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Further Discussion of a Time-Continuous Gaussian 
Channel* 
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The purpose of this note is to simplify the proof of the coding 
theorem given by the author (Ash, 1963) for a time-continuous Gaus- 
sian channel, and to correct an error in the proof of the weak converse. 
In addition, further comment will be made concerning the differ- 
ence between the channel model considered by the author (see also 
Ferret,  1961 and Bethoux, 1962) and the model which is implicit in 
the Shannon theory. 

A SHORT PROOF OF THE DIRECT HALF OF THE CODING THEOREM 
AND OF THE EXPONENTIAL BOUND 

Using the terminology of the previous paper (Ash, 1963) we wish to 
prove that the capacity C of the given time-continuous Gaussian channel 
is at least K / 2 ,  and in addition, given any R < C, there are positive con- 
stants A and B (depending on C and R) such that for each T there is a 
code (T, M ,  ~ ( T ) )  wi th  ~ (T)  _-__ Ae - ~ .  

F r o m  the  beginning  of the  previous  p a p e r  un t i l  Eq.  (11) the  discussion 
is as before.  W e  begin  a t  th is  poin t .  

Equ iva l en t l y ,  

, . . . ,  = , . . . ,  + , . . . ,  (B1) 

where the random variables ( z ~ / % / ~ )  are normal (0, 1) and the vectors 
(xl ' ,  . . .  , x~ ' )  = ( ( x l / ~ ¢ / ~ ) ,  . . .  , ( x n / x / ~ )  ) satisfy the constraint 
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1 ~ (x()~ < KT (B2) 
n i=i  n 

First assume T is an integer. Since for any T we are free to choose n, 
we may take n = aT,  where a is a fixed positive integer. We therefore 
have a memoryless tinle-discrete Gaussian channel with noise variance 
unity and an input "average power" limitation of ( K T / n )  = ( K / a ) .  

By the coding theorem for such a channel (Thomasian, 1960, Theorem 
1A), if R0 is a positive number < D~ = ½ log (1 -t- K / a ) ,  there is a code 
(n, [e~'°], ~0 (n)), i.e., a code consisting of [e ~'°] vectors of dimension n 
with a probability of error < f~0 (n), such tha t  

ri0(n) -<_3exp - ~  1- t -0 .64(D~--R0)  2 1-{- -- 1 . (B3) 

Since e ~'° = e ("R°) r, we have the following result: 
If R < C,  = (a/2) log (1 -[- K / a ) ,  there is u code (T, [e'r], fl (T)) 

for the original channel such that  

= 3e - y r .  

If T is not an integer, then by the above procedure we can construct a 
code (IT], [e'Er1], fl' (T)) where fl' (T) = 3e -~Erj =< 3e~e -~r. This code im- 
mediately gives a code (T, [e'rrJ], f~ (T)) where fl (T) = f~' (T), as follows: 

If sE~l (t) is a code word of the code ([T], [e'~rl], ~' (T)), then we let 
sT(t) be a code word of the code (T, [e'Er1], f~(T)). We decode by ob- 
serving the output only over the interval [--[T], [T]] and then using the 
decision procedure dictated by the code ([T], [e'~r~], f~'(T). Since 
e RtTI ~ e R(T-1) = e ('-R/~')T ~ e (R-s)T for any fixed g > 0 and sufficiently 
large T, we conclude that  for the purpose of proving that  C > K / 2  and 
establishing the exponential approach of the probability of error to zero, 
we may assume without loss of generality that  T is an integer. Any 
explicit bound on f~ (T) derived for this case may have to be modified 
before it will apply in general. 

Now (B4) implies, by definition of C, that  C >= C ,  for  any a; allowing 
a to approach infinity we obtain C >- K / 2 ,  proving the direct half of the 
coding theorem. The exponential bound follows if we note that,  given 
R < K / 2 ,  there is an a = aR such that  R < C , .  < K / 2 .  Hence for each 
positive integer T, there is a code (T, [e~], fl (T)) such that  f~ (T) < 
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Aoe -È°T where A0 and B0 are as in Eq. (B4) with a = a~.  The proof is 
complete. 

CORRECTION TO THE PROOF OF THE WEAK CONVERSE 

We wish to prove that  any  code (T, M, f~) with/3 < ½ must satisfy 
log M < [ (KT/2 -[- log 2) / (1  -- 2~)]. We follow the proof given in the 
previous paper until Eq. (36). The statement after this equation that  
"for each A~* there is measurable cylinder B~CA~* such that  
P{(s~l, s~2, . . -  ) + (zl, z~ , . . .  ) E B~.} > 1 -- 2/~" isnot  correct. How- 
ever, we may reason as follows: 

By a standard approximation theorem (e.g., Halmos, 1950, p. 56, 
Theorem D),  given any positive number 8 there exists, for each set 
A~*, a measurable cylinder B~* such that  

, , 8 (B5) P{(s~l,si2, " " )  + (z~,z2, " " )  C A~ AB~ } < 2-M 

where A~*AB~* = (A~* -- B~*) U (B~* --A~*) is the symmetric differ- 
ence between A~* and B~* (If A and B are sets, A-B will denote the set 
of elements which belong to A but not to B).  The sets B~* may  not be 
disjoint, but if we define sets B~ by 

B ~ =  B ~ * -  ( [JBi*) ,  i =  1 , 2 , . . . , M  (B6) 

then the B~ are a disjoint collection of measurable cylinders. If  we let 
Yi = (s~l, s~,  . . . )  9- (zl, z~, - - . ) ,  we have 

P[y~ E B~} = P{y~ C B~*} 

-- P{y~E ([.JBj*) n B~*} => Piy¢C Be*} 
i ~  (B7) 

-- ~ P{y~ C B~'* [7 B~*}. 

Since the A~* are disjoint, B~* 19 Bj* c (A~*AB~*) U (A~*z~B~*) for 
i ~ j.  Hence P{y~ E B~} > P{y~ ~ A~*} -- (s/2M) -- (M -- 1) (s /M) > 
P{y~ ~ A~*} -- 8. Since P{y~ ~ A~*} => 1 - /~, if ~ > 0 we may take 

= ~ to obtain P{y~ E B~} __> 1 - 2~, i = 1, 2, . . .  , M, just as in the 
second line below Eq. (36). In fact we may assume without loss of 
generality that /~ > 0 since any code (T, M, /~) is a code (T, M, ~') 
for any/3' => fl by our definition of a code. From this point on, the proof 
orocoeds exactly as before; the B~ need not be subsets of A~*. 
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A F U R T H E R  CORRECTION 

After Eq. (31) of the previous paper, the text should read: 
For each T we are free to choose n. For simplicity assume T is an 

integer and let n = aT, where a is a positive integer large enough so tha~ 
Eq. (19) is satisfied. An examination of Eq. (31) shows tha t  

(T) < Aoe -B°~, where 

and 

A o = 3  

(32) 

B0 = rain , ~ (X/1 + e2/16a~ - 1), ~ log b(K, ~) . 

A similar but more cumbersome bound can be developed when T is 
not an integer (see discussion after Eq. B4). In either case f~ (T) --~ 0 
exponentially as T --+ ~ ,  proving Theorem 2. 

WHAT IS A TIME-CONTINUOUS CHANNEL? 

In the model which we have been using, the code woMs are truncated 
versions sr (t) of signals s (t) satisfying the constraint 

__1 f°°tS(co)  12 __- 
2~r ~ N(o~) do~ < K T  

The output st(t)  + nr(t)  is observed over the interval I - T ,  T] and 
then a decision is made as to the identity of the input signal. The model 
ignores the effect of the " tai l"  of s (t) on the transmission of code words 
in the intervals [T, 3T], [3T, ST], [--3T, --T], etc. Shanaon's formula- 
tion (Shannon, 1948) does take the interference problem into account, 
but in the Shannon model a capacity has not yet  been established. To 
fix ideas, let us consider band-limited noise, i.e., let N(o~) = N/2 ,  
- 2 ~ W  =< o~ -<_ 2~W; N(o~) = 0 elsewhere, and let K = 2P/N.  The 
"allowable" signals s (t) are those which are limited to the same fre- 
quency band as the noise, and which satisfy the input constraint 

1 F ~ I S(o~) 12 dw <= PT,  

i.e., the classical "average power" limitation. 
We may formulate Shannon's problem as follows: A code (T, M, 18) is 

a set { (sl(t), A1), . . . ,  (s~(t), A~)} where each si(t) is an allowable 
function s(t), truncated to [--T, T], and the Aj are disjoint Borel sets 
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in the space of real functions with domain [ -  T, T] such that the follow- 
ing condition holds: 

Let -.- , s (-1) (t), s (°) (t), s (1) (t), . . .  be any sequence of allowable 
signals such that for each i, the truncated version s(r ° (t) is a code word, 
i.e., (s(r ~) (t), A (~)) is an element of the code for some Borel set A (1). Then 

P { ( ~ j - - ~ s ( i ) ( t - 2 j T ) ) r + n r ( t ) C A ( ° ) )  > = 1 - ~  (B8) 

the term ( ~ - ~ _ ~  s (:~ (t - 2iT))~. ,  thetruncationof ~ i ~ - ~  s (j) (t - 2 iT) ,  
is the sum of a signal transmitted during the interval [ - T ,  T] plus the 
total contribution of the interference in that interval, for a particular 
sequence of code words. The condition (B8) states that the probability 
of error should not exceed fl for any such sequence. 

As before, a number R is called permissible rate of transmission if for 
each T there is a code (T, [e'r], ~ (T)) such that f~ (T) --~ 0 as T --~ ~o. 
The channel capacity C* is the supremum of all premissible transmission 
rates. Shannon (1948) proved, using the Sampling Theorem, that 
C* ~ W log [1 ~- (P /NW)] .  Since Shannon assumed a specific decoding 
procedure and a specific method of choosing code words, namely the 
observation of the output at discrete sampling instants and the re- 
striction of the class of allowable signals to those with only a finite 
number of non-zero samples, it is not possible to conclude from his 
results that C* = W log [1 + (P /NW)] ;  the evaluation of C* is still 
on open problem. All we can do at this time is to observe that 
C* < C = P / N .  

Note that if the bandwidth is infinite, we may solve the interference 
problem by using time-limited code words; then Shannon's problem is 
the same as ours and C* = C = P I N .  
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