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Abstract

Speeding up approximate pattern matching is a line of research in stringology since the 80s. Practically fast approaches belong
to the class of filtration algorithms, in which text regions dissimilar to the pattern are first excluded, and the remaining regions
are then compared to the pattern by dynamic programming. Among the conditions used to test similarity between the regions
and the pattern, many require a minimum number of common substrings between them. When only substitutions are taken into
account for measuring dissimilarity, counting spaced subwords instead of substrings improves the filtration efficiency. However, a
preprocessing step is required to design one or more patterns, called spaced seeds (or gapped seeds), for the subwords, depending
on the search parameters. Two distinct lines of research appear the literature: one with probabilistic formulations of seed design
problems, in which one wishes for instance to compute a seed with the highest probability to detect the desired similarities (lossy
filtration), a second line with combinatorial formulations, where the goal is to find a seed that detects all or a maximum number of
similarities (both lossless and lossy filtration). We concentrate on combinatorial seed design problems and consider formulations
in which the set of sought similarities is either listed explicitly (RSOS), or characterised by their length and maximal number
of mismatches (NON-DETECTION). Several articles exhibit exponential algorithms for these problems. In this work, we provide
hardness and inapproximability results for several seed design problems, thereby justifying the complexity of known algorithms.
Moreover, we introduce a new formulation of seed design (MWLS), in which the weight of the seed has to be maximised, and
show it is as difficult to approximate as MAXIMUM INDEPENDENT SET.
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1. Introduction

1.1. Context

A routine task in computational genomics is to search among all known sequences those being similar to a sequence
of interest. “Similar” means “that can be aligned over reasonably long portions.” The similarity in sequence helps in
the annotation of the sequence of interest as it may reveal, e.g., if it is a gene, a similarity in function, in regulation, in
its interaction with other molecules, in three-dimensional structure of the protein product, or a common evolutionary
origin. This task is known as sequence similarity search.

1.1.1. Filtration
Since the 90s, heuristic algorithms [2] are preferred to the direct application of dynamic programming schemes,

which require quadratic time. In practise, as the sizes of the sequence databases grow exponentially, efficiency is
achieved by filtration. The underlying principle of filtration is to exclude in a first step regions of the sequence database
that are not similar to the query sequence by testing a simple condition. The second step, or verification step, performs
an alignment procedure by dynamic programming with the few remaining regions. Whenever the filter condition is a
necessary condition, no potential match is excluded and one achieves lossless filtration. Otherwise some true matches
may be missed and this is called lossy filtration. Note that in the latter, even an exact dynamic programming algorithm
used for the verification step cannot recover the missed similarities.

Application of lossy filtration to sequence similarity searching occurs in software like BLAST [2], which originally
requires one common substring of a fixed length between the two sequences, FLASH [3], which uses randomly
chosen spaced seeds to index the database, or QUASAR [4], which eliminates candidate sequences sharing less than
a threshold number of common substrings depending on the user-defined substring length.

This ubiquitous idea of filtration was developed for the problem of exact string matching by using hash tables
(lossy filtration) [5] and for approximate pattern matching, using various necessary conditions, see for instance [6], to
derive sub-linear expected time algorithms [7] (lossless filtration).

1.1.2. Seed design
Usual conditions rely on counting common contiguous subwords to the query and the database sequence. Recently,

several authors have emphasised that the shape of the subwords plays a key role in filtration efficiency, and proposed
to use “carefully chosen arbitrary shapes” for the subwords [8–12]. The shape of the subwords is given by a spaced
seed, e.g., a pattern like ##-##--# where the # symbol indicates which position should match between the query’s
and database sequence’s subword, and the - are “don’t care” positions. The weight of a seed is its number of #.
The key question is to choose such a seed to optimise the filtration efficiency. In theory and in practise, the specificity
increases with the weight, while the sensitivity varies greatly with the positions of the jokers. Given a set of similarities
(alignments) of interest, the goal is to find the best seed or family of seeds. (The latter is known as multiple seed
design.) Two axis of research have appeared in the literature. The first one promotes probabilistic formulations of seed
design problems, in which the computed seed should maximise the probability of detecting or “hitting” a similarity
(the so-called hit probability) without sacrificing specificity. The second axis explores combinatorial formulations
of the problem, where one seeks a seed that detects all given similarities. Probabilistic formulations deal with lossy
filtration.

The probabilistic approach. Following the line of [10], probabilistic formulation of seed design has been thoroughly
investigated (among others [13–17]). Some approaches compute seeds specialised for coding regions detection [14],
other compare spaced seeds with contiguous seeds, or propose methods to evaluate their sensitivity with different
models of alignment [13,15–17]. For instance, if the matches occur independently and with the same probability, it
was shown that computing the hit probability of a given spaced seed is NP-hard, but can be approximated (admits
a PTAS) [10,18,19]. Recently, some authors seek to design seeds that accommodate not only mismatches, but also
indels, to search for similarities in non-coding genomic regions [20].

Noteworthy is the existence of at least two heuristic or exact algorithms to determine a good or an optimal seed for
a given search problem, see for instance the Mandala [16] and Hedera [21] programs.
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The combinatorial approach. In this work we concentrate on combinatorial seed design, which has also been ad-
dressed by several groups [1,8,10,12,21,22]. We consider formulations in which the set of sought similarities is
either listed explicitly (RSOS, MWLS), or characterised by their length and maximal number of mismatches (NON-
DETECTION). These problems are either decision or maximisation problems. In two formulations (NON-DETECTION,
MWLS), one searches for a seed that detects all similarities, while in the third one (RSOS) one seeks a seed of max-
imal sensitivity for a given specificity. Several algorithms whose complexities depend exponentially on the length of
the seed have been proposed to solve these combinatorial problems [8,12,21], but it is not known to which complexity
class the simplest forms of the seed design problem belong. Our article answers these questions by showing these
problems are NP-hard, or even worse, difficult to approximate.

Results. In this paper, we consider both lossy and lossless filtrations. In [10], the authors show the NP-hardness and
the inapproximability of a region specific multiple seeds design problem, where both the set of similarities and the
weight of the seeds are constrained (see Section 1.4.2). We improve on these results by showing the inapproximability
of RSOS even in the case of a single seed (Section 4). Moreover, we prove the hardness of a general seed design
problem: NON-DETECTION as defined in [12] (Section 2). In this problem, one considers the set of all similarities at a
given Hamming distance from the query. As by-product of our proof, we introduce and classify a tiling problem (SSC).
Several works [8,12,22] give empirical and theoretical evidences that support the correlation between the weight of
the seed and filtration efficiency. Building on this idea, we propose an optimisation problem MWLS in which the
weight of the designed seed has to be maximised. We provide a proof of NP-hardness and of inapproximability for
MWLS (Section 3).

Organisation of the paper. In the remaining of this section, we introduce a notation, define the investigated problems,
and survey known results. Sections 2, 3, and 4 are each dedicated to a problem listed above: NON-DETECTION,
MWLS, and RSOS, respectively. Section 2 is independent of Sections 3 and 4. In conclusion, we list open questions
concerning combinatorial seed design, as well as tiling problems.

1.2. Notations

Throughout this paper, ε denotes an arbitrarily small positive real number, and e ≈ 2.71828183 denotes the base
of the natural logarithm. The set of all integers is denoted by Z. For every a, b ∈ Z, [a, b] denotes the discrete line
segment with endpoints a and b, that is the set of all n ∈ Z satisfying a � n � b. For every finite set X, #X denotes
the cardinality of X. For every set Y and every integer q � 0, a q-subset of Y is any subset of Y with cardinality q .
For every subsets X and Y of Z, X + Y denotes the set {x + y: (x, y) ∈ X × Y }.

1.2.1. Words
In this section, basic notions from combinatorics on words are recalled.
An alphabet Σ is a finite set of symbols, also called its letters. A word or string over Σ is a finite sequence of

elements of Σ . The set of all words over Σ is denoted by Σ�. Word concatenation is denoted multiplicatively. For
any word w over Σ , the length of w is denoted by |w|; for every index i ∈ [1, |w|], w[i] denotes the ith letter of w:
w = w[1]w[2] · · ·w[|w|].

Let t and w be two words over Σ . Given an index i ∈ [0, |t | − |w|], we say that w occurs in t at position i if, for
every index j ∈ [1, |w|], w[j ] = t[i + j ]; w is called a substring of t whenever there exists i ∈ [0, |t | − |w|] such that
w occurs in t at position i. According to the previous definition, the letter t[i] occurs in t at position i − 1 for every
i ∈ [1, |t |]. For every a ∈ Σ , |t |a := #{i ∈ [1, |t |]: t[i] = a} denotes the number of occurrences of letter a in t .

Note that all words involved in the sequel are elements of either {0,1}� or {#,-}�.

1.2.2. Seeds and similarities
Definition 1 (Weight, seed). The weight of a word w ∈ {#,-}�, denoted by ‖w‖, is the number of occurrences of the
letter # in w: ‖w‖ = |w|#. A seed is a non-empty word over {#,-} whose first and last letters are #’s (i.e., an element
of #{#,-}�#∪ {#}).
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Definition 2 (Similarity). A similarity is a word over {0,1}. Let m and k be two integers such that 0 � k � m. An
(m, k)-similarity is a similarity of length m with k occurrences of the symbol 0 and m−k occurrences of the symbol 1
(i.e., an element of {s ∈ {0,1}m: |s|0 = k}).

Definition 3 (Detection). Let w be a word over {#,-} and let s be a similarity. Let i be an index in [0, |s| − |w|]. We
say that w detects s at position i if, for every index j ∈ [1, |w|], w[j ] = # implies s[i + j ] = 1.

We say that w detects s whenever there exists i ∈ [0, |s| − |w|] such that w detects s at position i.

Note that the previous definition applies in particular if w is a seed.

Example 4. The word g := #-##--#-## is a seed with weight 6, the word s := 101101101101100 is a (15,6)-
similarity, and g detects s at positions 0 and 3.

Remark 5 summarises elementary properties related to similarity detection.

Remark 5. Let w be a word over {#,-} and let s be a similarity.

(i) If w detects s then w is not longer than s.
(ii) If w and s have the same length then w may only detect s at position 0.

(iii) If w detects s then any substring of w detects s.
(iv) If w detects a substring of s then w detects s.
(v) For every integer m � |w|, w detects 1m.

1.3. Problems

Our aim is to study the computational complexity of three problems.
In Section 2, we consider the decision problem [12]:

Name: NON-DETECTION

Instance: A seed g, two integers m and k satisfying 0 � k � m.
Question: Does there exist an (m, k)-similarity that is not detected by g?

We show that NON-DETECTION is NP-complete in Theorem 15. Note that we assume that any instance (g,m, k) has
size Θ(|g| + m), i.e., that the integers m and k are encoded in unary. If encoded in binary (as usual), (g,m, k) would
have size only Θ(|g| + logm). In other words, we demonstrate that NON-DETECTION is strongly NP-complete.

In Section 3, we investigate the difficulty to approximate the maximisation problem:

Name: REGION SPECIFIC MAXIMUM WEIGHT LOSSLESS SEED (MWLS)

Instance: A finite set S of similarities.

Solution: A seed g that detects all similarities in S.

Measure: The weight of g.

Theorem 25 proves there does not exist any polynomial-time approximation algorithm for MWLS with bound
(#S)0.5−ε , unless P = NP.

In Section 4, we study the maximisation problem [10]:

Name: REGION SPECIFIC OPTIMAL SEED (RSOS)

Instance: An integer � � 1 and a finite set S of similarities.

Solution: A seed g of weight � .

Measure: The number of similarities in S detected by g.

Theorem 28 shows that RSOS is not approximable within bound e − ε, unless P = NP.

e−1
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1.4. Related works

1.4.1. Concerning NON-DETECTION

Let m and k be two integers with 0 � k � m, and let Γ be a set of seeds.

• Denote by U(Γ,m,k) the number of (m, k)-similarities left undetected by all seeds in Γ .
• Denote by T(Γ,m,k) the largest integer t � 0 satisfying: for every (m, k)-similarity s, there exist t distinct

ordered pairs (g1, i1), (g2, i2), . . . , (gt , it ) such that, for any j ∈ [1, t], gj ∈ Γ , ij ∈ [0, |s| − |gj |], and gj detects
s at position ij .

Informally, T(Γ,m,k) is the minimal number of positions at which any (m, k)-similarity is detected by the seeds in Γ .
In [12], one finds dynamic programming algorithms to compute U(Γ,m,k) and T(Γ,m,k) in time proportional to

m ×
k∑

j=0

(
λ

j

)
(k − j + 1) + (#Γ ) ×

k∑
j=0

(
λ

j

)
with λ := max

g∈Γ
|g|.

A simple bound [8] guarantees that these algorithms have complexities O(2λ × (mk + #Γ )), and are thus Fixed
Parameter Tractable (FPT) for parameter λ (see [23] for details on parameterised complexity). The algorithm that
computes T(Γ,m,k) described in [12] generalises to a family of seeds the one for the case of a single seed given in
[8, Section 4].

Solving NON-DETECTION on an instance (g,m, k) means to decide whether U({g},m, k) is non-zero, respec-
tively whether T({g},m, k) equals zero. Hence, Theorem 15 implies that, even if we restrict ourselves to the case
of a single seed (#Γ = 1), any algorithm computing U(Γ,m,k), respectively T(Γ,m,k), requires in the worst case
exponential time. Thus, the algorithms given in [8,12] have the best time complexities one can hope.

1.4.2. Concerning REGION SPECIFIC OPTIMAL SEED

The authors of [10] consider the following more general version of RSOS:

Name: REGION SPECIFIC OPTIMAL SEEDs (RSOSs )

Instance: Three integers d , � , and 	. A finite set S of similarities.

Solution: A set Γ of d seeds, each of weight � and of length at most 	.

Measure: The number of similarities in S detected by at least one seed in Γ .

RSOS is the variation of RSOSs where one seeks a single (instead of several) seed and where the length of the seed is
unconstrained. Formally, RSOS can be seen as the restriction of RSOSs to the instances (d,�,	,S) satisfying d = 1
and 	 � maxs∈S |s| (see point (i) of Remark 5). RSOS is thus a simpler version of RSOSs. The following two results
are shown in [10].

• RSOSs is not approximable within bound e
e−1 − ε, unless P = NP.

• The restriction of the decision version of RSOSs to instances (d,�,	,S) satisfying 	 � maxs∈S |s| is NP-hard.

Theorem 28 improves on both of these results. Indeed, it states for RSOS an approximation lower bound larger than 1
under the condition that P �= NP, which implies also its NP-hardness [24].

2. Hardness of NON-DETECTION

To show the hardness of NON-DETECTION, we introduce an auxiliary problem:

Name: SOAPY SET COVER (SSC)
Instance: A finite subset G ⊆ Z, two non-negative integers N and q .
Question: Does there exist a q-subset T ⊆ Z such that G + T contains at least N consecutive integers?
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It is related to tiling problems (see Section 5.1). We assume that any instance (G,N,q) of SSC has size Θ(
∑

γ∈G |γ |+
N + q). In other words, we assume that all input integers, N , q , and the elements of G, are encoded in unary.

First, in the proof of Theorem 6, we reduce a well-known NP-complete problem, namely EXACT COVER BY 3-
SETS (shortened into X3C hereafter) [25, Problem SP2], to SSC. Then, in the proof of Theorem 15, SSC is reduced
to NON-DETECTION.

Recall the definition of X3C. Given a set V , an exact cover (also called a partition) of V is a set C of non-empty
subsets of V satisfying the following property: for every v ∈ V , there exists exactly one set E ∈ C such that v ∈ E.

Name: EXACT COVER BY 3-SETS (X3C)
Instance: A finite set V and a set E of 3-subsets of V .
Question: Is there a subset of E that is an exact cover of V ?

Theorem 6. SSC is NP-complete.

Proof. SSC is in NP, since for any yes-instance (G,N,q) of SSC, any subset T ⊆ [1 − maxG,N − minG] of
cardinality at most q satisfying [1,N] ⊆ G + T is a polynomial certificate for SSC on (G,N,q). Let us now reduce
X3C to SSC.

Let (V ,E) be an instance of X3C. If 3 does not divide the cardinality of V then (V ,E) is a no-instance of X3C,
which we transform into (∅,1,0), a no-instance of SSC. Without loss of generality, we can now assume that V has
cardinality 3q for some integer q , and that

V = [q + 1,4q]
after numbering the elements of V . Let us also number the sets in E : denote by m the cardinality of E and write E as
E = {E1,E2, . . . ,Em}.

Compute

N := 2q2 + 4q

and set

G :=
m⋃

i=1

q⋃
j=1

(Gi,j + τi,j ),

where for every i ∈ [1,m] and every j ∈ [1, q],
Fj := [

(j − 1)(2q − 1) + 4q + 1, j (2q − 1) + 4q
]
,

Gi,j := {j} ∪ Ei ∪ Fj ∪ {N − j + 1},
and

τi,j := 2N
(
(i − 1)q + j − 1

)
.

The transformation of (V ,E) into the instance (G,N,q) of SSC clearly takes polynomial time. It remains to prove
the correctness of the reduction. In order to help understand the proof, we first give a brief overview of the gadgets
formally defined above.

Overview of the gadgets. All Gi,j ’s are subsets of [1,N], and the τi,j ’s are the mq multiples of 2N comprised
between 0 and 2N(mq − 1) inclusive. Thus, G is a subset of [1,2Nmq]. Moreover, each of the mq segments of
length 2N partitioning [1,2Nmq] (that is to say the segments of the form [2N(k − 1) + 1,2Nk] with k ∈ [1,mq])
contains a unique Gi,j + τi,j in their left half and no elements of G in their right half.

Description of the structure of a Gi,j . The segments [1, q],V ,F1,F2, . . . ,Fq , and [N − q + 1,N] occur consecu-
tively on the discrete line and they exactly cover [1,N]. Define F as F := F1 ∪ F2 ∪ · · · ∪ Fq = [4q + 1,N − q]. For
any (i, j) ∈ [1,m] × [1, q], each of the four segments [1, q], V , F , and [N − q + 1,N] contributes to Gi,j :

• the singleton {j} is included in [1, q],
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Table 1
An illustration of an instance of X3C

5 6 7 8 9 10 11 12 13 14 15 16

E1 · · · © © · · · · · © ·
E2 · © · · · · · · · © · ©
E3 · · © · · © · © · · · ·
E4 © © · · · · · · · © · ·
E5 · · · · · · © · © · · ©
E6 © · · · · · · © · · © ·
V © © © © © © © © © © © ©

A natural representation of the integer sets V = [5,16], E1 = {8,9,15},
E2 = {6,14,16}, E3 = {7,10,12}, E4 = {5,6,14}, E5 = {11,13,16} and
E6 = {5,12,15}. Since {E1,E3,E4,E5} is an exact cover of V , the pair
(V , {E1,E2,E3,E4,E5,E6}) is a yes-instance of X3C. It is also easy to see that
(V , {E1,E2,E3,E5,E6}) is a no-instance of X3C.

• the 3-set Ei is included in V ,
• the segment Fj is included in F , and
• the singleton {N − j + 1} in [N − q + 1,N].

An example of an instance of X3C is shown in Table 1, and the reduction of this instance into an instance of SSC
is illustrated in Table 2.

Now, let us prove:

Claim 7. (V ,E) is a yes-instance of X3C if and only if (G,N,q) is a yes-instance of SSC.

2.1. Proof of the “only if part” of Claim 7

Assume that (V ,E) is a yes-instance of X3C. Then, there exists a subset C ⊆ E that is an exact cover of V : C has
cardinality q , and thus there exist i1, i2, . . . , iq ∈ [1,m] such that C = {Ei1,Ei2, . . . ,Eiq }.

The integer set

T := {−τi1,1,−τi2,2, . . . ,−τiq ,q}
has cardinality q , and for every j ∈ [1, q], one has

Gij ,j = (Gij ,j + τij ,j ) − τij ,j ⊆ G − τij ,j ⊆ G + T .

Therefore G + T includes
q⋃

j=1

Gij ,j =
q⋃

j=1

{j} ∪
q⋃

j=1

Eij ∪
q⋃

j=1

Fj ∪
q⋃

j=1

{N − j + 1} = [1, q] ∪ V ∪ F ∪ [N − q + 1,N] = [1,N ].

It follows that (G,N,q) is a yes-instance of SSC.

2.2. Proof of the “if part” of Claim 7

Lemma 8.

∀t ∈ Z ∃(i, j) ∈ [1,m] × [1, q], (G + t) ∩ [1,N] ⊆ Gi,j + τi,j + t.

Proof. Let t be an integer. The set G+ t is the union of the sets of the form Gi,j +τi,j + t with (i, j) ∈ [1,m]×[1, q].
However, the τi,j ’s are chosen in such a way that the Gi,j +τi,j ’s, and thus, the Gi,j +τi,j + t’s, are at least N positions
apart from each other. It follows that [1,N] cannot contain elements from two distinct Gi,j +τi,j + t’s. This concludes
the proof of Lemma 8. �

Assume that (G,N,q) is a yes-instance of SSC, and let us prove that (V ,E) is a yes-instance of X3C.



838
F.N

icolas,E
.R

ivals
/JournalofC

om
puter

and
System

Sciences
74

(2008)
831–849

F4 [N −q +1,N ]
· · · · · · · · · · · · ©
· · · · · · · · · · · © ·

© © · · · · · · · · © · ·
· · © © © © © © © © · · ·
· · · · · · · · · · · · ©
· · · · · · · · · · · © ·

© © · · · · · · · · © · ·
· · © © © © © © © © · · ·
· · · · · · · · · · · · ©
· · · · · · · · · · · © ·

© © · · · · · · · · © · ·
· · © © © © © © © © · · ·
· · · · · · · · · · · · ©
· · · · · · · · · · · © ·

© © · · · · · · · · © · ·
· · © © © © © © © © · · ·
· · · · · · · · · · · · ©
· · · · · · · · · · · © ·

© © · · · · · · · · © · ·
· · © © © © © © © © · · ·
· · · · · · · · · · · · ©
· · · · · · · · · · · © ·

© © · · · · · · · · © · ·
· · © © © © © © © © · · ·

6 are as in Table 1: q = 4, N = 48, F1 = [17,23],
Table 2
An illustration of the reduction from X3C to SSC for the X3C instance given in Table 1

[1, q] V = [q + 1,4q] F1 F2 F3

G1,1 © · · · · · · © © · · · · · © · © © © © © © © · · · · · · · · · · · ·
G1,2 · © · · · · · © © · · · · · © · · · · · · · · © © © © © © © · · · · ·
G1,3 · · © · · · · © © · · · · · © · · · · · · · · · · · · · · · © © © © ©
G1,4 · · · © · · · © © · · · · · © · · · · · · · · · · · · · · · · · · · ·
G2,1 © · · · · © · · · · · · · © · © © © © © © © © · · · · · · · · · · · ·
G2,2 · © · · · © · · · · · · · © · © · · · · · · · © © © © © © © · · · · ·
G2,3 · · © · · © · · · · · · · © · © · · · · · · · · · · · · · · © © © © ©
G2,4 · · · © · © · · · · · · · © · © · · · · · · · · · · · · · · · · · · ·
G3,1 © · · · · · © · · © · © · · · · © © © © © © © · · · · · · · · · · · ·
G3,2 · © · · · · © · · © · © · · · · · · · · · · · © © © © © © © · · · · ·
G3,3 · · © · · · © · · © · © · · · · · · · · · · · · · · · · · · © © © © ©
G3,4 · · · © · · © · · © · © · · · · · · · · · · · · · · · · · · · · · · ·
G4,1 © · · · © © · · · · · · · © · · © © © © © © © · · · · · · · · · · · ·
G4,2 · © · · © © · · · · · · · © · · · · · · · · · © © © © © © © · · · · ·
G4,3 · · © · © © · · · · · · · © · · · · · · · · · · · · · · · · © © © © ©
G4,4 · · · © © © · · · · · · · © · · · · · · · · · · · · · · · · · · · · ·
G5,1 © · · · · · · · · · © · © · · © © © © © © © © · · · · · · · · · · · ·
G5,2 · © · · · · · · · · © · © · · © · · · · · · · © © © © © © © · · · · ·
G5,3 · · © · · · · · · · © · © · · © · · · · · · · · · · · · · · © © © © ©
G5,4 · · · © · · · · · · © · © · · © · · · · · · · · · · · · · · · · · · ·
G6,1 © · · · © · · · · · · © · · © · © © © © © © © · · · · · · · · · · · ·
G6,2 · © · · © · · · · · · © · · © · · · · · · · · © © © © © © © · · · · ·
G6,3 · · © · © · · · · · · © · · © · · · · · · · · · · · · · · · © © © © ©
G6,4 · · · © © · · · · · · © · · © · · · · · · · · · · · · · · · · · · · ·
The gadget sets Gi,j corresponding to the instance (V , {E1,E2,E3,E4,E5,E6}) of X3C, where the integers sets V , E1, E2, E4, E5 and E

F2 = [24,30], F3 = [31,37], F4 = [38,44] and [N − q + 1,N ] = [45,48].
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Lemma 9. There exist (i1, j1, u1), (i2, j2, u2), . . . , (iq , jq, uq) ∈ [1,m] × [1, q] × Z such that the sets Gi1,j1 + u1,
Gi2,j2 + u2, . . . ,Giq ,jq + uq are pairwise disjoint subsets of [1,N].

Proof. Since (G,N,q) is a yes-instance of SSC, there exist q integers t1, t2, . . . , tq satisfying

[1,N ] ⊆ G + {t1, t2, . . . , tq} =
q⋃

k=1

(G + tk).

It follows:

[1,N ] =
q⋃

k=1

(G + tk) ∩ [1,N]. (1)

Moreover, Lemma 8 ensures that, for each k ∈ [1, q], there exist ik ∈ [1,m] and jk ∈ [1, q] satisfying

(G + tk) ∩ [1,N ] ⊆ Gik,jk
+ uk (2)

where uk is defined as uk := τik,jk
+ tk .

Combining Eqs. (1) and (2) yields

[1,N ] ⊆
q⋃

k=1

(Gik,jk
+ uk).

Besides, for every (i, j) ∈ [1,m] × [1, q], Gi,j has cardinality 2q + 4. Indeed, Gi,j is the disjoint union of the
set Ei , whose cardinality is 3, of the segment Fj , whose cardinality equals 2q − 1, and of two singletons. Hence,
[1,N ], whose cardinality equals N = q × (2q + 4), is covered by the Gik,jk

+uk’s, which are at most q and have each
cardinality 2q + 4. The Gik,jk

+uk’s are thus necessarily pairwise disjoint subsets of [1,N]. This concludes the proof
of Lemma 9. �
Lemma 10.

∀k ∈ [1, q], −q < uk < q.

Proof. The integers j and N − j + 1 are the smallest and largest elements of Gi,j , respectively. Therefore, for every
k ∈ [1, q], one has:

min(Gik,jk
+ uk) = jk + uk and max(Gik,jk

+ uk) = N − jk + 1 + uk.

As Gik,jk
+ uk is included in [1,N] by Lemma 9, we obtain

1 � jk + uk and N − jk + 1 + uk � N,

which implies 1 − jk � uk � jk − 1. As jk is at most q , one gets 1 − q � uk � q − 1. This concludes the proof of
Lemma 10. �
Lemma 11.

{j1, j2, . . . , jq} = [1, q].

Proof. By definition of the jk’s (Lemma 9), {j1, j2, . . . , jq} is a subset of [1, q]. Thus, it suffices to show that the q

indexes j1, j2, . . . , jq are pairwise distinct. The proof relies on the following claim:

Claim 12. If S is a segment of length 2q − 1 and if u is an integer satisfying −q < u < q then the centre of S, i.e.,
(maxS + minS)/2, belongs to S + u.

By way of contradiction, assume there exist two distinct indexes k, l ∈ [1, q] such that jk = jl . Lemma 10 ensures
−q < uk,ul < q , and thus, by Claim 12, both Fjk

+ uk and Fjl
+ ul contain the centre, denote it by c, of Fjk

= Fjl
.

Hence, c belongs to both sets Gik,jk
+ uk and Gil,jl

+ ul : contradiction with Lemma 9. This concludes the proof of
Lemma 11. �
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Lemma 13.

∀k ∈ [1, q], uk = 0.

Proof. Lemma 11 allows to renumber the q triples (i1, j1, u1), (i2, j2, u2), . . . , (iq , jq, uq) in such a way that jk = k

for every k ∈ [1, q]. Now, assume that the set K := {k ∈ [1, q]: uk �= 0} is non-empty, and set κ := minK . The
following claim will lead to a contradiction.

Claim 14. Let S and X be two subsets of Z with X ⊆ S and such that minX = minS and maxX = maxS. Then X is
the unique translate of X included in S, i.e., for every u ∈ Z, X + u ⊆ S if and only if u = 0.

For any j ∈ [1, κ − 1], none of j and N − j + 1 belongs to Giκ,κ + uκ . Indeed, j and N − j + 1 are elements
of Gij ,j , Gij ,j is equal to Gij ,j + uj since j /∈ K , and Gij ,j + uj has an empty intersection with Giκ,κ + uκ by
Lemma 9. Hence, Giκ,κ + uκ , which is a subset of [1,N] by Lemma 9, is in fact a subset of [κ,N − κ + 1]. Now,
applying Claim 14 with X := Giκ,κ and S := [κ,N − κ + 1] yields uκ = 0, which contradicts κ ∈ K . This concludes
the proof of Lemma 13. �

Now, u1 = u2 = · · · = uq = 0 (Lemma 13), and thus the q sets Gi1,j1,Gi2,j2, . . . ,Giq ,jq are pairwise dis-
joint (Lemma 9). It follows that their respective 3-subsets Ei1,Ei2, . . . ,Eiq are also pairwise disjoint. Therefore,
{Ei1,Ei2, . . . ,Eiq } is an exact cover of V , and (V ,E) is a yes-instance of X3C. This concludes the proof of Theo-
rem 6. �
Theorem 15. NON-DETECTION is NP-complete.

Proof. NON-DETECTION is in NP, since for any yes-instance (g,m, k) of NON-DETECTION, an (m, k)-similarity
left undetected by g is a polynomial certificate for NON-DETECTION on (g,m, k).

Now, reduce SSC to NON-DETECTION in order to apply Theorem 6.
Let (G,N,q) be an instance of SSC. If needed, we may translate G in such a way that minG = 0; from now on we

make this assumption: G is a subset of [0,maxG]. Compute the word g of length maxG+1 over {#,-} defined by: for
every j ∈ [1, |g|], g[j ] = # if and only if |g|− j ∈ G. As G contains both |g|−1 = maxG and |g|− |g| = 0 = minG,
we have g[1] = g[|g|] = #, or in other words, the first and last letters of g are #’s. Compute m := N − 1 + |g|
and k := min{m,q}. The transformation of (G,N,q) into the instance (g,m, k) of NON-DETECTION clearly takes
polynomial time. It remains to check the correctness of our reduction, that is:

Claim 16. (G,N,q) is a yes-instance of SSC if and only if (g,m, k) is a yes-instance of NON-DETECTION.

First, remark that N − 1 = m − |g| and thus,

[0,N − 1] = [
0,m − |g|]. (3)

2.3. Proof of the “if part” of Claim 16

Assume that (g,m, k) is a yes-instance of NON-DETECTION. Then, there exists an (m, k)-similarity s that is not
detected by g.

Let us set T := {j ∈ [1,m]: s[j ] = 0} − |g|. Clearly, T is an integer set with cardinality |s|0 = k � q . Moreover,
let i be any element of [0,N − 1]. The index i is in [0,m − |g|] by Eq. (3), and g does not detect s at position i by
hypothesis. Therefore, there exists j ∈ [1, |g|] satisfying both g[j ] = # and s[i + j ] = 0: one gets |g| − j ∈ G and
i + j − |g| ∈ T . Hence, i = (|g| − j) + (i + j − |g|) is in G + T . We have thus shown [0,N − 1] ⊆ G + T .

It follows that (G,N,q) is a yes-instance of SSC.

2.4. Proof of the “only if part” of Claim 16

Assume that (G,N,q) is a yes-instance of SSC. Then, there exists a q-subset T ⊆ Z satisfying [0,N −1] ⊆ G+T .
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Let s be the similarity of length m defined by: for every i ∈ [1,m], s[i] = 0 if and only if i ∈ T + |g|. We check
below that g does not detect s, but first, remark that |s|0 � min{m,q} = k. Indeed, |s|0 is bounded both by m, which
is the total length of s, and by q , which equals the cardinality of T + |g|. However, |s|0 may be less than k. (For
instance, consider the case of G = {0,2}, N = 4 and q = 3: g = #-#, m = 6, and k = 3. For every integer t /∈ {0,1},
T := {0,1, t} is a q-subset of Z satisfying [0,N − 1] ⊆ G + T . If t is less than −2 or if t is greater than 3 then
s = 110011, and thus |s|0 = k − 1.) Anyway, s can be transformed into an (m, k)-similarity by replacing enough of
its 1’s by 0’s.

Consider any index i in [0,m − |g|] and let us show that g does not detect s at position i. According to Eq. (3),
i is in [0,N − 1], and thus there exist γ ∈ G and t ∈ T such that i = γ + t . Let us set j := |g| − γ . On the one hand,
|g| − j = γ is in G, and thus g[j ] = #. On the other hand, i + j = (γ + t) + (|g| − γ ) = t + |g| is in T + |g|, and
thus s[i + j ] = 0. Hence, g does not detect s at position i.

It follows that (g,m, k) is a yes-instance of NON-DETECTION and this concludes the proof of Theorem 15. �
3. Hardness and inapproximability of MWLS

In order to demonstrate the approximation hardness of MWLS, we reduce MAXIMUM INDEPENDENT SET to it.
Recall that a (simple) graph is an ordered pair G = (V ,E), where V is a finite set and where E is a set of 2-subsets

of V . The elements of V are called the vertices of G, the ones of E are called the edges of G, and for any edge E ∈ E ,
the two vertices belonging to E are called its endpoints. An independent set (also called a stable set) of G is a subset
I ⊆ V such that, for every edge E ∈ E , E is not a subset of I . In other words, I satisfies that no pair of its vertices is
joined by an edge of E .

Name: MAXIMUM INDEPENDENT SET (MIS)
Instance: A graph G = (V ,E).
Solution: An independent set I of G.
Measure: The cardinality of I .

Many hardness results have been established so far on the approximability of MIS under various complexity as-
sumptions. In particular, it is known that MIS is not approximable within bound (#V )1−ε , unless P = NP [26].

Our reduction, as well as the reduction of Section 4, rely on Golomb rulers [27]. Formally, a Golomb ruler is
a subset R ⊆ Z satisfying: for each integer d � 1, there exists at most one ordered pair (μ, ν) ∈ R × R such that
d = ν − μ. The integers belonging to a Golomb ruler are called its marks. Informally, a Golomb ruler is a ruler such
that no two pairs of distinct marks measure the same distance.

We first define a specific class of Golomb rulers appropriate for our purposes.

Definition 17. Let n be a positive integer. For each index i ∈ [1, n], define μ
(n)
i := (i − 1)n2 + i2, and set Rn :=

{μ(n)
1 ,μ

(n)
2 , . . . ,μ

(n)
n }.

It is clear that 1 = μ
(n)
1 < μ

(n)
2 < · · · < μ

(n)
i < · · · < μ

(n)
n = n3, and that Rn is computable in a time polynomial

in n. For instance, in the case of n = 5, we have: μ
(5)
1 = 1, μ

(5)
2 = 29, μ

(5)
3 = 59, μ

(5)
4 = 91, μ

(5)
5 = 125, and R5 =

{1,29,59,91,125}.

Lemma 18. For every integer n � 1, the integer set Rn is a Golomb ruler.

Proof. It suffices to check that for any ordered pair (i, j) of indexes with 1 � i < j � n, (i, j) can be written as a
function of the difference m := μ

(n)
j − μ

(n)
i . More precisely, we show the following two equalities:

i = 1

2

(
m mod n2

�m / n2� − ⌊
m / n2⌋)

and j = 1

2

(
m mod n2

�m / n2� + ⌊
m / n2⌋)

. (4)

Set q := j − i and r := j2 − i2. It is clear that both i and j can be written as functions of q and r :

i = 1
(

r − q

)
and j = 1

(
r + q

)
. (5)
2 q 2 q
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Furthermore, q and r clearly satisfy m = qn2 + r and 0 � r � n2 − 1. Hence, q and r are respectively the quotient
and the remainder of the division of m by n2:

q = ⌊
m / n2⌋ and r = m mod n2. (6)

Combining Eqs. (5) and (6) yields Eq. (4). This concludes the proof of Lemma 18. �
The sequel of the paper could be easily adapted to accommodate any choice of function (n, i) �→ μ

(n)
i provided

that the following two requirements are met:

• the function is polynomial-time computable if the input and output integers are encoded in unary, and
• {μ(n)

1 ,μ
(n)
2 , . . . ,μ

(n)
n } is a Golomb ruler with n marks, for every integer n � 1.

From now on until Theorem 25 on page 843, n denotes a given positive integer.

Gadget overview. The following gadget defines words over {#,-} that encodes marks of a Golomb ruler with sym-
bols # and the remaining positions with symbols -. More precisely, for each subset X ⊆ [1, n], it defines a word w(n)

X

of length n3 that encodes the marks of Rn having an index in X. From each word w(n)
X , one can derive a unique longest

seed, g(n)
X , by deleting the leading and trailing - symbols. Conversely, any subset X ⊆ [1, n] with cardinality at least

two is completely determined by any of the two words w(n)
X and g(n)

X (see Lemma 21).

Definition 19 (Gadgets). Let X be a subset of [1, n]. Define w(n)
X as the word over {#,-} satisfying:∣∣w(n)

X

∣∣ = n3,
∥∥w(n)

X

∥∥ = #X, and w(n)
X

[
μ(n)

x

] = # for every x ∈ X.

Denote by g(n)
X the seed obtained from w(n)

X by deleting the leading and trailing - symbols.

For instance, in the case of n = 5 and X = {2,3,5}, we have: w(n)
X = (-)28#(-)29#(-)65# and g(n)

X =
#(-)29#(-)65#.

Remark 20. For every X ⊆ [1, n], both w(n)
X and g(n)

X have weight #X.

Next lemma means that the g(n)
X ’s with weight at least two and the subsets X ⊆ [1, n] with cardinality at least two

are in one-to-one correspondence. It builds on the fact that Rn is a Golomb ruler (Lemma 18).

Lemma 21. Let X1 and X2 be two subsets of [1, n] with cardinalities at least two. Then, g(n)
X1

= g(n)
X2

if and only if
X1 = X2.

Proof. For each α ∈ {1,2}, set gα := g(n)
Xα

and wα := w(n)
Xα

.
Note that Xα can be written as a function of wα :

Xα = {
x ∈ [1, n]: wα

[
μ(n)

x

] = #
}
. (7)

Let pα ∈ [0, n3 − |gα|] be such that

wα = (-)pαgα(-)n
3−|gα |−pα . (8)

As the first letter of gα is a #, one has wα[pα + 1] = #, and thus there exists iα ∈ Xα such that

pα + 1 = μ
(n)
iα

. (9)

In the same way, wα[pα + |gα|] is a #, as it is the last letter of gα , and thus pα + |gα| = μ
(n)
jα

for some jα ∈ Xα . It
follows that

μ
(n)
jα

− μ
(n)
iα

= (
pα + |gα|) − (pα + 1) = |gα| − 1.

Moreover, gα is of length at least ‖gα‖ = #Xα � 2, and thus μ
(n) − μ

(n) is positive.
jα iα
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Assume that g1 = g2. Then, the two differences μ
(n)
j1

− μ
(n)
i1

and μ
(n)
j2

− μ
(n)
i2

are equal and positive. It follows

successively: μ
(n)
i1

= μ
(n)
i2

by Lemma 18, p1 = p2 by Eq. (9), w1 = w2 by Eq. (8), and eventually, X1 = X2 by Eq. (7).
This concludes the proof of Lemma 21. �
Definition 22 (Some more gadgets). Let v be an element of [1, n]. Define t(n)

v as the similarity satisfying:∣∣t(n)
v

∣∣ = n3,
∣∣t(n)

v

∣∣
1 = n − 1, and t(n)

v

[
μ(n)

x

] = 1 for every x ∈ [1, n] such that x �= v.

For instance, in the case of n = 5 and v = 2, we have t(n)
v = 1057103110331.

Gadget overview. The gadget above defines the similarities needed for the reduction from MIS to MWLS. Like the
words w(n)

X , they also have length n3 and encode marks of the Golomb ruler Rn (by a symbol 1 instead of a #). For

any element v of [1, n], we define a similarity t(n)
v that encodes over {0,1} all the marks of Rn except the one of

index v. In general, t(n)
v can be obtained from w(n)

[1,n]\{v} in the following way: replace each letter # in w(n)
[1,n]\{v} by a 1,

and each letter - by a 0.
Next claim links the t(n)

v ’s and the w(n)
X ’s: it means that the words of length n3 over {#,-} detecting a fixed t(n)

v are

exactly the w(n)
X ’s with v /∈ X.

Claim 23. For any v ∈ [1, n] and any word w of length n3 over {#,-}, the following three statements are equivalent:

(i) w detects t(n)
v ,

(ii) w detects t(n)
v at position 0, and

(iii) w = w(n)
X for some subset X ⊆ [1, n] satisfying v /∈ X.

Proof. Since w and t(n)
v have the same length, points (i) and (ii) are equivalent (point (ii) of Remark 5). More-

over, it is easy to see that point (iii) implies point (ii). Eventually, if w detects t(n)
v at position 0, then X := {x ∈

[1, n]: w[μ(n)
x ] = #} is such that w = w(n)

X and v /∈ X. Indeed, t(n)
v [μ(n)

v ] = 0 requires w[μ(n)
v ] = -. Hence, point (ii)

implies point (iii). �
Next lemma means that the seeds detecting a fixed t(n)

v are exactly the g(n)
X ’s with v /∈ X. It is a corollary of the

previous claim.

Lemma 24. Let v be an element of [1, n] and let g be a seed. Then, g detects t(n)
v if and only if there exists a subset

X ⊆ [1, n] such that v /∈ X and g = g(n)
X .

Proof. Assume that there exists X ⊆ [1, n] such that v /∈ X and g = g(n)
X . Then, g is a substring of w(n)

X , and according

to Claim 23, w(n)
X detects t(n)

v . Hence, g also detects t(n)
v (point (iii) of Remark 5).

Conversely, suppose that g detects t(n)
v : there exists p ∈ [0, |t(n)

v | − |g|] such that g detects t(n)
v at position p. Then,

w := (-)pg(-)n
3−|g|−p detects t(n)

v at position 0. According to Claim 23, w can be written as w = w(n)
X for some

X ⊆ [1, n] satisfying v /∈ X, and thus g = g(n)
X . �

Theorem 25. The MWLS problem has no polynomial-time approximation algorithm with bound (#S)0.5−ε , unless
P = NP.

Proof. The MIS problem is reduced to MWLS in such a way that suitable approximation properties are preserved.
Let G = (V ,E) be a graph. Denote by n the cardinality of V . After numbering the vertices of G, we can assume that

V = [1, n]. For each edge E ∈ E , compute the similarity sE := t(n)
minE0

n3
t(n)
maxE (note that, according to our notation,

minE and maxE are the two endpoints of E). Then, build the set of similarities S := {1n3} ∪ {sE : E ∈ E}. The
transformation of the instance G of MIS into the instance S of MWLS clearly takes a time polynomial in n.
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Overview of the reduction. The set of similarities includes 1n3
. Any seed not longer than n3 detects this similarity

(Remark 5), but no seed longer than n3 can detect it. By this mean, we limit the length of feasible seeds. For each
edge E ∈ E , the similarity sE is the concatenation of three strings each of length n3: t(n)

minE , 0n3
, and t(n)

maxE . No seed

can detect 0n3
. Hence, a seed that detects both 1n3

and sE , is at most n3 long, and must therefore detect either t(n)
minE

or t(n)
maxE , since it cannot overlap both of them. It follows that a seed detects both 1n3

and sE if and only if it is of the

form g(n)
I , where I is a subset of [1, n] such that E is not fully contained in I (Lemma 24).

Lemma 26. For any non-empty independent set I of G, there exists a seed of weight #I that detects all similarities
in S.

Proof. Clearly, g(n)
I is a seed of weight #I detecting 1n3

(point (v) of Remark 5). Moreover, let E ∈ E be any edge

of G. As I is an independent set of G, some endpoint v ∈ E is such that v /∈ I . Hence, according to Lemma 24, g(n)
I

detects t(n)
v , and all the more reason for g(n)

I to detect its superstring sE (point (iv) of Remark 5). �
Lemma 27. For any seed g detecting all similarities in S, there is an independent set I of G with cardinality ‖g‖.
Moreover, I is computable from g and G in polynomial time.

Proof. If g has weight 1 then it suffices to choose I := {1}. Hence, we may assume ‖g‖ � 2 throughout the remaining
of the proof.

Let E ∈ E be an edge of G. Let fE be a substring of sE detected by g and with the same length as g. Since g starts
and ends with a #, fE starts and ends with a 1. Moreover, the presence of 1n3

in S implies |fE | = |g| � n3 (point (i)
of Remark 5). Hence, the block 0n3

that lies between t(n)
minE and t(n)

maxE in sE is at least as long as fE . This requires

fE to fully occur either in t(n)
minE or in t(n)

maxE : there exists an endpoint vE ∈ E, such that g detects t(n)
vE

. According to

Lemma 24, it follows that there exists XE ⊆ [1, n] such that g = g(n)
XE

and vE /∈ XE .
The vertex set J := [1, n] \ {vE : E ∈ E} is clearly an independent set of G. Moreover, for every edge E ∈ E ,

XE has cardinality ‖g‖ (Remark 20) and the weight of g is at least two. Hence, Lemma 21 implies that all sets of
the form XE with E ∈ E are equal to a same subset of J . Therefore, J has cardinality at least ‖g‖, and removing
#J − ‖g‖ elements from J yields an independent set I whose cardinality is exactly ‖g‖.

We now check that I is computable from g and G in polynomial time. For each E ∈ E , compute t(n)
minE and check

whether g detects t(n)
minE to obtain vE : if g detects t(n)

minE then vE := minE, otherwise vE := maxE. The previous
procedure computes the vE’s from g and G in polynomial time. With the vE’s in hand the computations of J and then
I easily follow. �

One has #S = #E+1 � (#V )2; so, if there exists an approximation algorithm for MWLS with bound (#S)0.5−ε then
Lemmas 26 and 27 ensure that it can be transformed into an approximation algorithm for MIS with bound (#S)0.5−ε �
((#V )2)

0.5−ε = (#V )1−2ε . But, this is possible only if P = NP [26]. This concludes the proof of Theorem 25. �
4. Hardness and inapproximability of RSOS

As in [10], we prove the approximation-hardness result for RSOS by reduction from the MAXIMUM k-COVER

problem [28]. However, our reduction is more complicated than the one in [10] since it works even for a single seed.
The MAXIMUM k-COVER problem (also termed MAXIMUM COVERAGE [24]) is:

Name: MAXIMUM k-COVER (MAX k-COV)

Instance: A tuple (E1,E2, . . . ,Em) of finite sets, an integer k ∈ [1,m].
Solution: Any k-subset I ⊆ [1,m].
Measure: The cardinality of the set union

⋃
i∈I Ei .

Whereas a simple greedy algorithm achieves an approximation ratio of e
e−1 [24,28], Feige showed that MAX k-

COV is NP-hard to approximate within ratio e − ε [28]. The result is even slightly stronger: there is no polynomial-

e−1
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time approximation algorithm with bound e
e−1 − ε for the evaluation problem associated with MAX k-COV, unless

P = NP [28]. The approximation lower bound for (the evaluation problem associated with) RSOS is derived from the
latter result.

Let us clarify the terminology. Let Π be a maximisation problem and let ρ be a real number greater than or equal
to one. For each instance X of Π , let opt(X) denote the maximum measure, over all solutions of Π on X. We say
that a polynomial-time algorithm A approximates within ratio ρ the evaluation problem associated with Π , if on any
instance X of Π taken as input, A outputs a number comprised between 1

ρ
opt(X) and opt(X) inclusive.

Theorem 28. The (evaluation problem associated with the) RSOS problem has no polynomial-time approximation
algorithm with bound e

e−1 − ε, unless P = NP.

Proof. According to the above-mentioned approximation-hardness result from Feige [28], it suffices to exhibit an
optimum-preserving reduction from MAX k-COV to RSOS.

4.1. Presentation of the reduction

Claim 29. The MAX k-COV problem can be exactly solved in polynomial time on instances ((E1,E2, . . . ,Em), k)

with bounded m − k.

Proof. The number of k-subsets of [1,m] equals
(
m
k

) = (
m

m−k

) = O(mm−k). Hence, if m − k is bounded then the set
of all solutions of MAX k-COV on ((E1,E2, . . . ,Em), k) can be enumerated in polynomial time. �

Let ((E1,E2, . . . ,Em), k) be an instance of MAX k-COV. According to Claim 29, we may assume

k � m − 2 (10)

without loss of generality (the role played by this assumption is clarified below). Let n denote the cardinality of the
ground set E1 ∪ E2 ∪ · · · ∪ Em, and let v1, v2, . . . , vn be an enumeration of its elements:

E1 ∪ E2 ∪ · · · ∪ Em = {v1, v2, . . . , vn}.
For each j ∈ [1, n], let Fj denote the set of all indexes i ∈ [1,m] such that vj ∈ Ei :

∀i ∈ [1,m] ∀j ∈ [1, n], vj ∈ Ei ⇐⇒ i ∈ Fj . (11)

Compute a Golomb ruler R with cardinality #F1 + #F2 + · · · + #Fn such that all marks in R are positive odd num-
bers. (According to Lemma 18, 2R#F1+#F2+···+#Fn − 1 is a suitable choice for R.) Then, partition R in the following
way: compute n pairwise disjoint subsets Q1,Q2, . . . ,Qn ⊆ R such that Qj has the same cardinality as Fj for each
j ∈ [1, n].

For each j ∈ [1, n], compute a similarity sj := sj,1sj,2 · · · sj,lj , where lj denotes the greatest element of Qj and
where the substrings sj,1, sj,2, . . . , sj,lj satisfy:

• for every h ∈ [1, lj ] \ Qj , sj,h = 0m3
, and

• as h takes all values in Qj , the set of sj,h is the set of all similarities of the form t(m)
i with i ∈ Fj . (Remind that

t(m)
i is defined in Definition 22 on page 843.)

Compute � := m − k and S := {s1, s2, . . . , sn}. It is easy to see that (�,S) is computable from ((E1,E2, . . . ,

Em), k) in polynomial time. Moreover, according to Eq. (10), � is a positive integer, and thus (�,S) is an instance
of RSOS.

Table 3 summarises the reduction. Note that the last two lines of the table sketch the correspondence between the
solutions of RSOS and those of MAX k-COV. They are clarified in the next section.
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Table 3
Informal presentation of the reduction from MAX k-COV to RSOS
MAX k-COV RSOS

instance ((E1,E2, . . . ,Em), k) instance (�,S)

element vj similarity sj

vj is an element of Ei t(m)
i

is a substring of sj

vj is an element of
⋃

i∈I Ei the seed g(m)
[1,m]\I detects sj

I is a k-subset of [1,m] g(m)
[1,m]\I is seed with weight �

4.2. Correctness of our reduction

We have to prove that the measure of an optimum solution of MAX k-COV on ((E1,E2, . . . ,Em), k) equals the
measure of an optimum solution of RSOS on (�,S).

Let I be a k-subset of [1,m]. The measure of I as a solution of MAX k-COV on ((E1,E2, . . . ,Em), k) equals the
number of indexes j ∈ [1, n] such that vj ∈ ⋃

i∈I Ei . Let g be a seed with weight � . The measure of g as a solution
of RSOS on (�,S) equals the number of indexes j ∈ [1, n] such that g detects sj . Indeed:

Claim 30. The n similarities s1, s2, . . . , sn are pairwise distinct.

Proof. For any j ∈ [1, n], |sj,1| = |sj,2| = · · · = |sj,lj | = m3, and thus sj has length m3lj . Besides, the integers
l1, l2, . . . , ln are pairwise distinct since they belong to the pairwise disjoint sets Q1,Q2, . . . ,Qn, respectively. There-
fore, the sj ’s have pairwise distinct lengths. �

Now, to prove Theorem 28, it suffices to check that the following two assertions are equivalent for any non-empty
subset J ⊆ [1, n]:

(A) there exists a k-subset I ⊆ [1,m] such that vj ∈ ⋃
i∈I Ei for every j ∈ J , and

(B) there exists a seed g with weight � such that g detects similarity sj for every j ∈ J .

4.2.1. Proof of (A) ⇒ (B)
Assume that assertion (A) holds. Let I be a k-subset of [1,m] such that vj ∈ ⋃

i∈I Ei for every j ∈ J .

The seed g := g(m)
[1,m]\I has weight ‖g‖ = #([1,m] \ I ) = m − k = � (Remark 20). Moreover, let j be an element

of J . Then, there exists i ∈ I such that vj ∈ Ei . It follows from Eq. (11) that i is an element of Fj . Therefore, t(m)
i is

a substring of sj . Since g detects t(m)
i (Lemma 24), g also detects its superstring sj (point (iv) of Remark 5).

Hence, assertion (B) holds.

4.2.2. Proof of (B) ⇒ (A)
Since sj is obtained as the concatenation of the m3 symbols long strings sj,1, sj,2, . . . , sj,lj in this order, we may

state:

Remark 31. For every j ∈ [1, n] and every η ∈ [1, |sj |], sj [η] occurs in sj,h where h := �η / m3�, and more precisely
sj [η] = sj,h[η − m3(h − 1)].

Assume that assertion (B) holds. Let g be a seed with weight � such that, for every j ∈ J , g detects similarity sj
at some position pj .

For every j ∈ J , define hj := �(pj + 1) / m3� and h′
j := �(pj + |g|) / m3�.

Claim 32. For every j ∈ J , hj and h′ are elements of Qj .
j
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Proof. According to Remark 31, sj [pj + 1] and sj [pj + |g|] occur in sj,hj
and sj,h′

j
, respectively. Besides, the first

letter and the last letter of g are #’s, requiring sj [pj + 1] = 1 and sj [pj + |g|] = 1, respectively. It follows that both

sj,hj
and sj,h′

j
are distinct from 0m3

, requiring hj ∈ Qj and h′
j ∈ Qj , respectively. �

Claim 33. The differences of the form h′
j − hj with j ∈ J are all equal.

Proof. Recall that for any two real numbers x and y, �x� − �y� equals either �x − y� or �x − y�. Hence, for any
j ∈ J , h′

j − hj equals either �ρ� or �ρ�, where ρ := (|g| − 1) / m3. However, h′
j and hj are odd numbers as they are

elements of R (Claim 32), and thus h′
j −hj is even. Since the two integers �ρ� and �ρ� are either equal or consecutive,

exactly one of them, say d , is even: h′
j − hj = d for every j ∈ J . �

Note that if J is reduced to a singleton then assertion (A) clearly holds.

Claim 34. If J is not reduced to a singleton then hj = h′
j for every j ∈ J .

Proof. By way of contradiction assume both that there exists j0 ∈ J such that hj0 �= h′
j0

, and that J is not reduced to a
singleton. Then, there exists an element j1 ∈ J with j0 �= j1. Consider the two ordered pairs (h′

j0
, hj0) and (h′

j1
, hj1):

according to Claim 32, both are elements of R × R, and in addition, (h′
j1

, hj1) is distinct from (h′
j0

, hj0) since Qj0

and Qj1 are disjoint. However, according to Claim 33, h′
j1

− hj1 equals h′
j0

− hj0 and the latter difference is non-zero
by hypothesis. Hence, R cannot be a Golomb ruler: contradiction. �
Claim 35. If J is not reduced to a singleton then for every j ∈ J , g detects sj,hj

.

Proof. Let γ be any index in [1, |g|]. It is clear that �(pj + γ ) / m3� lies between hj and h′
j inclusive. Now, assume

that J is not reduced to a singleton. It follows from Claim 34, that the three integers �(pj + γ ) / m3�, hj , and h′
j are

equal; thus Remark 31 yields: sj,hj
[pj − m3(hj − 1) + γ ] = sj [pj + γ ]. Thence we deduce that g detects sj,hj

at
position pj − m3(hj − 1). �

For each j ∈ J , hj is an element of Qj (Claim 32), and thus there exists ij ∈ Fj such that sj,hj
= t(m)

ij
. Since

we may assume that J is not reduced to a singleton, g detects t(m)
ij

(Claim 35), and thus g is of the form g = g(m)
Xj

where Xj is a subset of [1,m] such that ij /∈ Xj (Lemma 24). Besides, all Xj ’s are equal to a same set, denoted by X

below. Indeed, the cardinality of Xj equals the weight � of the seed g (Remark 20), and � is at least two (Eq. (10)).

Hence, Lemma 21 applies: g = g(m)
X for some � -subset X ⊆ [1,m] \ {ij : j ∈ J }. Now, I := [1,m]\X has cardinality

m−� = k as the complement of X in [1,m]. Moreover, for any j ∈ J , ij ∈ Fj requires vj ∈ Eij (Eq. (11)) and ij ∈ I

ensures Eij ⊆ ⋃
i∈I Ei : vj ∈ ⋃

i∈I Ei .
Hence assertion (A) holds.
This concludes the proof of Theorem 28. �

5. Conclusion

In this work, we have demonstrated the hardness of a tiling problem (SSC) and of three combinatorial problems
related to spaced seed design: the decision problem NON-DETECTION, and the two optimisation problems MAXIMUM

WEIGHT LOSSLESS SEED and REGION SPECIFIC OPTIMAL SEED. However, some questions remain open about
spaced seed design since up to now, little is known about the structure of optimal seeds. Below, we list some directions
for future work.

5.1. Tiling problems

In Section 2, we introduced the problem SSC and showed in Theorem 6 that SSC is NP-complete. This result raises
several questions about the tiling of a finite one-dimensional figure.
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Let d be a positive integer and Z
d denote the d-dimensional integer lattice. Let F be a subset of Z

d , and let P be
a set of subsets of Z

d . Let us call figure the set F , and tiles the elements of P . We say that P tiles F (by translation)
if there exists a subset of {P + t : (P, t) ∈P × Z

d} that is an exact cover of F .

Name: d -DIMENSIONAL FINITE REGION TILING (d-DFRT)
Instance: A finite subset F ⊆ Z

d and a finite set P of finite subsets of Z
d .

Question: Does P tile F by translation?

This problem clearly belongs to NP. Moreover, when restricted to tiles of cardinality 2, d-DFRT reduces to the
perfect matching problem, which can be solved in polynomial time [29]. However, consider H2 := {(0,0), (1,0)},
V3 := {(0,0), (0,1), (0,2)}, and P23 := {H2,V3}: the tiles H2 and V3 are called horizontal domino and vertical tri-
omino, respectively. The restriction of 2-DFRT to instances (F,P) satisfying P = P23 has been shown NP-hard [30].
Thus, deciding whether two sets of cardinalities at most 3 tile a finite two-dimensional figure is NP-complete.

Now focus on the one-dimensional case. The proof of Theorem 6 can be easily adapted to settle the complexity of 1-
DFRT. Consider the transformation that maps each instance (V ,E) of X3C to ([1,N], {Gi,j : (i, j) ∈ [1,m]× [1, q]}),
where N and the Gi,j ’s are as in the proof of Theorem 6: it induces a Karp-reduction from X3C to 1-DFRT. Hence,
1-DFRT is NP-complete, even if the figure is constrained to be a segment. Nevertheless, this reduction does not enable
one to answer the following two open questions. Is 1-DFRT still NP-hard on a bounded number of input tiles? Does
1-DFRT remain NP-complete when the input tiles have bounded cardinalities?

5.2. Concerning the maximisation of the seed weight

Theorem 25 shows that MWLS is hard to approximate within bound (#S)0.5−ε . We conjecture that, for any real
δ � 0, MWLS is not approximable within bound (#S)δ .

Moreover, it is difficult to make any hypothesis on the form of the similarities without restraining the generality
of the approach. So, we propose another formulation of lossless seed design with weight optimisation that seems
interesting: “Let m and k be integers satisfying 0 � k � m. Find a seed of maximal weight that detects all (m, k)-
similarities.” This problem has been partially addressed in the literature [12,22].

5.3. Concerning the approximation of REGION SPECIFIC OPTIMAL SEED

On the one hand, RSOS admits a trivial approximation algorithm with bound #S. Indeed, let (�,S) be an instance
of RSOS.

• If there exists a similarity s ∈ S with |s|1 � � , then return a seed of weight � that detects s.
• Otherwise, return any seed of weight � .

On the other hand, Theorem 28 guarantees that RSOS is NP-hard to approximate within ratio e
e−1 − ε. The existence

of a constant-ratio approximation algorithm for RSOS is still open.
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