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1. Introduction

1.1. Let F be a complex cubic number field, and let E/F be a finite Galois extension of F with
abelian Galois group G = Gal(E/F ). According to class field theory, G is canonically isomorphic (via
the Artin reciprocity law) to a quotient of the narrow ray class group Cl+F (f) by one of its subgroups,
where the conductor f of that group is a (finite) product of finite and infinite primes in F completely
determined by the extension E/F . For simplicity, we assume that G is isomorphic to the narrow ray
class group Cl+F (f) and E = Ef is the corresponding ray class field (in general, E is a subfield of Ef).
If σ ∈ G , we write C ∈ Cl+F (f) for the corresponding ray class. Associated to these data is the partial
Dedekind zeta function

ζF (σ , s) = ζF (C, s) =
∑
a∈C

N(a)−s, Re(s) > 1, (1)
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where the sum runs over all integral ideals a in the ideal class C . According to Hecke, ζF (C, s) admits
an analytic continuation to the whole complex s-plane except for a simple pole at s = 1. Moreover,
Hecke’s functional equation implies ζF (C,0) = 0.

Denote by F (1) ⊂ R the unique real embedding of F in R, and let F (2) ⊂ C be one of the two
complex embeddings of F in C. Let E ↪→ E(2) ⊂ C be an embedding of E into the field of complex
numbers that extends the fixed complex embedding F ↪→ F (2) ⊂ C. Let w E be the number of roots of
unity in E . According to Stark [5,14–16], there exists a unit η in E(2) such that

ζ ′
F (σ ,0) = d

ds
ζF (σ , s)

∣∣∣∣
s=0

= − 1

w E
log
∣∣σ(η)

∣∣2, for all σ ∈ G. (2)

Equivalently, the conjecture of Stark says that

exp
(−w Eζ ′

F (σ ,0)
)= ∣∣σ(η)

∣∣2 (3)

is the absolute value of the unit σ(η) = η(C) in an abelian extension of F . The natural question is
whether it is possible to get inside the absolute value |σ(η)|2 in (3) and obtain a useful expression for
σ(η) itself. Since σ(η) is a complex number, passing from σ(η) to |σ(η)|2 does represent a significant
loss of information. In this paper we give a conjectural answer to this question in effect proposing a
refinement of Stark’s conjecture in the case of a complex cubic number field. To state that conjecture,
we first need to introduce the Shintani zeta function associated to a cone. We resume the discussion
of the Stark units η(C) in Section 4 where we also present some numerical examples.

1.2. Let L be the set of non-negative integers. For an n-tuple of complex numbers ω = (ω1, . . . ,ωn)

such that Re(ωi) > 0 and for a complex number z with a positive real part, we denote by ζn(s,ω, z)
the multiple Barnes zeta function [1] given by

ζn(s,ω, z) =
∑

k∈L
n

(z + k1ω1 + · · · + knωn)−s, Re(s) > n. (4)

It is known that the Dirichlet series ζn(s,ω, z) is absolutely convergent and has an analytic continua-
tion to the whole complex s-plane except for simple poles at s = 1,2, . . . ,n. This allows us to define
the multiple log gamma function logγn(z,ω) by

logγn(z,ω) = d

ds
ζn(s,ω, z)

∣∣∣∣
s=0

. (5)

In analogy to the Euler gamma function, the multiple log gamma function satisfies difference equa-
tions. These equations together with an asymptotic expansion [8,9] make it possible to calculate
logγn(z,ω) to a high numerical accuracy.

More generally, let A = (aij)n×m be a matrix with complex entries aij ∈ C such that Re(aij) > 0, and
let x = (x1, . . . , xn) �= 0 be an n-tuple of non-negative real numbers. The Shintani cone zeta function
associated to A and x is defined by

ζ(s, A, x) =
∑
�∈L

n

m∏
j=1

{
n∑

i=1

(xi + �i)aij

}−s

, Re(s) >
n

m
. (6)

As a function of s, ζ(s, A, x) has a meromorphic continuation to the whole complex s-plane. In par-
ticular, s = 0 is a regular point of ζ(s, A, x) [11].
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In this paper, we consider only those matrices A that satisfy the following non-vanishing property:

∏
1�k<l�m

(aila jk − aika jl) �= 0 (7)

for all i �= j (1 � i, j � n). Under this assumption, we can define the elementary function

δ(x, A,k) = (−1)n

m

n∑
h=1

log(ahk)
∑
p �=k

∑
�

�h=0

∏
i �=h

B�i (xi)

�i !
(

aik

ahk
− aip

ahp

)�i−1

(8)

for each k (1 � k � m). Here Bk(x) denotes the kth Bernoulli polynomial, and, for each h, the sum
over � runs over all decompositions of n = �1 + · · · + �n into integers �i � 0 subject to the restriction
�h = 0. By definition of an empty sum, δ(x, A,k) = 0 if m = 1 or n = 1.

Definition 1. τ (x, A,k) = logγn(xak,ak) + δ(x, A,k), where ak denotes the kth column of A, and xak =
x1a1k + · · · + xnank .

We note that the main contribution to τ (x, A,k) depends only on the kth column in A. However,
δ(x, A,k) depends on all entries in A.

Theorem 1. Let m,n � 1, and let A be any n × m matrix of complex coefficients with positive real part satis-
fying (7). Then

d

ds
ζ(s, A, x)

∣∣∣∣
s=0

=
m∑

k=1

τ (x, A,k). (9)

This theorem is a restatement of a theorem of Shintani [12,13]. We note however, that Shintani
stated his theorem under the stronger assumptions aij > 0 for all i, j and 1 � n � m. Our regrouping
of his formula in terms of the function τ is closely related to the famous trick Shintani introduced in
order to establish the analytic continuation of ζ(s, A, x). As we will see in a moment, it is precisely
this decomposition of ζ ′(0, A, x) that will allow us to formulate a refinement of Stark’s conjecture.

1.3. To study the first derivative of the partial zeta function ζF (C, s) introduced in (1), we fix an
integral representative b ∈ C for the ray class C , and denote by Z∗

F the unit group of the ring of
algebraic integers ZF in F . Then for Re(s) > 1,

ζF (C, s) = N(b)−s
∑

a∼b(f)

N
(
ab−1)−s = N(b)−s

∑
μ∈fb−1+1/U+

f

μ	0

N(μ)−s, (10)

where U+
f

= {ε ∈ Z∗
F | ε ≡ 1(f), ε(1) > 0}, and μ runs through all totally positive elements in the coset

fb−1 + 1, which are not associated under the action of U+
f

. To obtain distinguished representatives

for the double cosets (fb−1 + 1)/U+
f

, we follow Shintani again and choose a fundamental domain D

(called Shintani domain) for U+
f

consisting of a finite collection of open simplicial cones V p (p ∈ S ,
a finite index set) with totally positive generators in f. Then

∑
μ∈fb−1+1/U+

f

μ	0

N(μ)−s =
∑
p∈S

∑
μ∈(fb−1+1)∩V p

N(μ)−s. (11)
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If all generators of V p have a totally positive real part, then

N(μ)−s = (μ(1)
)−s(

μ(2)
)−s(

μ(3)
)−s

provided the principal branch of the logarithm function is chosen to define general powers. In this
case, we can write

∑
μ∈(fb−1+1)∩V p

N(μ)−s =
∑

x∈R(p,fb−1+1)

ζ(s, A p, x),

where A p is the matrix of the generators of V p (see (34) in Section 3), and R(p, fb−1 + 1) is the finite
set (possibly empty) of rational vectors x ∈ (0,1]n , n = dim(V p), which is uniquely determined by the
identity

(
fb−1 + 1

)∩ V p =
⋃

x∈R(p,fb−1+1)

(
Ln + x

)
v p (disjoint union) (12)

where v p = (v p1, . . . , v pn)t is the column vector of the generators of V p .
In general, if the real part of the generators of V p is not totally positive, we choose a rotation

matrix

T p =
⎛⎝ t11(p) 0 0

0 t22(p) 0

0 0 t33(p)

⎞⎠=
⎛⎝1 0 0

0 tp 0

0 0 tp

⎞⎠ , |tp| = 1, (13)

such that all entries of A p T p have a positive real part. Then

∑
μ∈(fb−1+1)∩V p

N(μ)−s =
∑

x∈R(p,fb−1+1)

ζ(s, A p T p, x).

In order to account for this rotation, we introduce for x in R(p, fb−1 + 1), and k = 1,2,3,

φk(x, A p, T p) = τ (x, A p T p,k) + ζ(0, A p T p, x) log tkk(p). (14)

We show later (Proposition 1) that ζ(0, A p T p, x) is a rational number which is independent of the
choice of T p . Moreover, by the definition of τ , it is easy to see that φ1(x, A p, T p) = τ (x, A p T p,1) is
also independent of the choice of T p . For k = 2,3, φk(x, A p, T p) does depend on the choice of T p .
However, we show that the coset φk(x, A p, T p) + 2π iζ(0, A p T p, x)Z is independent of the choice
of T p .

Definition 2. Let D be a Shintani domain for U+
f

, and let b be an integral ideal in the ray class C .
Denoting by T the set of associated rotations, T = {T p | p ∈ S}, we let for k = 1,2,3,

Φk(b,D,T) =
∑
p∈S

∑
x∈R(p,fb−1+1)

φk(x, A p, T p).

Note that Φ1 ∈ R, and Φ3 = Φ2. By definition, Φ1(b,D,T) = Φ1(b,D) is independent of the choice
of T.
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Theorem 2. Let ζF (C, s) be the partial zeta function associated to a narrow ray class C in a complex cubic
number field F . Then

ζ ′
F (C,0) = Φ1(b,D) + Φ2(b,D,T) + Φ3(b,D,T). (15)

Remark. Each Φk represents the contribution of F (k) to ζ ′
F (C,0), k = 1,2,3. Indeed, the main contri-

bution to Φk are values of multiple log gamma functions on arguments in F (k) . Moreover, we show
in Section 3.2 that the sum of all contributions to Φk given by δ-terms (8) is of the form α(1) logε(1)

(if k = 1) and α(k) logε(k) + 2π iβ(k) (if k = 2,3) with α,β, ε ∈ F .

In view of Stark’s conjecture, the question arises now whether Φk has any arithmetic significance.
Based on numerical calculations reported on in Section 4, we are led to the following conjectures.

For a fixed Shintani domain D for U+
f

and a fixed integral ideal b in the ray class C , let N be the
smallest positive integer such that for all p ∈ S ,

N
∑

x∈R(p,fb−1+1)

ζ(0, A p T p, x) = N
∑

μ∈(fb−1+1)∩V p

N(μ)−s
∣∣
s=0 ∈ Z. (16)

According to the corollary to Proposition 1 in Section 3.1, the integer N = N(b,D) is well defined and
does not depend on the chosen rotations T p .

Conjecture 1. Let ε be the fundamental unit of Z∗
F such that ε(1) > 1. Then there is a rational number

r(b,D) ∈ 1
8N Z such that

Φ1(b,D) = r(b,D) logε(1), (17)

where N is the integer defined by (16).

In particular, Φ1 is the logarithm of a unit. Motivated by Conjecture 1, we propose the following
tentative analytic expression Θ2 for the Stark unit η(C).

Definition 3. For k = 2,3, let

Θk(b,D,T) = exp

(
Φ1(b,D)

logε(k)

logε(1)
− Φk(b,D,T)

)
. (18)

Note that Θ3 = Θ2 by the choice of the logarithm. Moreover, it follows from Theorem 2 that Stark’s
conjecture (3) is equivalent to ∣∣Θ2(b,D,T)w E

∣∣2 = ∣∣η(C)
∣∣2.

Theorem 3. Up to multiplication by a root of unity, the complex number Θ2 , as a function of b, D and T,
depends only on the narrow ray class C containing the ideal b.

Conjecture 2. Let E = Ef be the narrow ray class field modulo f, and let w E be the number of roots of unity
in E. Then

Θ2(b,D,T)w E = ξ(b,D,T)η(C), (19)

where η(C) = σ(η) ∈ E(2) is a Stark unit, and ξ = ξ(b,D,T) is a root of unity such that ξ N = 1 with N =
N(b,D) defined by (16).
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Ideally, the root of unity ξ should be an element in E(2) , that is, ξ w E = 1. Unfortunately, this is
not the case. Numerical examples show that the order of ξ does depend on the choice of b as well
as the choice of the fundamental domain D. This means that the proposed formula for Θ2 is not
perfect yet. In order to replace ξ by a root of unity in E (which is unavoidable since η(C) is de-
fined only up to a root of unity in E), further elementary correction terms need to be incorporated
inside of Θ2. Although we did not succeed to find such an elementary correction term, we can nev-
ertheless eliminate the dependence of ξ on b and D by taking advantage of the fact that η(C) is
independent of the choice of b and D. To this end, let supp(b,D) be the set of all prime ideals in F
containing either b or any of the generators vi of a cone V in D, but not containing the ideal f.
Choose two integral ideals b1,b2 in C , and choose two Shintani domains D1,D2 for U+

f
such that

supp(b1,D1) ∩ supp(b2,D2) = ∅. Write Ni = N(bi,Di) for the associated denominators, and choose
rational integers mi such that g = gcd(N1, N2) = m1N1 − m2N2. Conjecture 2 implies then

(
Θ2(b1,D1,T1)

m1 N1/g

Θ2(b2,D2,T2)m2 N2/g

)w E

= ζη(C)

with a root of unity ζ g = 1, whose order is independent of the choice of b and D. In all examples
examined so far, we found ζ 18w E = 1. This is consistent with results of Deligne and Ribet [4] which
suggest the conjecture w E |g .

It is very likely that Conjectures 1 and 2 generalize to all number fields having precisely one pair
of embeddings into the field of complex numbers. We intend to formulate a general conjecture in a
future paper.

1.4. The problem of “getting inside the absolute value” in Stark’s conjecture has received much
attention recently. In [2], Charollois and Darmon generalize the classical approach of Kronecker and
Hecke and express the Stark unit by periods of a suitable Eisenstein series. In [3], Dasgupta proposes
a p-adic formula for the Stark unit arising in the p-adic version of Stark’s conjecture (due to Gross).
This work is based on a careful study of integrality properties of the classical formulas of Shintani for
the value at s = 0 of partial zeta functions in totally real number fields.

1.5. Historical remark

Conjectures 1 and 2 shed a light on a rarely quoted paper of Eisenstein [6] (mentioned by Hecke
in [7]). In that paper, Eisenstein discusses the construction of elliptic functions starting with the
infinite double product expansion of the Weierstrass sigma-function. In the last paragraph [6, pp. 190–
191], he states that the analogously formed triple (and higher) products do not converge. In order to
achieve convergence, Eisenstein proposes to restrict the product to a cone (given by a system of in-
equalities), in effect anticipating the idea of multiple gamma functions. Eisenstein then goes on to
claim that a very remarkable class of functions is obtained if these cones form a fundamental domain
for the unit group of a number field. Our conjectures (about special values of triple gamma functions
associated to a fundamental domain for the unit group of a complex cubic number field) provide a
partial illustration and justification for the claims made by Eisenstein in his paper.

1.6. The paper is organized as follows. In Section 2, we study the Shintani zeta function. In Sec-
tion 3, we prove Theorem 2 and provide some theoretical evidence in support of Conjectures 1 and 2.
In particular, in Propositions 4, 6 and 7 we address the dependence of Θ2 on the choice of T,D

and b. Finally in Section 4, we present numerical examples.
Unless stated otherwise, the complex logarithm function log z used in this paper is the principal

branch of the logarithm function defined by −π < arg z � π .
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2. The derivative of the Shintani zeta function at s = 0

In this section, we study the derivative of the Shintani zeta function ζ(s, A, x). For the convenience
of the reader, and in order to display the origin of our decomposition (9), we begin by reproducing
Shintani’s proof of Proposition 1 in [12].

Applying the Euler gamma integral to each factor in (6) yields the following integral representation
of ζ(s, A, x),

ζ(s, A, x) = �(s)−m
∫

Rm+

(
m∏

j=1

ts−1
j

)
n∏

i=1

exp{(1 − xi)
∑m

j=1 aijt j}
exp(
∑m

j=1 aijt j) − 1
dt.

Letting Dk = {t ∈ Rm+ | 0 < tp � tk, p �= k} for k = 1, . . . ,m, Shintani introduces the following decom-
position

∫
Rm+

=
m∑

k=1

∫
Dk

.

It is precisely this decomposition that leads to the decomposition (9).
Consider the following contour integral

Ck(s) =
∫

I(ε,+∞)

ums
∫

I(ε,1)m−1

n∏
j=1

exp{(1 − x j)u(a jk +∑p �=k a jp yp)}
exp{u(a jk +∑p �=k a jp yp)} − 1

ys−1 dy
du

u
,

where ys−1 dy = ∏p �=k ys−1
p dyp . For sufficiently small ε > 0, I(ε,+∞) (resp. I(ε,1)) denotes the

counterclockwise oriented path consisting of the interval (+∞, ε] (resp. (1, ε]), the circle of radius ε
centered at the origin followed by the interval [ε,+∞) (resp. [ε,1)). Write e(x) = exp(2π ix), and let

h(s) = e(s) − 1

e(ms) − 1

�(1 − s)m

e(ms
2 )

.

Using the change of variables u = tk and uyp = tp (p �= k) in Dk , one finds that (see the proof of
Proposition 2.1 in [8] for details)

ζ(s, A, x) =
m∑

k=1

zk(s), zk(s) = h(s)Ck(s)

(2π i)m
. (20)

It follows from this equation that each zk(s) and hence ζ(s, A, x) has a meromorphic continuation to
the whole complex s-plane, and that s = 0 is a regular point of zk(s) and ζ(s, A, x).

Proof of Theorem 1. Calculating the derivative z′
k(s), we get

z′
k(0) = h′(0)

1

2π i

∫
I(ε,+∞)

n∏
j=1

exp{(1 − x j)a jku}
exp(a jku) − 1

du

u

+ h(0)

(
m

2π i

∫
I(ε,+∞)

log u
n∏

j=1

exp{(1 − x j)a jku}
exp(a jku) − 1

du

u
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+ 1

(2π i)2

∑
p �=k

∫
I(ε,1)

log v

∫
I(ε,+∞)

n∏
j=1

exp{(1 − x j)u(a jk + a jp v)}
exp{(a jk + a jp v)u} − 1

du

u

dv

v

)
.

Let

gkp(u, v) =
n∏

j=1

exp{(1 − x j)u(a jk + a jp v)}
exp{(a jk + a jp v)u} − 1

, 1 � k, p � m, p �= k.

Note that h(0) = 1/m, and h′(0) = γ − π i − π i(m − 1)/m, where γ is the Euler constant. Using the
fact that

gkp(u,0)

2π i

∫
I(ε,1)

log v
dv

v
= −gkp(u,0)π i

is independent of p (by the definition of gkp), we can rewrite the derivative as follows:

z′
k(0) = 1

2π i

∫
I(ε,+∞)

(log u + γ − π i)
n∏

j=1

exp{(1 − x j)a jku}
exp(a jku) − 1

du

u

+ 1

(2π i)2m

∑
p �=k

∫
I(ε,1)

log v

∫
I(ε,+∞)

[
gkp(u, v) − gkp(u,0)

] du

u

dv

v
.

When m = 1, the Shintani cone zeta function ζ(s, A, x) is the multiple Barnes zeta function ζn(s,ω, z),
where ω = (a11, . . . ,an1) and z = x1a11 + · · · + xnan1. It follows from the above calculation that

logγn(z,ω) = 1

2π i

∫
I(ε,+∞)

e−zu(log u + γ − π i)∏n
j=1(1 − e−ω j u)

du

u
, 0 < ε <

∣∣∣∣2π

ω j

∣∣∣∣. (21)

A straightforward residue calculation shows that

gkp(v) := 1

2π i

∫
I(ε,+∞)

[
gkp(u, v) − gkp(u,0)

] du

u

=
∑

�

(
n∏

j=1

B� j (1 − x j)

� j !

)[
n∏

j=1

(a jk + a jp v)� j−1 −
n∏

j=1

a
� j−1
jk

]
,

where the summation runs over � ∈ Ln such that �1 + · · · + �n = n. Applying partial fraction decom-
position gives the identity

n∏
j=1

(a jk + a jp v)� j−1 −
n∏

j=1

a
� j−1
jk =

∑
h

�h=0

v
∏

j �=h(a jpahk − a jkahp)� j−1

ahk(ahk + ahp v)
, (22)

assuming (7) holds true. Then
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1

2π i

∫
I(ε,1)

gkp(v) log v
dv

v
=

n∑
h=1

∑
�

�h=0

(−1)n

ahk

∏
j �=h

B� j (x j)

� j ! (a jpahk − a jkahp)� j−1

1∫
0

dv

ahk + ahp v

= (−1)n
n∑

h=1

∑
�

�h=0

log ahk − log(ahk + ahp)

ahkahp

∏
j �=h

B� j (x j)

� j ! (a jkahp − a jpahk)
� j−1.

Note that
∏

j �=h(a jkahp − a jpahk)
� j−1 = −∏ j �=h(a jpahk − a jkahp)� j−1, so the terms containing log(ahk +

ahp) cancel out when we sum over both k and p. Therefore,

ζ ′(0, A, x) =
m∑

k=1

z′
k(0) =

m∑
k=1

{
logγn(xak,ak) + δ(x, A,k)

}
,

where ak is the kth column of A, and xak = x1a1k + · · · + xnank . �
Remark. A similar calculation, starting with (20), yields for the value of ζ(s, A, x) at s = 0,

ζ(0, A, x) = 1

m

m∑
k=1

ζn(0,ak, x) (23)

with

ζn(0,ak, x) = mzk(0) = (−1)n
∑

�

n∏
i=1

B�i (xi)

�i ! a�i−1
ik , (24)

where the sum over � runs over � ∈ Ln such that �1 + · · · + �n = n.

Proposition 1. Let A = (aij)n×m be any matrix, and let T = (ti j)m×m be a diagonal matrix. If all entries of AT
have a positive real part and if x ∈ [0,1]n is different from 0, then

ζ(0, AT , x) = (−1)n

m

m∑
k=1

∑
�

n∏
i=1

B�i (xi)

�i ! a�i−1
ik , (25)

where the sum over � runs through all decompositions of n = �1 + · · · + �n into non-negative integers �i .

Proof. It follows from (23) and (24) that

ζ(0, AT , x) = 1

m

m∑
k=1

(−1)n
∑

�

n∏
i=1

B�i (xi)

�i ! (aiktkk)
�i−1

= (−1)n

m

m∑
k=1

∑
�

n∏
i=1

B�i (xi)

�i ! a�i−1
ik

since
∑n

i=1(�i − 1) = 0. �
The following two propositions will be needed in Section 3.
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Proposition 2. Let T = (ti j)m×m be a diagonal matrix and assume that all entries of A have a positive real
part. If all entries of AT have a positive real part as well, then

τ (x, A,k) − τ (x, AT ,k) = ζ(0, A, x) log tkk. (26)

Proof. First we assume that tkk > 0 for all k. Replacing the variable u in (21) by tkku, we obtain

logγn(xak,ak) − logγn(xtkkak, tkkak) = ζn(0,ak, x) log tkk. (27)

By the principle of analytic continuation, (27) remains also true for complex tkk as long all entries
of A and AT have a positive real part. Under this assumption on A and AT , it follows from the
defining equation (8) that

δ(x, A,k) − δ(x, AT ,k) = (−1)n

m

∑
p �=k

n∑
h=1

∑
�

�h=0

∏
i �=h

B�i (xi)

�i !
(

aip

ahp
− aik

ahk

)�i−1

log tkk.

We simplify the summation in front of log tkk as follows. Letting v = 1 in Eq. (22) yields

n∏
i=1

(aik + aip)�i−1 −
n∏

i=1

a�i−1
ik =

∑
h

�h=0

∏
i �=h(aipahk − aikahp)�i−1

ahk(ahk + ahp)
. (28)

Interchanging p and k in (28), we obtain

n∏
i=1

(aik + aip)�i−1 −
n∏

i=1

a�i−1
ip =

∑
h

�h=0

∏
i �=h(aikahp − aipahk)

�i−1

ahp(ahk + ahp)
. (29)

Subtracting (29) from (28) yields the following partial fraction decomposition

n∏
i=1

a�i−1
ip −

n∏
i=1

a�i−1
ik =

∑
h

�h=0

(
1

ahk
+ 1

ahp

)
1

ahk + ahp

∏
i �=h

(aipahk − aikahp)�i−1

=
∑

h
�h=0

∏
i �=h

(
aip

ahp
− aik

ahk

)�i−1

. (30)

On the other hand, it follows from (24) and (23) that

δ(x, A,k) − δ(x, AT ,k) = [ζ(0, A, x) − ζn(0,ak, x)
]

log(tkk). (31)

Proposition 2 follows now from (27), (31) and the definition of τ . �
Given any coefficient matrix A, we denote by Âi the matrix obtained from A by removing the ith

row of A. Similarly, if x ∈ Rn , we write

xi(v) = (x1, . . . , xi−1, v, xi+1, . . . , xn) ∈ Rn, 1 � i � n,

x̂i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1, v ∈ R.
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Proposition 3. Assume that all entries of A have a positive real part, and let x ∈ [0,1]n, x �= 0. Then for n > 1,
the following two difference equations hold for j = 1, . . . ,n:

ζ
(
0, A, x j(0)

)− ζ
(
0, A, x j(1)

)= ζ(0, Â j, x̂ j),

τ
(
x j(0), A,k

)− τ
(
x j(1), A,k

)= τ (x̂ j, Â j,k).

Proof. By definition (6), for Re(s) > n
m ,

ζ
(
s, A, x j(0)

)= ∑
�∈L

n

m∏
p=1

{
� ja jp +

∑
i �= j

(xi + �i)aij

}−s

,

ζ
(
s, A, x j(1)

)= ∑
�∈L

n

m∏
p=1

{
(1 + � j)a jp +

∑
i �= j

(xi + �i)aij

}−s

.

Then

ζ
(
s, A, x j(0)

)− ζ
(
s, A, x j(1)

)= ζ(s, Â j, x̂ j). (32)

The first equation in the statement of Proposition 3 follows directly from (32). Let z = a jk +∑
p �= j xpapk and ẑ = z − a jk =∑p �= j xpapk . Replacing in (32) A by ak , the kth column of A, it fol-

lows from (5) that

logγn(ẑ,ak) − logγn(z,ak) = logγn−1(ẑ, âk).

Using Bk(0) = (−1)k Bk(1) for k � 0, it follows from (8) that all terms in

δ
(
xi(0), A,k

)− δ
(
xi(1), A,k

)
vanish except for those satisfying �i = 1. Since B1(0) − B1(1) = −1, the difference between these
δ values is equal to

(−1)n−1

m

∑
h �=i

log ahk

∑
p �=k

∑
�

�i=1,�h=0

∏
j �=h,i

B� j (x j)

� j !
(

a jp

ahp
− a jk

ahk

)� j−1

= δ(x̂i, Âi,k).

The second relation in Proposition 3 follows now from τ = δ + logγn . �
3. The derivative of partial zeta functions at s = 0

In this section, we discuss the dependence of Φk and Θk on all the choices made, and prove The-
orems 2 and 3. The proof of Theorem 3 is broken up into a sequence of 4 propositions. In particular,
in Propositions 4, 6, 7, we show that the order of the unspecified root of unity in Theorem 3 depends
only on properties of the integers N(b,D) defined by (16).
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3.1. In order to describe a Shintani domain D for the action of U+
f

, it is convenient to identify F

with the Q-algebra F (1) × F (2) ⊂ R × C. By Proposition 5.1 in [8], there exists a finite collection of
open simplicial cones V p(v p1, . . . , v pn) ⊂ F , 1 � n � 3, with generators v pi in ZF , such that

R+ × C =
⋃

u∈U+
f

uD, D =
⋃
p∈S

V p (disjoint unions), (33)

where S is a finite set of indices. Letting q be the smallest positive rational integer in f and replacing
each v pi by qv pi if necessary, we may assume that all the generators are in f. Furthermore, we may
assume that each generator is in fact a primitive element of f.

We attach to every cone V p in D a matrix A p of generators as follows:

A p =

⎛⎜⎜⎝
v(1)

p1 v(2)
p1 v(3)

p1
.
.
.

.

.

.
.
.
.

v(1)
pn v(2)

pn v(3)
pn

⎞⎟⎟⎠ , 1 � n � 3. (34)

By assumption, all entries of A p are algebraic integers in f. Since the entries of each column of A p are
rationally independent, it follows in particular that A p does satisfy the non-vanishing property (7).

Proof of Theorem 2. Let A p be the matrix in (34), and T p be the rotation defined in (13). If
R(p, fb−1 + 1) is the set of rational vectors determined by (12), then

N(b)sζF (C, s) =
∑
p∈S

∑
x∈R(p,fb−1+1)

ζ(s, A p T p, x). (35)

Differentiating (35) with respect to s, we obtain at s = 0,

ζ ′
F (C,0) =

∑
p∈S

∑
x∈R(p,fb−1+1)

ζ ′(0, A p T p, x),

since ζF (C,0) = 0. Using Theorem 1 and the definition of φk , the above result can be written as

ζ ′
F (C,0) =

3∑
k=1

Φk(b,D,T). �

Remark. The last equation implies∣∣Θ2(b,D,T)w E
∣∣2 = exp

(−w Eζ ′
F (C,0)

)
.

This follows immediately from the definition of Θ2 and the relation logε(2) + logε(3) = − logε(1) .
Stark’s conjecture (3) is therefore equivalent to∣∣Θ2(b,D,T)w E

∣∣2 = ∣∣η(C)
∣∣2.

As the first step towards the proof of Theorem 3, we now study the dependence of Θ2(b,D,T)

on T.

Proposition 4. Let D be a Shintani domain for U+
f

, let b be an integral ideal in the ray class C , and let N =
N(b,D) be the integer defined by (16). Then Θ2(b,D,T)N is independent of the choice of T.
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The proof of this proposition relies on the following two corollaries. The second corollary will be
also needed in the proof of Propositions 6 and 7 in Section 3.3.

Corollary to Proposition 1. Let A p be as in (34) and let T p be as in (13) such that all entries of A p T p have a
positive real part. If x ∈ Qn ∩ [0,1]n, x �= 0, then ζ(0, A p T p, x) is a rational number which is independent of
the chosen rotation T p .

Proof. By Proposition 1,

ζ(0, A p T p, x) = trF/Q

{
(−1)n

3

∑
�

n∏
i=1

B�i (xi)

�i ! v�i−1
pi

}
. �

Corollary to Proposition 2. Let U = (uij)3×3 be a diagonal matrix such that u11 > 0, and let A = A p, T = T p

be as above. If T ′ is a rotation matrix such that all entries of AU T ′ have a positive real part, then for k = 1,2,3,

φk(x, A, T ) − φk(x, AU , T ′) = ζ(0, AT , x)(2π ink + log ukk),

where nk ∈ Z is a rational integer (n1 = 0).

Proof. Note that ζ(0, AT , x) = ζ(0, AU T ′, x). Applying Proposition 2, we get

φk(x, A, T ) − φk(x, AU , T ′) = τ (x, AT ,k) + ζ(0, AT , x) log tkk − τ (x, AU T ′,k) − ζ(0, AU T ′, x) log t′
kk

= τ (x, AT ,k) + ζ(0, AT , x) log tkk − τ
(
x, AT T −1U T ′,k

)− ζ(0, AT , x) log t′
kk

= ζ(0, AT , x)
(
log
(
ukkt′

kk/tkk
)+ log tkk − log t′

kk

)
.

But t11 = t′
11 = 1 by definition, therefore

log
(
u11t′

11/t11
)+ log t11 − log t′

11 = log u11.

For k = 2,3,

log
(
ukkt′

kk/tkk
)+ log tkk − log t′

kk ≡ log ukk mod 2π iZ. �
Proof of Proposition 4. Suppose that T1 and T2 are two sets of rotations for D. For any cone V ∈ D,
let A be the matrix of generators associated with V , and let T1 ∈ T1, T2 ∈ T2 be two different rota-
tions for V as defined by (13). Taking U in the corollary to Proposition 2 as the identity matrix, we
obtain for all rational vectors x associated to V and A,

φk(x, A, T1) = φk(x, A, T2) + 2π inkζ(0, AT1, x), nk ∈ Z,

which in turn implies

Φk(b,D,T1) ≡ Φk(b,D,T2) mod 2π i
1

N
Z. �
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3.2. In order to investigate the dependence of Θ2 on the choice of a Shintani domain D, we need
to establish the invariance of Φk(b,D,T) under simplicial subdivision of D first.

Proposition 5. Φk(b,D,T) is invariant under simplicial subdivision of D for all k = 1,2,3.

Proof. For a given open simplicial cone V , denote by {Ṽq | q ∈ I} a subdivision of V into open
simplicial cones, where I is a finite set of indices. Let v = (v1, . . . , vn)t , n = dim(V ) (resp. ṽq =
(̃vq1, . . . , ṽqnq )

t , nq = dim(Ṽq)) be the column vector of the generators of V (resp. Ṽq), and let A

(resp. Ãq) be the matrix associated with V (resp. Ṽq). Without loss of generality, we may assume
that all generators are elements in f. Denote by R = R(fb−1 + 1) the set of rational vectors x ∈ (0,1]n

uniquely determined by the identity

(
fb−1 + 1

)∩ V =
⋃
x∈R

(
Ln + x

)
v (disjoint union).

Similarly, let R(q) = R(q, fb−1 + 1) be the set of rational vectors y ∈ (0,1]nq determined by

(
fb−1 + 1

)∩ Ṽq =
⋃

y∈R(q)

(
Lnq + y

)̃
vq (disjoint union).

Since each Ṽq is a subset of V , we may assume that the rotation T associated to V does have the
property that all elements of Ãq T have a totally positive real part. Since, for Re(s) > 1,

∑
x∈R

ζ(s, AT , x) =
∑

α∈(1+fb−1)∩V

N(α)−s

=
∑

q

∑
α∈(1+fb−1)∩Ṽq

N(α)−s

=
∑

q

∑
y∈R(q)

ζ(s, Ãq T , y),

we obtain for the values at s = 0,

∑
x∈R

ζ(0, AT , x) =
∑

q

∑
y∈R(q)

ζ(0, Ãq T , y). (36)

For a fixed k (1 � k � 3), denote by ω (resp. ω̃q) the kth column of AT (resp. Ãq T ). Then, we have
similarly

∑
x∈R

ζn(s,ω, xω) =
∑

q

∑
y∈R(q)

ζnq (s, ω̃q, yω̃q).

It follows now from the definition of the logγn function, that

∑
x∈R

logγn(xω,ω) =
∑

q

∑
y∈R(q)

logγnq (yω̃q, ω̃q). (37)
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Lemma 1. For k = 1,2,3,

∑
x∈R

δ(x, AT ,k) =
∑

q

∑
y∈R(q)

δ(y, Ãq T ,k). (38)

Combining (36), (37) and (38) finishes the proof of Proposition 5. �
Proof of Lemma 1. To prove Lemma 1, we need to verify that the algebraic coefficients in front of
each logarithm term occurring in the definition (8) of δ add up correctly.

We consider first the case dim(V ) = 3. Let a0 be any of the generators of V or Ṽq , q ∈ I . Then
a0 determines a cyclic sequence of 3-dimensional cones W ∈ {Ṽq | q ∈ I} or W = V having a0 as a
generator. Writing a j,a j+1 for the other two generators of W , we have

W = W j = W (a0,a j,a j+1), 1 � j � r,

where r is the number of such cones (ar+1 = a1).
The strategy of the following proof is to deduce the identity in Lemma 1 as a consequence of a

simple partial fraction identity satisfied by the rational functions:

f (σ1, σ2, σ3)(z) = det(σ1, σ2, σ3)

〈σ1, z〉〈σ2, z〉〈σ3, z〉 ,

where σi (i = 1,2,3) and z are non-zero column vectors in C3 and 〈z, w〉 =∑ zi wi is the standard
scalar product on C3. The identity in question is

Lemma 2. For all non-zero σ0, σ1, σ2, σ3 ∈ C3 ,

3∑
j=0

(−1) j f (σ0, . . . , σ̂ j, . . . , σ3) = 0.

Proof. Expand the 4 × 4 determinant

det

( 〈σ0, z〉 〈σ1, z〉 〈σ2, z〉 〈σ3, z〉
σ0 σ1 σ2 σ3

)
= 0

along the first row and divide by the product
∏

j〈σ j, z〉. �
Lemma 2 can be rewritten as

f (σ1, σ2, σ3) = f (σ0, σ1, σ2) + f (σ0, σ2, σ3) + f (σ0, σ3, σ1), (39)

which shows that all singularities at 〈σ0, z〉 = 0 on the right side of (39) cancel out. Applying (39)
repeatedly, we conclude that, as a function of z,

r∑
j=1

f (σ0, σ j, σ j+1)(z) (40)

is non-singular at 〈σ0, z〉 = 0 provided the sequence of the σ j is cyclic, that is, σr+1 = σ1. Taking
the partial derivative ∂/∂zi of (40), multiplying by 〈σ0, z〉 and then letting 〈σ0, z〉 = 0, we obtain for
〈σ0, z〉 = 0,



846 T. Ren, R. Sczech / Journal of Number Theory 129 (2009) 831–857
r∑
j=1

det(σ0, σ j, σ j+1)

〈σ j, z〉〈σ j+1, z〉 = 0, (41)

r∑
j=1

det(σ0, σ j, σ j+1)

〈σ j, z〉〈σ j+1, z〉
{

σ ji

〈σ j, z〉 + σ j+1 i

〈σ j+1, z〉
}

= 0. (42)

We now specialize σ j to σ j = (a j1,a j2,a j3), where a jl = a(l)
j ∈ F (l) , and assume from now on

z ∈ σ⊥
0 = {z ∈ C3

∣∣ 〈σ0, z〉 = 0
}
, z �= 0.

For a fixed integer p such that p �= k, we let

α j = a jp

a0p
− a jk

a0k
. (43)

Writing z j = 〈σ j, z〉 and d j = det(σ0, σ j, σ j+1), we obtain from (42) and (43),

r∑
j=1

d j

{
α j

z2
j z j+1

+ α j+1

z j z2
j+1

}
= 0, z ∈ σ⊥

0 , (44)

provided all z j do not vanish. As a next step, we investigate the left side of (44) near z j = 0. Let L j be
the sublattice of the ideal f generated by a0,a j,a j+1. Then

[f : L j]σ j−1 ± [f : L j−1]σ j+1 = b̃ jσ j + c̃ jσ0

for some integers b̃ j, c̃ j ∈ Z, where the ± sign depends on whether σ j−1 and σ j+1 are on the same
side (−1) or the opposite side (+1) of the plane spanned by σ0 and σ j . Let d = d(f) be the determi-
nant of any fixed Z-basis of f. Then d j = ±[f : L j]d, and therefore

d jσ j−1 + d j−1σ j+1 = d(b jσ j + c jσ0)

for some integers b j, c j ∈ Z. Hence

d jα j−1 + d j−1α j+1 = db jα j,

d j z j−1 + d j−1z j+1 = db j z j .

Using these relations repeatedly, we find after a lengthy calculation

d jα j

z2
j z j+1

+ d jα j+1

z j z2
j+1

+ d j−1α j−1

z2
j−1z j

+ d j−1α j

z j−1z2
j

= db j

(
α j+1

z j−1z2
j+1

+ α j−1

z2
j−1z j+1

)
.

This identity shows that the left side of (44) is non-singular at z j = 0 and, in fact, has the value

−α2
j−1

α j

d j

z3
− α2

j+1

α j

d j−1

z3
, z ∈ σ⊥

0 ∩ σ⊥
j , z �= 0. (45)
j−1 j+1
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We are now ready to average (44) over all non-zero lattice points

z ∈ M := (fb−1)∗ ∩ σ⊥
0 = {z ∈ (fb−1)∗ ∣∣ tr(a0z) = 0

}
,

where (fb−1)∗ = {α ∈ F | tr(αfb−1) ⊂ Z} is the dual of the fractional ideal fb−1 with respect to the
trace form tr : F → Q. Multiplying (44) by the additive character

χ(z) = e
(
tr(z)

)= exp
(
2π i tr(z)

)
and summing over all z ∈ M , z �= 0, leads to the infinite series

r∑
j=1

d j

∑′

z∈M
z �=0

χ(z)

{
α j

z2
j z j+1

+ α j+1

z j z2
j+1

}
, (46)

where the prime on the second summation sign reminds us that the meaningless terms with vanish-
ing denominators have to be replaced by (45). Postponing questions of convergence for a moment, we
insert a character relation inside of (46) in order to rewrite the sum over M as a sum over the larger
lattice M j := L∗

j ∩ σ⊥
0 ,

∑′

z∈M
z �=0

χ(z) = 1

[fb−1 : L j]
∑

μ∈fb−1+1
μ mod L j

∑′

z∈M j

χ(μz). (47)

Note that M ⊂ M j since L j ⊂ fb−1. Moreover, since (σ0, σ j, σ j+1) is a Z-basis of L j , the map
M j → Z2, z �→ (z j, z j+1), is an isomorphism of Z-lattices for each j = 1, . . . , r. Each coset μ + L j
in (47) determines three unique rational numbers u j, v j, w j ∈ (0,1] such that u ja j + v ja j+1 + w ja0 ∈
μ + L j . (Note that u j, v j, w j are the components of the rational vectors x (if W j = V ) respectively y
(if W j = Ṽq in Lemma 1).) The sum over z ∈ M j in (47) can therefore be written as

∑′

z∈M j

e(u j z j + v j z j+1)

{
α j

z2
j z j+1

+ α j+1

z j z2
j+1

}
, (48)

where z j, z j+1 now run independently over all non-zero rational integers. Unfortunately, the se-
ries (48) does not converge absolutely. To deal with that difficulty, we choose a vector Y ∈ R3 whose
components are linearly independent over the field of rational numbers. The partial sum of all terms
with |〈z, Y 〉| < t , z ∈ M j , z �= 0, converges absolutely for each t > 0. According to Theorem 2 of [10],
the limit Ω j(μ) of these partial sums for t → ∞ does exist and is independent of the choice of Y.
Moreover, we obtain the correct value of Ω j(μ) by applying formally to (48) the well-known Fourier
expansion

Bl(u) = − l!
(2π i)l

+∞∑′

n=−∞

e(nu)

nl
, 0 � u � 1, (49)

valid for l > 1 (and l = 1 if 0 < u < 1). In this way, we obtain

(2π i)−3Ω j(μ) = B3(u j)

3!
α2

j

α
+ B3(v j)

3!
α2

j+1

α
+ B1(u j)B2(v j)

2
α j+1 + B1(v j)B2(u j)

2
α j (50)
j+1 j



848 T. Ren, R. Sczech / Journal of Number Theory 129 (2009) 831–857
if 0 < u j, v j < 1. If u j = 1 or v j = 1, then the terms in (50) involving B1(u j) or B1(v j) must be
omitted since the Fourier series (49) vanishes in the case l = 1 and u ∈ Z. Taken together, (44)–(50)
imply

(2π i)−3
r∑

j=1

∑
μ∈fb−1+1
μ mod L j

∑
p �=k

s jΩ j(μ) = 0, (51)

where s j = sign(d j/i) and the summation over p �= k applies to α j as defined by (43). (Note that
s jd j/[fb−1 : L j] = i|d|/N(b) is independent of j.) Comparing (50) with (8), we claim that the left side
in (51) is (up to a sign) precisely the sum of all coefficients of all terms in Lemma 1 involving log(a0k).
This is easy to see if 0 < u j, v j < 1 for all j and μ. To verify the claim in the exceptional case u j = 1
or v j = 1 for some j and μ, we need to take into account the contribution of the 2-dimensional cone
W (a0,a j+1) or W (a0,a j) respectively since the intersection of these cones with fb−1 +1 is not empty
in these cases. But v j = 1 iff u j−1 = 1 in which case u j = v j−1, so

B1(u j−1)B2(v j−1) + B1(v j)B2(u j) = 2B1(1)B2(u j) = B2(u j)

which shows that the contribution of the 2-dimensional cones in Lemma 1 cancels out all terms
contributed by 3-dimensional cones involving B1(v j) in the exceptional case v j = 1. This completes
the proof of Lemma 1 in all cases. �
Remark. The identity (51) for Bernoulli polynomials of homogenous weight g = 3 is only a special
case of an infinite sequence of similar identities for all integral weights g � 2. The case g = 2 fol-
lows from (41). The most general identity of that type can be obtained by applying a homogenous
polynomial in the partial derivatives ∂/∂zi of degree g to (40).

We are now in the position to prove the claim made in the remark following Theorem 2. Let
D =⋃p∈S V p be a Shintani domain for U+

f
and, for each p ∈ S , let R(p) = R(p, fb−1 + 1) be the finite

set defined by (12).

Corollary. There are numbers α,β ∈ F such that for k = 1,2,3,

∑
p∈S

∑
x∈R(p)

δ(x, A p,k) = α(k) log
(
ε(k)
)+ 2π iβ(k)γk, (52)

where ε is the fundamental unit of Z∗
F satisfying ε(1) > 1 and γ1 = 0, γ2 = γ3 = 1.

Proof. As in the proof of Lemma 1, we consider the subset of all cones V p, p ∈ J , containing a
fixed 1-dimensional face R+a0. If these cones form a complete star of R+a0 (in the sense that the
V p mod Ra0, p ∈ J , induce a triangulation of a circle), then the sum of all terms in (52) containing
the factor log(a0k) does vanish. In general, if the star of R+a0 is not complete, we can complete the
star by shifting some of the cones in D by suitable units in U+

f
. (This may require a preliminary

subdivision of some or all cones in D.) Recall that

δ(x, A p,k) =
∑

C(p, x;h)(k) log(ahk),
h
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where the sum runs over all generators ah of V p and the coefficient C(p, x;h)(k) in F (k) is given
by (8). The essential point is that C(p, x;h)(k) is invariant under translation of V p by units in U+

f
. If

ah = εma0 for some m ∈ Z, then

log(ahk) − log(a0k) = m log
(
ε(k)
)+ 2π in

for some integer n ∈ Z (n = 0 if k = 1). The corollary follows now easily. �
Remark. Conjecture 1 together with the above corollary allows us to gain some insight into the nature
of the number

ν(b,D) =
∑
p∈S

∑
x∈R(p)

logγn
(
xv(1)

p , v(1)

k

)
,

where v p is the column vector of generators of the cone V p .

Conjecture. ν(b,D) = (r(b,D) − α(1)) log(ε(1)), where r(b,D) is the rational number defined by Conjec-
ture 1. Since tr(α) = 0 (which follows from (8) and (30)), this can also be written as

r(b,D) = 1

3
tr
(
ν(b,D)/ log

(
ε(1)
))

,

which shows that the rational number r(b,D) in Conjecture 1 is completely determined by ν(b,D) alone.

3.3. Dependence of Θ2 on D and b

Every Shintani domain D for U+
f

induces a tessellation of R+ ×C. The elements of that tessellation

are the cones in D and its translates under U+
f

. Given two Shintani domains D1 and D2 for U+
f

,
there exists a common simplicial refinement of the induced tessellations consisting of simplicial cones
ul V p , l ∈ Z, u a generator of U+

f
, where the collection of the cones V p , p ∈ S , does form a Shintani

domain D for U+
f

. We call D a common refinement of D1 and D2.

Proposition 6. Let D1 and D2 be two Shintani domains for U+
f

. Then

(
Θ2(b,D1,T1)

Θ2(b,D2,T2)

)g

= 1,

where g is the greatest common divisor of all the integers N(b,D) defined by (16) as D runs through all
common refinements of D1 and D2 .

Proof. We choose a common refinement D of D1 and D2. Without loss of generality, we may assume
that D is a simplicial subdivision of D1, and D′ =⋃p∈S ulp V p is a subdivision of D2, where u is the

fundamental unit of U+
f

determined by u(1) > 1, and lp ∈ Z. Let

ρ = [U+ : U+
f

]∑
p∈S

lp

∑
x∈R(p,fb−1+1)

ζ(0, A p T p, x), (53)

with A p, T p determined by V p . We claim that

Θ2(b,D1,T1)
N = Θ2(b,D2,T2)

N (54)
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with N = N(b,D) given by (16). This follows directly from

Φk(b,D1,T1) ≡ Φk(b,D2,T2) + ρ logε(k) mod
2π i

N
Z, (55)

for k = 1,2,3 and N = N(b,D). Indeed, k = 1 implies

Φ1(b,D1)

logε(1)
logε(2) = Φ1(b,D2)

logε(1)
logε(2) + ρ logε(2), (56)

while k = 2 yields

Φ2(b,D1,T1) ≡ Φ2(b,D2,T2) + ρ logε(2) mod
2π i

N
Z. (57)

Subtracting (57) from (56),

log Θ2(b,D1,T1) ≡ logΘ2(b,D2,T2) mod
2π i

N
Z.

To finish the proof, we only need to verify the relation (55). By Proposition 5, we have for k = 1,2,3,

Φk(b,D1,T1) = Φk(b,D,T1) and Φk(b,D2,T2) = Φk(b,D′,T2).

Now, let V p be a cone in the Shintani domain D, and let u ∈ U+
f

. Since

(
fb−1 + 1

)∩ uV p =
⋃

x∈R(p,fb−1+1)

(
Lnp + x

)
uv p (disjoint union),

the corollary to Proposition 2 implies for k = 1,2,3, and all rational vectors x ∈ R(p, fb−1 + 1),

φk(x, A p, T p) − φk
(
x, A p Ulp , T ′

p

)= ζ(0, A p T p, x)
(
lp log u(k) + 2π imk

)
,

where mk ∈ Z (m1 = 0), and U = (uij)3×3 is the diagonal matrix with ukk = u(k) . The relation (55) and
hence (54) follows now easily from (53) and the definition of Φk . �

The remainder of this subsection is devoted to the study of the dependence of Θ2(b,D,T) on b.
Recall that if b is an integral representative of a narrow ray class C , then every other integral ideal

in C is of the form (μ)b with a totally positive μ ∈ 1 + fb−1.

Proposition 7. Let D be a Shintani domain for U+
f

. If μ ∈ 1 + fb−1 is a totally positive element in F , then

(
Θ2(b,D,T)

Θ2(b(μ),D,T)

)g

= 1,

where g is the greatest common divisor of all the integers N(b,D′) as D′ runs through all common refinements
of D and μD.
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Proof. Let D be a Shintani domain, and let μ be a totally positive element in F such that μ ≡
1 mod fb−1. For any cone V p ∈ D, let R(p) = R(p, fb−1 + 1) be the set of rational vectors x ∈ (0,1]n ,
n = dim(V p), which is uniquely determined by the identity

(
fb−1 + 1

)∩ μV p =
⋃

x∈R(p)

(
Ln + x

)
μv p (disjoint union), (58)

where v p = (v p1, . . . , v pn)t is the column vector of the generators of V p . Similarly, let R ′(p) =
R(p, f(μb)−1 + 1) be the set of rational vectors y ∈ (0,1]n uniquely determined by

(
f(μb)−1 + 1

)∩ V p =
⋃

y∈R ′(p)

(
Ln + y

)
v p (disjoint union). (59)

Since μ ≡ 1 mod fb−1, multiplying (58) by μ−1, we obtain

(
f(μb)−1 + 1

)∩ V p =
⋃

x∈R(p)

(
Ln + x

)
v p (disjoint union).

Hence R(p) = R ′(p), and therefore

Φk
(
b(μ),D,T

)− Φk(b,μD,T′) =
∑
p∈S

∑
x∈R(p)

{
φk(x, A p, T p) − φk

(
x, A p U , T ′

p

)}
,

where A p is the matrix associated with V p , and U = (uij)3×3 is the diagonal matrix with ukk = μ(k) .
Applying the corollary to Proposition 2 and observing

∑
p∈S

∑
x∈R(p)

ζ(0, A p T p, x) = ζF (C,0) = 0,

yields for k = 1,2,3,

Φk
(
b(μ),D,T

)≡ Φk(b,μD,T′) mod 2π i
1

N
Z,

where N = N(b,D) is defined by (16), and T′ is a set of rotations for μD. Proposition 7 follows now
from Proposition 6. �
4. Numerical examples

We begin by recalling a characteristic property of the Stark units η(C) in conjecture (2).
Consider the ray class T in Cl+F (f) containing the principal ideals (λ), λ ≡ 1(f), λ(1) < 0. Clearly,

T generates a subgroup of order 2 in Cl+F (f) and Cl+F (f)/〈T 〉 is canonically isomorphic to the wide ray
class group ClF (f). Let τ ∈ Gal(E/F ) be the element corresponding to T under Artin reciprocity and
let H be the subfield of E fixed under τ . Then H is a subfield of E of index 2 which is Galois over F
with Gal(H/F ) ∼= ClF (f). According to [16,17], the Stark unit η in (2) satisfies the relation

η(C T ) = η(C)τ = 1
, C ∈ Cl+F (f). (60)
η(C)
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Let H(1) ⊂ E(1) ⊂ C be the complex embedding of E which extends the real embedding F (1) ⊂
H(1) ⊂ R. Since the automorphism of E(1)/H(1) induced by τ is complex conjugation, the above rela-
tions are equivalent to ∣∣η(C)(1)

∣∣= 1.

These relations are very helpful when searching for Stark units in a given extension E/F . We remark
in passing that, conjecturally, the Stark units η(C) generate a subgroup of finite index in the group of
all units u ∈ Z∗

E having the property |u(1)| = 1.
Next, we state an alternative version of Theorem 2 which is very convenient in actual computations

of ζ ′
F (C,0).

According to (11),

ζF (C, s) = N(b)−s
∑
p∈S

∑
μ∈V p∩(fb−1+1)

N(μ)−s,

for every Shintani domain
⋃

p∈S V p for U+
f

. Let m = [U+ : U+
f

]. If D =⋃ j∈S0
V j is a Shintani domain

for U+ , then D′ =⋃ j∈S0

⋃m
i=1 ε−i V j is a Shintani domain for U+

f
. Hence

∑
p∈S

∑
μ∈V p∩(fb−1+1)

N(μ)−s =
∑
j∈S0

m∑
i=1

∑
μ∈ε−i V j∩(fb−1+1)

N(μ)−s

=
∑
j∈S0

m∑
i=1

∑
μ∈V j∩(fb−1+εi)

N(μ)−s.

For k = 1,2,3, let

Φ̃k(b,D,T) =
∑
p∈S0

m∑
i=1

∑
x∈R(p,fb−1+εi)

φk(x, A p, T p), (61)

and write

Θ̃2(b,D,T) = exp

(
Φ̃1(C,D)

logε(2)

logε(1)
− Φ̃2(b,D,T)

)
. (62)

Then

ζ ′
F (C,0) = Φ̃1(b,D,T) + Φ̃2(b,D,T) + Φ̃3(b,D,T). (63)

Moreover, it follows from Proposition 6 that

(
Θ̃2(b,D,T)

Θ2(b,D′,T′)

)N

= 1,

where N = N(b,D) is the integer defined by (16).
Due to the difference equations satisfied by τ (x, A,k) and ζ(0, A, x) (Proposition 3 in Section 2),

we can choose half open and half closed cones for the fundamental domain. We assume that each
lower dimensional cone V (n = 1,2) inherits the rotation associated with the full dimensional cone
(n = 3) containing V . This reduces also the number of cones to be considered.



T. Ren, R. Sczech / Journal of Number Theory 129 (2009) 831–857 853
We are now ready to present a few selected examples for Conjectures 1 and 2. For further exam-
ples, see [18]. All examples were calculated using the asymptotic expansions for the multiple gamma
function in [8,9]. Unless stated otherwise, all numerical results are up to an error less than 10−20. We
use this opportunity to thank Herbert Gangl, Paul Gunnells and Brett Tangedal for supplying us with
Stark units.

4.1. Let F = Q(θ), where θ3 − 2 = 0. Then the discriminant of F is −108, ε = 1
θ−1 = 1 + θ + θ2

is the fundamental unit, ZF = [1, θ, θ2], and hF = 1. A fundamental domain D1 for the group of all
totally positive units U+ acting on the upper half space R+ × C is a disjoint union of the following
six simplicial cones

V 1 = {x11 + x12θ + x13
(
2 + 2θ + θ2) ∣∣ x11 � 0, x12 > 0, x13 � 0

}
,

V 2 = {x21 + x22
(
2 + 2θ + θ2)+ x23

(
2 + θ + θ2) ∣∣ x21 > 0, x22 > 0, x23 � 0

}
,

V 3 = {x31 + x32
(
2 + θ + θ2)+ x33θ

2
∣∣ x31 > 0, x32 � 0, x33 � 0

}
,

V 4 = {x41θ
2 + x42

(
2 + θ + θ2)+ x43

(
1 + θ + θ2) ∣∣ x41 > 0, x42 > 0, x43 � 0

}
,

V 5 = {x51θ
2 + x52

(
1 + θ + θ2)+ x53θ

∣∣ x51 > 0 x52 � 0, x53 � 0
}
,

V 6 = {x61θ + x62
(
1 + θ + θ2)+ x63

(
2 + 2θ + θ2) ∣∣ x61 > 0, x62 > 0, x63 � 0

}
.

Fig. 1 represents the intersection of the cone decomposition V 1, . . . , V 6 of the fundamental domain
for the unit group and the plane {(1, z) | z ∈ C}.

Fig. 1. A fundamental domain for the unit group 〈θ − 1〉, θ3 − 2 = 0.
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Another fundamental domain D2 is given by the disjoint union of the following four cones,

Ṽ 1 = {x11(θ − 1) + x12θ + x13(θ
2 − θ)

∣∣ x11 � 0, x12 > 0, x13 > 0
}
,

Ṽ 2 = {x21
(
2 − θ2)+ x22 + x23(θ − 1)

∣∣ x21 � 0, x22 > 0, x23 > 0
}
,

Ṽ 3 = {x31
(
θ2 − θ

)+ x32 + x33
(
2 − θ2) ∣∣ x31 � 0, x32 > 0, x33 > 0

}
,

Ṽ 4 = {x41
(
θ2 − θ

)+ x42θ
2 + x43

∣∣ x41 � 0, x42 � 0, x43 > 0
}
.

Example 4.1.1. f = (3).
In this case, [U+ : U+

f
] = 3, w E = 18 and Cl+F (f) ∼= Z6 = {C j | j = 1, . . . ,6}. For each C j , let b j be the

chosen integral ideal in C j . Consider the following polynomial (kindly provided by Brett Tangedal),

x18 − 7767x17 + 51550065x16 − 199524692622x15 + 520755985257966x14

− 1828056747902004x13 + 24870880029533226x12 − 80588629212013080x11

+ 116076408275027511x10 − 118102314911180623x9 + 116076408275027511x8

− 80588629212013080x7 + 24870880029533226x6 − 1828056747902004x5

+ 520755985257966x4 − 199524692622x3 + 51550065x2 − 7767x + 1.

Among the eighteen roots, six have absolute value 1, call them η13, . . . , η18. The remaining twelve
roots can be divided into the following two groups: η1, . . . , η6 and η7 = η̄1, . . . , η12 = η̄6, where

η1 = 0.0001768 . . . + 0.0001391 . . . i, η2 = −0.000111 . . . + 0.1530477 . . . i,

η3 = 389.36713 . . . + 5117.3074 . . . i, η4 = 3492.3844 . . . − 2747.4350 . . . i,

η5 = −0.004755 . . . − 6.5339057 . . . i, η6 = 0.0000147 . . . − 0.0001942 . . . i.

Then using (63), we obtain numerically that

ζ ′
F (C j,0) = − 1

18
log |η j |2, j = 1, . . . ,6.

To simplify notation, let

e(x) = exp(2π ix), N j = N(b j,D), r j = r(b j,D) = Φ̃1(b j,D)

logε(1)
, ξ j = Θ̃2(b j,D,T)

η j
.

For the list of rotations T, see [18]. In the case of the first fundamental domain D1, we found

j b N r ξ

1 (3 + 4θ + 3θ2) 2334472 − 21931
2333472 e(− 3156863

2134472 )

2 (θ2) 2334 13
2333 e(− 1

2232 )

3 (5 + 3θ + 3θ2) 2334172 8093
2333172 e(− 28433

2232172 )

4 (2θ) 2334 − 15
2333 e( 23

2232 )

5 (3 + 2θ2) 2334592 − 147895
2333592 e(− 672797

2232592 )

6 (1) 2334 1
2333 e( 11

2232 )
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For the second fundamental domain D2, we obtained

j b N r ξ

1 (3 + θ) 2334292 − 7957
2333292 e(− 22079

2232292 )

2 (3 + θ2) 2334312 21031
2333312 e(− 20977

2232312 )

3 (2 + 3θ) 2334312 4973
2333312 e(− 36653

2232312 )

4 (2θ) 2334 1
2333 e( 5

2232 )

5 (2θ2) 2234 − 13
2333 e( 1

2232 )

6 (4) 2334 7
2333 e( 11

2232 )

4.2. Let F = Q(θ), where θ3 − θ + 1 = 0. The discriminant of F is −23, ε = −θ is the fundamen-
tal unit, ZF = [1, θ, θ2], and hF = 1. A fundamental domain D1 for the group of all totally positive
units U+ acting on the upper half space R+ × C is a disjoint union of the following two simplicial
cones

V 1 = {x11
(
2θ2 − 1

)+ x12
(
θ2 − 1

)+ x13(−θ)
∣∣ x11 � 0, x12 > 0, x13 � 0

}
,

V 2 = {x21 + x22(−θ) + x23
(
1 − 2θ − θ2) ∣∣ x21 � 0, x22 � 0, x23 > 0

}
.

Fig. 2 represents the intersection of the above cone decomposition V 1, V 2 and the plane {(1, z) |
z ∈ C}.

Another fundamental domain D2 is given by the following simplicial cone,

Ṽ = {x1 + x2(−θ) + x3
(
1 − θ − θ2) ∣∣ x1 � 0, x2 � 0, x3 > 0

}
.

Example 4.2.1. f = (5).
Here, [U+ : U+

f
] = 24, Cl+F (f) ∼= Z4 = {C j | j = 1, . . . ,4} and w E = 10. Consider the polynomial x12 +

1538x11 + 658641x10 − 294570x9 − 1439030x8 + 749633x7 + 2477699x6 + 749633x5 − 1439030x4 −
294570x3 + 658641x2 + 1538x + 1, and denote by η j the roots ( j = 1, . . . ,12) such that

Fig. 2. A fundamental domain for the unit group 〈−θ〉, θ3 − θ + 1 = 0.
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η1 = 1.32787 . . . + 0.76816 . . . i, η2 = −769.22 . . . + 260.042 . . . i,

η3 = 0.56425 . . . − 0.32641 . . . i, η4 = −0.0011 . . . − 0.00039 . . . i.

Then numerically, we have ζ ′
F (C j,0) = − 1

10 log |η j |2, j = 1, . . . ,4. Moreover, for the first fundamental
domain D1, we have

j b N r ξ

1 (2) 22325371 67
21325171 e( 22

315171 )

2 (4) 22325371 − 773
21325271 e(− 64

315171 )

3 (3) 22325371 41
215271 e( 193

315171 )

4 (1) 22325371 409
21325271 e( 29

315171 )

For the second fundamental domain D2, we have

j b N r ξ

1 (7 + 5θ) 213253432 49073
2152432 e( 46144

3151432 )

2 (4 − 5θ) 213253892 − 41968730
3252892 e(− 4295798

3251892 )

3 (3 − 5θ) 21325372112 5283043
21325272112 e( 2453741

325172112 )

3 (3 − 5θ + 5θ2) 213253172 88603
213252172 e( 18506

3251172 )

4 (−4 + 5θ2) 213253114 − 373019
213252113 e( 29539

32113 )

Thanks to a kind remark by the anonymous referee, the Stark units η j in this example can also be
described as follows. Consider the elements a = −395θ2 +60θ +776, b = 495θ2 −385θ −1374 ∈ F and
let g(x) = x4 + ax3 + bx2 + ax + 1. Then E = F (g). Moreover, the polynomial g splits over H = F (

√
5)

into

g(x) = (x2 − α1x + 1
)(

x2 − α2x + 1
)
,

where α j are the roots of α2 + aα + b − 2 = 0. Moreover, H = F (α). Hence we see that

E = H(η1) = H(η2),

where η j are the roots of η2 − α jη + 1. Both units η1 and η2 do satisfy the relation (60).
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