Journal of Mathematical Analysis and Applications 238, 567579 (1999)
Article 1D jmaa.1999.6543, available online at http: //www.idealibrary.com on IIIE§I®

Some Inequalities Involving Means and Their Converses
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Using an idea of J. Sandor and V. E. S. Szab0, an inequality of Ky Fan and its
generalizations are proved. We also establish some converses of these inequalities.
As consequences some well-known inequalities are obtained. © 1999 Academic
Press

1. INTRODUCTION AND NOTATION

As pointed out in [1], means are basic to the whole subject of inequali-
ties and to many of the applications of inequalities to other fields.
Fundamental arithmetic, geometric, and harmonic means are particularly
important in numerous means. Some new interesting characterizations of
these means have of late been obtained by Haruki and Rassias (see [2, 3)).

Ky Fan’s arithmetic—geometric mean inequality is interesting and useful.
Several kinds of the related investigations can be found in many articles
[4-32]. For example, the author and his cooperators [22, 25] established
the following inequalities
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where E,(x), E (1 — x) are the rth elementary symmetric functions [33, p.
33]for x = (x;,...,x,)and 1 —x =1 —x,,...,1 —x,), respectively, and
G(---) and H(---) are the geometric and harmonic means with equal
weights, 0 <x; < 5, (i = 1,...,n).

Sandor and Szab0 [34, also see 35] proved some known inequalities by
means of the following obvious fact

¥ inf F(x) < inf LF(x). (1)

The method of proving inequalities is interesting, and its chief feature is
clear. It seems that some new inequalities can also be established in this
way.

The main results of this paper are as follows: In Section 2, we prove Ky
Fan’s inequality and its generalizations by (1). As some special cases, the
arithmetic—geometric mean inequality and the results in [21] are deduced.
In Section 3, we establish the converses of the above inequalities and
discuss some refinements of Ky Fan’s inequality.

We need the following notation and symbols,

a;€(0,3], p;>0, i=1....,n, P=p +-+p,
m = min{a,,...,a,}, M = max{a,,...,a,}, exp{x} =e*,
A=4(0) =P Tpa,
Gom Tlap/”, 1= P (Spar)
A =A1-a) =P Tp(i-a),
G =G(1-a), H':=H(1 - a).

Here and in what follows X and IT are used to designate X;_, and IT/_,,
whenever confusion is unlikely to occur.
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2. KY FAN'S INEQUALITY AND ITS GENERALIZATIONS

First we prove a known result as
THEOREM 1. Ifa, €(0,3], i = 1,...,n), then
G A
G 2)
Equality holds iff m = M, i.e., iff all the a; are equal.

Proof 1. Calculating the first derivative of the functions f;: (0, 1] » R,
(i =1,...,n) defined by

a 1—a 1—x
fi(x) p,[—— =, log— }
we have
1-a, 1 1

+ .

fi(x) =pi| - _(1—x)2+l—x ¥

It is easy to see that each f; has minimum at x; , = a; and its value is
fia;) = —p, log(l — a;)/a;. Similarly, the function f:= L f; has minimum
at x, = A and its value is

Ploge— 2 = _plogt
—Plo = —Plog—.
g 97
Using inequality (1) we obtain
1—a A
— Y p;log < —PIogZ,

which is equivalent to (2).
Proof 2. Calculating the first and the second derivative of functions

F:(0,1) » %, (i=1,....n)

defined by
X 1—x 1—x
Fi(x):=a_i_ —a +log——,
we have
1-—-2x
F(x) =

a(l—a) x(1-x)' Fi(o = x2(1 —x)*
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It is easy to verify that F; has minimum and maximum at x, , = a; and
x; o = 1 — a;, respectively, it is strictly convex in (0, 3], strictly concave in
[2,1), and (},[a; ' — (1 — a;)"*]/2) is the unique point of inflection on
the curve y = F(x). From lim _,, F(x) = 4+« and lim F(x) =
—, the lines x = 0 and x = 1 are two vertical asymptotes.

It follows that for all the p, > 0 (i = 1,..., n) the function

F(x) = Y pF(x) = (Zpa;)x = [ Lot —a) (1 —x)
+ Plog(l —x)/x
is strictly convex in (0, 3] and so Jensen’s inequality gives
F(A) <P Y pF(a,),

x—>1-

or, simplifying,

I —I
og = sPogl"I

L

1-4 1 (1—ai)”f

which is equivalent to (2), and equality holds iff m = M. This completes
the proof.

Remark 1. In the following we use some results in Proof 2. This is a
good reason for presenting Proof 2. From the above argument we can
obtain a variant of (1), namely,

G(b)/G(1 — b) = A(b) /A(1 — b),

where b, € [3,1),i = 1,..., n, which is equivalent to (2). Although (2) can
also be proved by the convexity of a simpler function log(1 — x) /x (see [6,
21)]), yet we do not use it now.

Remark 2. Note that, for all » € N, and all nonnegative a =
(ay,...,a,) the inequality G(a) < A(a), with equality holding iff a; = -
= a,, is a consequence of (2). In fact, making use of an idea of the paper
[25], we can assume that 0 < a; < t/2, it follows that (2) holds for 0 < a,/t
< 3, namely,

Glasn) A/
G(l—a/t) = AL —a/t)’

where a/t == (a,/t,...,a,/t), L —a/t =1 —a,/t,...,1 —a,/t). From
this we get

Ga) A
G(l—a/t) = Al —a/t)

Passing to the limit as ¢ — + o, we obtain the inequality G(a) < A(a).
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THEOREM 2. Ifa, € (0,21, (i=1,...,n), andr eN,1<r <n,{n}is
the collection of all the subsets o, = (k, k,,..., k,) of r elements chosen
from the set 1,2,...,n, where k = 1,2,...,("), (") ==n(n — 1 - (n —r+
1) /r!, then

)

r

L1 Py,
Z;= 1Pk,(1 - akj)

<

(3

S

(S7_1pi)/CoDP
k=1 1

Proof. We first fix a subset o, = (ky, k,,...,k,) € {n,}, temporarily.
Choose functions g, : (0, 7] = M, (j = 1,...,r) defined by

= — — —lo
8k (%) Pk,.( x 1_x 9

a,  1—ay 1—x)

Summing up over j from 1 to r, we get

r Y Pr@p Xi_ipp —X_.ppa

j=1Fk;"k j=1Fk j=1Fk;%k

g(x) = ¥ gi(x) = — : -
j=1

X 1—x

(ZPk)lOgl_x

j=1

It appears similar to the argument of Proof 1 of Theorem 1: g, has
minimum at x, o = (Xj_; p; )" (Zj_1 py ;) and its value is

z
gr(x0) = _( Zpk] log

For the above functions, summing up over k from 1 to (), we get

)

g(x) = X g(x)
k=1

" " .
Z( 125 1P, A, ZSJ=1Z;=1P1¢, - chrllz;=1pkiakj

X 1—x
)
,

- X Zpk Iog

k=1j=1
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Note that
@ )
Y X = X (P, t Pk, + " +D)

=1

k
_[(n—-1 n—1 n—1
_(r—l)p1+(r—l)p2+ +(r—l)p”

™ ™

r r

n—1
Y X Pi, 4, = )y (Pr,@x, + Pk, T = TP ay,) = (r _1 )(Zpiai)v
k=1j=1 k=1

where (7-1)=(*;%) =1, if r=1. Therefore g(x) can be rewritten

simply as
A 1-4 1—-x
_(n—1)p|Z _ _
g(x)—(r_l)P(x - log . )

It is easy to calculate that the function g has minimum at x, = A and
its value is

A
n—1
r—l)PIOgA"

Using (1), we obtain Z%i)lgk(xkyo) < g(x,), or simplifying,

(o) =g(A) = —(7 2 1) - Prog— "~

log[the left-hand side of (3)] < log[the right-hand side of (3)],

which is equivalent to (3). This completes the proof of Theorem 2.

CoROLLARY 1. Under the hypotheses of Theorem 2, let p, = -+ =p, =
Do, then

™

L “T(-a) @

P
j:1(1 N ak]

/()
Z;=1akj ] Zai

COROLLARY 2. Ifr =1, then (3) and (4) are just the inequalities of Ky
Fan with weights and equal weights, respectively.

Remark 3. The inequality (4) was established by Jensen’s inequality in
[21]. Furthermore, using (1) we can prove G /G’ < the left-hand side of
(3.
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Remark 4. 1f0 <a, < 4+, (i =1,...,n), then

)
Z;:1ij“kj
Z;:lpkj

(Z]-1pi)/ P

<A. (5)
k=1

We can prove (5) by the similar method of Remark 2. In fact, replacing
a, by ay, /t in (3), and multiplying both sides by ¢, then passing the limit as
t > +», we obtain (5). Note that, setting in (5), r =1 we get the
arithmetic—geometric mean inequality; setting r = 1, p, = by, py a,, =
a,, we get the inequality (9) in [34].

3. CONVERSES OF SOME INEQUALITIES

First we establish the converses of Ky Fan’s inequality:
THEOREM 3. Ifa, €(0,%], i = 1,...,n), then

G X 1 Xg
— > exp (l — —)
G 1-—x, 1- m

A 1 M
> Zexp[ - (1 - ;)] (6)
where
1 1 pi o
x0=5—5\/1—4P[2a(1 )} , (7)

xo € [m, M], and the equalities in (6) occur if m = M, i.e., if all the a; are
equal.

Proof. Consider the functions ¢,: (0,31 — R, (i = 1,..., n) defined by

X 1—x | 1—x
¢i(x) =pi| — = T +log—

1 1

From the properties of F, in Proof 2 of Section 2, it is easy to see that ¢,
has minimum at x; , = a; and its value is ¢,(a;) = p; logl(1 — a;)/a;].
Put @ = X ¢,. Then

P = (Z%)x_( %)(1—@ + Plogt—%

1 .
CI>’(x)=P[F-Z . b
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It is easy to calculate that the critical point x, of @ is the expression (7),
and ® has minimum at x, and its value is

; 1—x
d + P log e

1l—aq X

D (x,) - [ZL] >

a;(1 —a;)

Using (1) and ®(x,) < ®(A), we obtain

1—ga. \” . : 1—x
Iog]_[( ‘) S[ZL}XO_Z]_? + P log °

a; a;,(1—a;) a; X,

1-4

S[ZL}A—lei + P log . (8)

a;(1 —a;) —4a;

We can prove that the given inequalities 0 <m <a, <M < %, (i =
1,...,n) imply x, € [m, M]. In fact, since the function 1/:(1 —1¢) is
strictly decreasing in (0, 31, therefore, for all the a;,

1 1 1
4 < < < .
M1-M)  a(l-a) m(l-m)

From this we have

1 1 ; 1
4 — < —- ) i < ,
M(1-M) — P a,(1—a;) ~ m(l-m)

(9)

or

0<4m(l—m)s4P[Z b )}154M(1—M)s1,

a(l —a;

or

-1
O<2m<i-1/1—4P|Y — P | <om=<u1
a;(1 —a;)

Combining the expression (7) we get x, € [m, M 1.
From;<1-M=<1-a,<1—m<1wehave

1 Di 1
< —=- < < 2. 10
1—m P Zl—aA — (10)

l

1<
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Inequalities (8) can be written equivalently as

L L e

IA

a; Xo a;(1-a,) 1-aq
1-4 1 DPi 1 Di
< expl — —— |4 - — .
A p{P[Zai(l—ai)} le—ai}
(11)
Replacing
1 Di 1 Di
= — s 5 ,and A in the brace of (11
P Zai(l—al-) P Zl—ai (1)

by 1/m(1 — m), 1/(1 — m), and M, respectively, and combining (9) and
(10), we can obtain the following inequalities

| Q
IA
[EEN
[
=
o
@D
x
=)
—
[EEN
3
—_—
|><
o
I
[EEN
——
[

|
SN
I
P
—_
[EEN
||~
3
3k
|

which is equivalent to the desired inequalities.

Last of all, we study the equality condition of (6): Setting m = M, we get
x, =m =M from x, € [m, M], namely, the equalities in (6) occur. This
completes the proof of Theorem 3.

Remark 5. 1f a, € (0,%], i = 1,...,n), then
A
GszA-exp[l—ﬁ}, (12)

with equalities only if m = M. Replacing a; by a,/t in the inequalities (6),
(12) can be proved by similar method in Remark 2. Note that letting
A/H = x in the second inequality of (12), we get 1/x > exp(1 — x), which
is equivalent to the well-known inequality log x < x — 1. Conversely, as
the referees point out that (12) can be easily deduced by log x < x — 1.
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Remark 6. 1f a, € (0,%],(i=1,...,n), then

G’ 1 1 V(H + H')(H + H — 4HH')
— <|zmt5 1+
G 2H 2H' 2HH'
1 1 V(H + H')(H + H — 4HH')
X exp|l — — -
2H 2H' 2HH'
A A A i
< —exp|l— — —
el - 37 (13

Here we use the relations
Pt Zpi/(l —a;) =1/H', Pt Zpi/ai(l —a;)=1/H + 1/H’,

the expression (7), and the inequalities (11). It is not difficult to show (13)
carefully, so we omit it. Inequalities (13) give a new connection between
A, A,G,G', H,and H'.

THEOREM 4. If a; € (0,%], (i = 1,...,n), we have the following finite
and infinite refinements of Ky Fan's inequality:

2(1 — ai) l_[ (1 — ail) + .- +(1 _ aikJrl) 1/(/(21)
— s < <
Ya; 1<iy< - <jiaq a; + - +a; |
e (G R G0 )
<
1<i)< -+ <ig<n ail + .- +aik
1—a. 1/n
< - < ]_[( ‘) ; (14)
a;
(1 -a;) I (L-a)++(1-a, ) /G
— s < <
La, 1<ip< - <igyq1<n a, + - +a; .
107
- I (1—ai1)+---+(l—al_k)
1<iy< - <ig<n a; + - +aik
1—a 1/n
< < n( l) . (15)
a;
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In 1980, Wang and Wu [21, Theorem 3] proved the above inequalities
(14) by means of Ky Fan’s inequality (2) with equal weights and combinato-
rial facts.

We give another new proof of (14) which is based on the following
refinements of Jensen’s inequality. We first state some results in [36, 37] as
follows: Let I be a convex subset of an arbitrary real linear space, and let
f: I = 9 be a mid-convex function. Then

1
f(; Zai) =fun < <fivrn <o < 0 <f1a

- =Y f(a),  (k=1,....n), (16)
1 _ _ i,
]“(;Zai)S kaJrlnkan— =< 1,n
1
= =Y f(a),  (k=12..), (17)
where a; € 1,i=1,...,n, and
1 1
fen= m1<:1<z<ik<nf(;(ail 4o +a,~k)),
k
i 1
Jeon = (n Tk — 1) 1<z1<;<ik<nf(g(ail + o +aik))'
k

Proof of (14) and (15): Setting in (16) and (17), a; € (0, 31, i = 1,..., n),
and f: (0,%] - 9N defined by f(x) = log(1 — x)/x, a simple calculation
yields inequalities (14) and (15).

It may be seen from the above that the inequalities (16) and (17)
established by Petari€, Volenec, and Svrtan are not only interesting but
also useful.
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