 = 0 �= c2ν+1 (i.e. the codimen-
sion of the singularity x = 0 of a parametrized curve) equals δ0 , the number of double points at the singularity
X = Y = 0 of C (which is of the type A2ν ).

Proof. The A2ν singular curve H = X2 − Y 2ν+1 admits parametrization X = z2ν+1, Y = z2. Then the
Hamiltonian vector field restricted to this curve takes the form ż = −H ′

X/2z = −z2ν . �
Remark 3. In [1,10,11] it is proved that the number 2δ0 for a cuspidal singularity, i.e. with only one
branch (r = 1), equals the Milnor number of this singularity.

Denote by ξ = (F , G) : C → C the parametrization of the curve C and let H(X, Y ) = 0 be the
equation for C . The extension of the map ξ to a map from CP1 is the normalization of the closure
C = C ∪ p∞ ⊂ CP2 of the curve C . We define a (real) vector field W on C , or W̃ on CP1, by the
formula

W̃ (x) = χ(x) · (ξ∗V H )(x), x ∈ CP1 \ ∞.

Here χ(x) > 0 is a smooth function tending to 0 as x → ∞ in a way that W̃ becomes smooth
at ∞. Namely, in the variable z = 1/x the pull-back vector field ξ∗V H usually has pole, ξ∗V H =
z−α(c + · · ·) d

dz for c �= 0. Then we put χ(x) = |z|2α near z = 0. We find that

i∞ Ỹ = −α. (2.4)
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Lemma 4. If C has only simple double points as singularities, then their number equals

δ := 1 − 1

2
i∞W̃ .

For general curve C the number δ = 1 − 1
2 i∞W̃ equals the sum of the numbers of double points hidden at the

(finite) singular points of C .

Proof. It follows from the Poincaré–Hopf formula, Eq. (2.4) and χ(CP1) = 2. �
Let us calculate the number i∞W̃ in terms of the Puiseux expansion of the curve C at infinity:

Y = X
u1
p1 (d1 + · · ·) + X

u2
p1 p2 (d1 + · · ·) + · · · + X

ur
p1 ···pr (d1 + · · ·)

= X
v1

m+1 (d1 + · · ·) + X
v2

m+1 (d2 + · · ·) + · · · + X
vr

m+1 (dr + · · ·). (2.5)

Here p j > 1 for j � 2, deg F = m + 1 = p1 · · · pr , gcd(u j, p j) = 1 and v1 > v2 > · · · > vr . The co-
efficients d j �= 0 and the dots denote power series in X1/p1···p j in the jth summand. Moreover,
v1 = deg G = n + 1. The pairs (p1, u1), (p2, u2), . . . , (pr, ur) are often called the characteristic pairs
(at infinity). We call the expansion (2.5) the topologically arranged Puiseux expansion.

Lemma 5. The number i∞W̃ equals

2 − {
(v1 − 1)(p1 − 1)p2 · · · pr + (v2 − 1)(p2 − 1)p3 · · · pr + · · · + (vr − 1)(pr − 1)

}
.

In particular, the number of double points of C equals

δ = 1

2

∑
(v j − 1)(p j − 1)p j+1 · · · pr . (2.6)

Proof. Formula (2.6) is well known in the literature. It is the same formula as the formula for the
Milnor number of a cuspidal singularity via the characteristic pars given in [11]. Using the Hamiltonian
differential equation on C , i.e. Ẋ = H ′

Y , it can be proved as follows.
In the local variable z = 1/x we get ż = z−m H ′

Y (c + · · ·) for some constant c �= 0. So we have to
calculate the order of H ′

Y |C at z = 0.
Formula (2.5) gives one branch Y = fζ ∗(x) of the multi-valued solution to the equation

H(X, Y ) = 0. All branches Y = fζ (X) of this solution take the form

ζ1
{

d1 X
v1

m+1 + · · · + ζr
{

dr X
v1

m+1 + · · ·} · · ·},
where the coefficient ζ1 takes p1 values, ζ2 takes p2 values, etc. We have ζ ∗ = (1, . . . ,1).

The polynomial H can be represented in the form H = ∏
ζ (Y − fζ (X)) near infinity and H ′

Y |C =∏
ζ �=ζ ∗(Y − fζ (X)). In the latter product we have (p1 − 1)p2 · · · pr factors with ζ1 �= 1 and of or-

der X
v1

m+1 ∼ z−v1 each, we have (p2 − 1)p3 · · · pr factors of order z−v2 , etc. We find ordz=0 H ′
Y =

−∑
v j(p j − 1)p j+1 · · · pr .

Together with (m + 1) − 1 = ∑
(p j − 1)p j+1 · · · pr , this gives the thesis of the lemma. �

Note that when m + 1 = l(n + 1), then p1 = 1, v1 = l and the first term in the sum in (2.6) gives
zero contribution to δ.

Lemma 6. The number δ is maximal when either:

(i) m + 1 and n + 1 are relatively prime (here δ = δmax = 1
2 mn), or
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(ii) when there are exactly two essential terms in the expansion (2.5): d1 X (n+1)/(m+1) + d2 Xn/(m+1) (here
δmax = 1

2 (mn − p2 + 1) where p2 = gcd(m + 1,n + 1)).

These numbers agree with (1.12). We obtain the following bound, which is weaker than in Theo-
rem 1.

Corollary 1. H∗
C
(m,n) � δmax .

Remark 4. The latter bound can be obtained also by estimating the number of finite solutions to the
system (1.11) using the Bezout theorem and taking into account solutions at infinity.

In order to improve this estimate we use the following theorem of M. Zaidenberg and V. Lin.

Theorem 3. (See [17].) If an algebraic curve of the form (1.6) has only one singular point which is cuspidal then
it is equivalent to a quasi-homogeneous curve.

Proof of Theorem 1. If the curve C is not equivalent to a quasi-homogeneous curve then the
Zaidenberg–Lin theorem says that it must have another double point (simple or hidden at another
singularity). Hence the number of double points hidden at the point X = Y = 0 does not exceed
δmax − 1.

So it remains to consider the possibilities when C could be reduced to a quasi-homogeneous curve
using Cremona transformations, like X → X + aY j .

This cannot occur when none of the ratios m+1
n+1 and n+1

m+1 is integer and m,n � 1. Indeed, by the

condition b2 �= 0 the curve should be equivalent to X = x2ν+1, Y = x2. So the Cremona transformations
should result in decreasing the bi-degree (m + 1,n + 1). Our assumption about the ratios forbids it.

Suppose, for instance, that (m + 1) = k(n + 1) and a change X → X + aXk gives a curve with
X = F1(x), deg F1 = m1 + 1 < m + 1. Then like in Lemma 6 one checks that δmax(m1,n) � δmax(m,n) =
1
2 kn(n + 1) and the equality takes place only when m1 = m − 1. In the latter case the curve cannot be
reduced to a quasi-homogeneous one. �
3. The Bogomolov–Miyaoka–Yau inequality

This section could be not easy for specialists in ODEs. It uses methods of complex geometry of
open algebraic surfaces. This theory was developed mainly by Japanese geometers (see [6]) and one
of its main results is the Bogomolov–Miyaoka–Yau (BMY) inequality which we present below. We will
apply it using as few algebro-geometric language as possible.

Recall that a divisor on a smooth compact complex 2-dimensional manifold V is a linear combi-
nation of closed complex curves with integer coefficients. Such a divisor (modulo some equivalence)
can be viewed either as an element in H2(V ,Z) or as an element in the homology group H2(V ,Z).
The latter point of view allows to define intersection product of divisors.

If we have a line bundle (i.e. with the fiber C) over V then we can associate with it a divisor of
zeroes and poles of a meromorphic section of this bundle, the corresponding element in H2(V ,Z) is
dual to the first Chern class of the bundle. Conversely with any divisor we can associate a line bundle
whose first Chern class equals this divisor. A special case of such a bundle is the canonical bundle
K = K V associated with the sheaf Ω2

V of holomorphic 2-forms on V . The corresponding (class of)
divisor is called the canonical divisor. We refer the reader to [7] and [8] for more informations on
divisors and Chern classes.

Let V be a complex projective surface, K its canonical divisor and D a divisor of the form D =∑
Di , where Di are smooth projective curves on V and each Di intersects other D j ’s transversally.

We say that D is a normal crossings divisor.
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Definition 1. We say that the logarithmic Kodaira dimension of (V , D) equals −∞ if none of the line
bundles associated with the divisors n(K + D), n = 1,2, . . . , has a nontrivial holomorphic section.1

Definition 2. We say that the pair (V , D) is relatively minimal if none of the components Di can be
blown down. In other words, either D2

i �= −1, or Di is rational with D2
i = −1 but Di intersects the

divisor D − Di in at least three points.

Theorem 4. (BMY inequality,2 see [9].) Let V be a complex projective surface, K its canonical divisor and
D = ∑

Di is a normal crossings divisor in V . Assume moreover that the logarithmic Kodaira dimension of
(V , D) is not −∞ and the pair (V , D) is relatively minimal.

Then

(K + D)2 � 3χ(V \ D), (3.1)

where χ denotes the classical, topological Euler characteristic.

Let us consider the curve C from Section 1 in CP2. More precisely, we consider the closure of this
curve, which we still denote by C . Recall that C : X = F (x), Y = G(x), where F and G are polynomials
of degree m + 1 and n + 1 respectively. Recall also that C has A2ν type singularity at X = Y = 0.

C is a singular rational curve. Let z1, . . . , zk be singular points of C with z1 = (0,0) and zk the
only point at infinity (when it is singular). Let ri be the number of branches of C around the singular
point zi .

Then, as C is rational, its Euler characteristics is equal to

χ(C) = 2 −
k∑

i=1

(ri − 1).

In fact, C is topologically a sphere with sets of ri-tuples of points (for i = 1, . . . ,k) glued together. We
denote

R =
k∑

i=1

(ri − 1). (3.2)

Let us resolve the singularities of C . This means that we construct a map

(V , C̃)
π�→ (

CP2, C
)

such that C̃ is smooth, π is a composition of blow-downs and π−1(C) = C̃ +∑
ai Ei as divisors, where∑

ai Ei is the sum of exceptional divisors. Assume that the resolution is minimal in the sense that there
is no other triple (V ′, C̃ ′,π ′) sharing the same properties as (V , C̃,π) such that π ′ is a composition
of fewer blow-downs than π .

Define

D = C̃ +
∑

Ei,

which from the algebro-geometric point of view can be regarded as taking a reduced inverse image
of C . Here C̃ = π∗(C) is the strict transform of C .

1 The logarithmic Kodaira dimension is defined via growth of dimensions of the spaces H0(V ,n(K + D)) as n → ∞ (see [6]).
2 The BMY inequality for compact complex surfaces states that c2

1 � 3c2 where c1 and c2 are the Chern classes of the surface.
Here c2 is the Euler class and its integral equals the Euler characteristic.
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Lemma 7. If the curve C has a self-intersection, i.e. R � 1 in (3.2), then the logarithmic Kodaira dimension of
(V , D) is not −∞ and the pair (V , D) is relatively minimal.

Proof. The first statement, i.e. about the logarithmic Kodaira dimension, follows from a theorem of
I. Wakabayashi [16].

In order to show the relative minimality of the pair (V , D) we have to show that no component
of D is a rational curve Di such that D2

i = −1 and Di(D − Di) � 2 (see [2,6] and Definition 2). The
components of D are the exceptional divisors Ei and the strict transform C̃ itself. By the minimality
of resolution for each Ei either E2

i < −1 or Ei(D − Ei) � 3; otherwise we could contract the curve Ei
and obtain a resolution with smaller number of blowing ups. On the other hand, if R � 1 the strict
transform C̃ intersects other components of D in at least three points. �

Recall that by the Zaidenberg–Lin Theorem 3 and by the proof of Theorem 1 the curve C without
self-intersections can be reduced to a quasi-homogeneous curve via Cremona transformations which
reduce the bi-degree of C . It is easy to show that in this case the δ-invariant δ1 � 1

2 max(m +1,n +1).
So in the sequel we assume that C is not simply connected and we can use the BMY inequality (3.1).

In order to make use of the BMY inequality we have to identify both of its sides. Let us begin with
the right-hand side.

Observe that by definition V \ D is isomorphic to CP2 \ C . In particular, the Euler characteristics
of both spaces coincide. Therefore

χ(V \ D) = χ
(
CP2 \ C

) = 1 + R. (3.3)

The latter equality results from the additivity of the Euler characteristics.
Let us now deal with the left-hand side of (3.1). We will explain how this is done in this particular

case. The general case is done in [2].
Let Wl be the subspace of H2(V ,Q) spanned by components of π−1(zl). Let W0 be the subspace

of H2(V ,Q) spanned by the class H of a strict transform of a line in CP2 not passing by any of the
points z j .

Lemma 8. (See [13].) We have the orthogonal (with respect to the intersection form) decomposition

H2(V ,Q) =
k⊕

i=0

W i .

We denote by Ki and Di the orthogonal projections of K and D onto the space W i respectively.
We have then

(K + D)2 = D(K + D) + K0(K0 + D0) + K1(K1 + D1)

+
k−1∑
i=2

Ki(Ki + Di) + Kk(Kk + Dk). (3.4)

It is easy to identify the first term in the right-hand side of Eq. (3.4). By the genus formula (see [7])
we have

D(K + D) = 2ga − 2, (3.5)

where ga is the arithmetic genus of the reducible curve D .3

3 The arithmetic genus ga (or pa) of an algebraic curve D on an algebraic surface V is defined as 1
2 χ(OD )+1 = 1

2 (h0(OD )−
h1(OD )) + 1 and equals 1

2 D(K V + D) + 1. If D is smooth then K D = K V + D restricted to D (it is the adjunction formula or
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Lemma 9. The arithmetic genus ga(D) is equal to R defined in (3.2).

Proof. The curve C is rational. Thus its geometric genus is zero. Now each ri -tuple point increases
the arithmetic genus by ri − 1. �

Also it is rather easy to deal with the term K0(K0 + D0).

Lemma 10. K0(K0 + D0) = −3 deg C + 9.

Proof. Assume n � m; then the degree of C is equal to m + 1. Therefore C intersects a generic line
H in CP2 at m + 1 points. If these points differ from z0, . . . , zk the strict transform of H intersects D
still at m + 1 points. Thus D0 = (m + 1)H . Now the canonical divisor on CP2 can be represented as
the class −3H in H2(CP2,Z) (see [7]). By similar arguments as above we get K0 = −3H . The lemma
follows from the fact that H · H = 1. �

Now we pass to the other parts of Eq. (3.4). We have to interpret and estimate each intersection
number Ki(Ki + Di) associated with a singular point zi of the curve C .

Probably S. Orevkov [12] was the first who interpreted it as the codimension of the singularity in
the cuspidal case, i.e. when ri = 1; he calls it the rough M-number. If, in some local analytic coordinates
x, y near zi , we have the topologically arranged Puiseux expansion

x = τ p, y = x
q1
p1 (d1 + · · ·) + · · · + x

qs
p1 ···ps (ds + · · ·) (3.6)

(compare Eq. (2.5)) with the multiplicity p = p1 · · · ps and 1 <
q1
p1

< · · · < q1
p1···ps

then the codimension
of this singularity equals p−2 plus the number of vanishing essential terms in this Puiseux expansion.
Explicitly we have

Ki(Ki + Di) = (p − 2) +
s∑

j=1

(
q j − 1 −

[
q j − 1

p j

])
. (3.7)

Here p − 2 is the number of conditions that di x/dτ i = 0, i = 1, . . . , p − 1, at some point, q1 − 1 −
[(q1 − 1)/p1] is the number of terms x j/p1 , j/p1 not integer, which are absent in (3.6), etc.

The proof uses a subtle analysis of the dual graph of the singularity which encodes the intersection
matrix in the space W i from Lemma 8. We refer the reader to the papers [13] and [14] by Orevkov
and Zaidenberg. In [2] we generalize the interpretation of Ki(Ki + Di) as a codimension of singularity
to the non-cuspidal case.

In particular, formula (35) of [14] directly implies the following

Lemma 11. For 1 � i � k − 1 the intersection number Ki(Ki + Di) is non-negative. For i = 1, where the
singularity at z1 is of type A2ν , it is equal to ν .

For the rough M-number Kk(Kk + Dk) associated with the cuspidal singularity at infinity we have
a more subtle bound.

an algebro-geometric variant of the Gelfand–Leray form) and D(K V + D) is the degree of K D . If D̃ is the normalization of D
then ga(D) = ga(D̃) + ∑

δz , where δz are the numbers of double points of D at the singular points z. In particular, if D is a
connected union of m rational curves with r simple double points as the only singularities (of D) then ga(D) = 1 − m + r. All
this can be found in the Hartshorne’s book [8].
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Lemma 12. For n < m we have

Kk(Kk + Dk) � (m − n − 1) + m −
[

m

m − n

]
.

Proof. The singularity at infinity of the curve C can be locally parametrized by s = 1/x as follows:
Y /X = sm−n + · · · , 1/X = sm+1 + · · · . Then the first two terms in the right-hand side of Eq. (3.7)
give our inequality. On the other hand, this inequality follows directly from Proposition 3 in [14] (see
also [2]). �

From Theorem 4, Eqs. (3.3), (3.4) and (3.5) and Lemmas 9, 10, 11 and 12 we get that

ν + 2R − m − n −
[

m

m − n

]
+ 3 � (K + D)2, n < m.

Thus BMY inequality implies that

ν � m + n +
[

m

m − n

]
+ R.

To make the inequality more transparent, we bound [ m
m−n ] by 1

2 (m + n), getting finally

ν � 3

2
(m + n) + R + 1

2
. (3.8)

In case m < n we have to switch from m
m−n to n

n−m . In case m = n we apply a Cremona change
Y → Y + const · X , so n becomes smaller. Anyway, in all cases inequality (3.8) still holds true.

We need another inequality relating R and ν . That one will be the consequence of computing the
indices of the Hamiltonian vector field introduced in Section 2. Namely, observe that by Lemma 6
(in Section 2) we get ν + ∑k−1

i=2 δk � δmax, where δmax = 1
2 (mn − gcd(n + 1,m + 1) + 1) and δi is the

δ-invariant of the ith singular point. For the sake of transparency we estimate gcd(n + 1,m + 1) by 1.
Now by Lemma 3 (see (2.3)) δi � ri − 1. So the above inequalities yield

R � 1

2
mn − ν.

Then substituting R into (3.8) yields

ν � 1

2
(mn + 3n + 3m + 1) − ν.

This concludes the proof of Theorem 2.

Remark 5. This proof allows some improvement at the cost of legibility. We can consider the resolu-
tion not of the curve C but the curve C+ (line at infinity) and study carefully the cases when the line
at infinity becomes a (−1)-curve. We can show that (K + D)2 � ν +2R −n −m +[m+1

n+1 ]+1 (if m < n).
The whole procedure is explained in [2] and is technically quite complicated. Anyway, the bounds we
obtain have the same leading term (i.e. ν � ∼ 1

4 mn) as the one we have written here.
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