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Let G be the group preserving a nondegenerate sesquilinear form
B on a vector space V , and H a symmetric subgroup of G of the
type G1 × G2. We explicitly parameterize the H-orbits in GrG (r),
the Grassmannian of r-dimensional isotropic subspaces of V , by
a complete set of H-invariants. We describe the Bruhat order in
terms of the majorization relationship over a diagram of these H-
invariants. The inclusion order, the stabilizer, the orbit dimension,
the open H-orbits, the decompositions of an H orbit into H ∩ G0
and H0 orbits are also explicitly described.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The symmetric subgroup orbits in flag manifolds have been extensively studied. Their parametriza-
tion, in the most general form, is due to Matsuki [9–12] and Springer [17]. There are finitely many
such orbits. In addition, there is a natural topological ordering, called the Bruhat order, among the or-
bits: Orbits O � O′ if the Zariski closure of O contains O′ . The Bruhat order can be described purely
algebraically in terms of the Matsuki–Springer parameter [10,15,16,5].

In this paper, we thoroughly characterize one family of symmetric subgroup actions on the Grass-
mannians of isotropic subspaces by complete sets of invariants, and we describe their Bruhat orders
by majorization relationships over diagrams of these invariants.

In Table 1, V is a vector space equipped with a nondegenerate sesquilinear form B; G is the subgroup
of GL(V ) preserving the form B; H is a symmetric subgroup of G stabilizing two subspaces U and W
of V , where V = U ⊕ W and U ⊥ W with respect to form B .
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Table 1
Symmetric pairs (G, H) and representation spaces V .

G H V Conditions

Sp2n(F) Sp2m(F) × Sp2n−2m(F) F
2m ⊕ F

2n−2m 0 < m < n

On(F) Om(F) × On−m(F) F
m ⊕ F

n−m 0 < m < n

O(p,q) O(p1,q1) × O(p − p1,q − q1) R
p1+q1 ⊕ R

p−p1+q−q1 0 < p1 < p, 0 < q1 < q

U(p,q) U(p1,q1) × U(p − p1,q − q1) C
p1+q1 ⊕ C

p−p1+q−q1 0 < p1 < p, 0 < q1 < q

Note: F is an infinite field; F is the algebraic closure of F.

A subspace S of V is said to be isotropic if S ⊥ S with respect to form B . Let GrG(r) denote the
projective variety of r-dimensional isotropic subspaces of V . GrG(r) is called an isotropic Grassmannian
or simply Grassmannian.

This paper focuses on the H-action in GrG(r) for the triples (G, H, V ) in Table 1.
The symplectic case (G, H) = (Sp2n(F),Sp2m(F) × Sp2n−2m(F)) has been carefully investigated

[13,14]. Let S be an isotropic subspace of V = U ⊕ W . In [13], P. Rabau and D.S. Kim construct an
integral 4-tuple

(
dim(S ∩ U ),dim(S ∩ W ),dim

S ∩ (PU S ⊕ PW S)⊥

(S ∩ U ) ⊕ (S ∩ W )
,

1

2
dim

S

S ∩ (PU S ⊕ PW S)⊥

)
(1.1)

to parameterize the H-orbit of S and to determine the partial order induced by the inclusion of
isotropic subspaces. In [14], P. Rabau uses the 4-tuple to describe the stabilizer of S under the H-
action and the codimension of an H-orbit. In this paper, we remove the fraction 1

2 from the last term
of (1.1) and denote the resulting 4-tuple by (rU (S), rW (S),a(S),b(S)). Then we determine the Bruhat
order in terms of the majorization relationship over a diagram of rU (S), rW (S), a(S) and b(S).

In Section 2, we give a general discussion of H\GrG(r) for the triples (G, H, V ) in Table 1. The first
main result is a parametrization of the H-orbits by a finite convex subset of an integral lattice.

Theorem 1.1. Let (G, H, V ) be given as in Table 1.

(1) If G = Sp2n(F) or On(F), then the H-orbits in GrG(r) can be parameterized by an integral 4-tuple of
H-invariants (rU , rW ,a,b) defined by (2.7).

(2) If G = O(p,q) or U(p,q), then the H-orbits in GrG(r) can be parameterized by an integral 5-tuple of
H-invariants (rU , rW ,a,bU ,bW ), where bU and bW are defined in (5.2) and (6.2).

In general, the H-orbit of S ∈ GrG(r) is isomorphic to H/H S , where H S is the stabilizer of S in the H-action.
The structure of H S is determined by Theorem 2.3. The dimension of H S is given by Corollary 2.4.

The second main result we carry out is an explicit description of the Bruhat order in terms of our
H-invariants (rU , rW ,a,b) and (rU , rW ,a,bU ,bW ). The Bruhat order follows a simple majorization
relation over diagrams of these H-invariants.

Theorem 1.2. Consider the Bruhat order over H\GrG(r) for (G, H, V ) in Table 1.

(1) When G = Sp2n(F) or On(F), we make the following diagram:

b

a

rU rW

(1.2)
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The H-orbit parameterized by (rU , rW ,a,b) is greater than the H-orbit parameterized by (r′
U , r′

W ,a′,b′)
in the Bruhat order if and only if :

b � b′, a + b � a′ + b′, rU + a + b � r′
U + a′ + b′, rW + a + b � r′

W + a′ + b′.

Note that each of b, a + b, rU + a + b and rW + a + b is the sum of all nodes connected to a given node
via a descending path in diagram (1.2). The inequality a + b � a′ + b′ is redundant.

(2) When G = O(p,q) or U(p,q), we make the following diagram:

bU bW

a

rU rW

(1.3)

The H-orbit parameterized by (rU , rW ,a,bU ,bW ) is greater than the H-orbit parameterized by
(r′

U , r′
W ,a′,b′

U ,b′
W ) in the Bruhat order if and only if :

bU � b′
U , bW � b′

W , a + bU + bW � a′ + b′
U + b′

W ,

rU + a + bU + bW � r′
U + a′ + b′

U + b′
W , rW + a + bU + bW � r′

W + a′ + b′
U + b′

W .

Note that each of bU , bW , a + bU + bW , rU + a + bU + bW and rW + a + bU + bW is the sum of all
nodes connected to a given node via a descending path in diagram (1.3). The inequality a + bU + bW �
a′ + b′

U + b′
W is redundant.

Therefore, in terms of the Bruhat order, the H-invariants we use provide the most natural way to
describe the H-action in GrG(r).

We also determine the inclusion order over the H-orbits of all isotropic subspaces. Two H-orbits
O and O′ have the inclusion order O � O′ if there exist S ∈ O and S ′ ∈ O′ such that S ⊇ S ′ . The
third main result of this paper is an extension of P. Rabau and D.S. Kim’s work on the inclusion order
of symplectic case [13, Theorem 4.3] to the inclusion orders of the other cases. See Theorems 4.6, 5.6
and 6.5.

When G = O(C) or G = O(p,q), both G and H are disconnected. Let G0 be the identity component
of G . We illustrate in Sections 4 and 5 how an H-orbit in GrG(r) decomposes into (H ∩ G0) and H0
orbits.

Our view point is purely algebraic. We derive our theorem by analyzing the simultaneous isom-
etry of a set of subspaces using the tools presented in [8, Theorem 5.3]. It is unclear yet how our
parametrization should be identified with the Matsuki–Springer parametrization [1,9,10,17].

The H-orbits on isotropic Grassmannians play an important role in explicit construction of auto-
morphic L-functions [2]. The main motivation of this paper comes from representation theory. Recall
that functions on isotropic Grassmannian GrG(r) can be used to define certain degenerate principal
series I P (v). The representation I P (v) is one of the most intensively studied series of representations.
In case G/P is the Lagrangian Grassmannian and G the symplectic group, a preliminary investigation
by the second author gives a branching law for the unitary I P (v)|H [3,4]. This branching law is mul-
tiplicity free and yields a Howe type L2-correspondence [6,7] between certain unitary representations
of G1 and certain unitary representations of G2. So the remaining question is to see if the degenerate
principal series in other cases will decompose in a similar fashion when restricted to H . A first step
is to understand how H acts in GrG(r), in particular how H acts on the open orbits in GrG(r). The
question of the structure of the open orbits is answered in Corollaries 3.4, 4.4, 5.4, 6.4.

Isotropic Grassmannian is a special case of partial flag variety. Another interesting example of sym-
metric group action on flag variety is the real semisimple group action on complex flag variety [18].
In this case, one often gets a finite number of open orbits and the structure of these open orbits has
broad implications in representation theory.



144 H. Huang, H. He / Journal of Algebra 337 (2011) 141–168
2. Preliminary

2.1. Settings

Let

N0 := {0} ∪ N = {0,1,2,3, . . .}. (2.1)

Let F be an infinite field, and V a vector space over F equipped with a nondegenerate sesquilinear
form B . Denote the orthogonal direct sum

V = U 
 W

if V = U ⊕ W as vector spaces and U ⊥ W with respect to the form B , that is, B(u,w) = 0 for
any u ∈ U and w ∈ W . Suppose dim V = n. Let G(V ) or G(n) denote the isometry group of V that
preserves B:

G(V ) = G(n) := {
g ∈ GLF(V )

∣∣ B
(

g(v), g
(
v′)) = B

(
v,v′) for v,v′ ∈ V

}
.

A symmetric pair (G, H) in Table 1 has the form (G(V ), G(U ) × G(W )) for certain sesquilinear form
B and certain decomposition V = U 
 W .

For a fixed form B , let GrG(r) be the Grassmannian of r-dimensional isotropic subspaces of V .

2.2. H-invariants in GrG(r)

Define the radical of a subspace S of V by

Rad(S) := S ∩ S⊥ = {
v

∣∣ v ∈ S, B
(
v,v′) = 0 for any v′ ∈ S

}
. (2.2)

So S is isotropic if and only if Rad(S) = S .
A flag of a vector space is a nested sequence of subspaces.
Now suppose S is an r-dimensional isotropic subspace of V , namely S ∈ GrG(r). It induces a flag

FU (S) of U and a flag FW (S) of W , respectively:

FU (S): {0} ⊆ S ∩ U ⊆ Rad(PU S) ⊆ PU S ⊆ Rad(PU S)⊥ ∩ U ⊆ (S ∩ U )⊥ ∩ U ⊆ U , (2.3)

FW (S): {0} ⊆ S ∩ W ⊆ Rad(PW S) ⊆ PW S ⊆ Rad(PW S)⊥ ∩ W ⊆ (S ∩ W )⊥ ∩ W ⊆ W . (2.4)

Here PU S := (S + W ) ∩ U is the projection of S onto the U -component with respect to the decompo-
sition V = U ⊕ W . Likewise for PW S .

The symmetric subgroup H = G(U ) × G(W ) of G consists of elements of GL(V ) that preserve the
form B and stabilize the subspaces U and W . If h(S) = S ′ for h ∈ H and S, S ′ ∈ GrG(r), then h sends
each subspace in FU (S) (resp. FW (S)) bijectively to its counterpart in FU (S ′) (resp. FW (S ′)). So the
dimensions of subspaces in the flags FU (·) and FW (·) are H-invariants.

For u ∈ PU S , let ū denote the element u + Rad(PU S) in PU S
Rad(PU S)

. Then PU S
Rad(PU S)

has a nondegener-

ate sesquilinear form B induced by B:

B
(
ū, ū′) := B

(
u,u′), for ū, ū′ ∈ PU S

Rad(PU S)
. (2.5)

Similarly, PW S
Rad(P S)

has a nondegenerate sesquilinear form (also denoted by B) induced by B .

W
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Two vector spaces equipped with sesquilinear forms, L1 with form B1 and L2 with form B2, are
called isometric, if there exists a linear bijection φ : L1 → L2, called an isometry, such that B1(u,u′) =
B2(φ(u),φ(u′)) for any u,u′ ∈ L1. With this notation, the isometry class of ( PU S

Rad(PU S)
, B) is H-invariant

since H preserves B .
If u + w,u′ + w′ ∈ S such that u,u′ ∈ U and w,w′ ∈ W , then

B
(
u,u′) = −B

(
w,w′). (2.6)

It immediately implies the following lemma.

Lemma 2.1. The isometry class of ( PW S
Rad(PW S)

, B) is the additive inverse of the isometry class of ( PU S
Rad(PU S)

, B).

For example, if G( PU S
Rad(PU S)

)  O(p,q), then G( PW S
Rad(PW S)

)  O(q, p).
We are now ready to present a complete set of H-invariants in GrG(r) for symmetric pairs (G, H)

in Table 1. Denote

rU (S) := dim(S ∩ U ), (2.7a)

rW (S) := dim(S ∩ W ), (2.7b)

a(S) := dim
Rad(PU S)

S ∩ U
= dim

Rad(PW S)

S ∩ W
= dim

S ∩ (PU S 
 PW S)⊥

(S ∩ U ) 
 (S ∩ W )
, (2.7c)

b(S) := dim
PU S

Rad(PU S)
= dim

PW S

Rad(PW S)
= dim

S

S ∩ (PU S 
 PW S)⊥
. (2.7d)

Obviously, rU (S), rW (S), a(S) and b(S) are nonnegative integers and

rU (S) + rW (S) + a(S) + b(S) = dim S = r. (2.8)

Theorem 2.2. Let (G, H, V ) be a triple in Table 1. Let r be an integer such that 0 � r � 1
2 dim V . For S ∈

GrG(r), the integral 4-tuple (rU (S), rW (S),a(S),b(S)) defined in (2.7) and the isometry class of ( PU S
Rad(PU S)

, B)

defined in (2.5) form a complete set of H-invariants that uniquely determines the H-orbit of S in GrG(r).

Proof. The H-invariant part is clear. Let us show that these H-invariants uniquely determine the
H-orbit of S in GrG(r). Let S ′ ∈ GrG(r) satisfy that

(1) (rU (S ′), rW (S ′),a(S ′),b(S ′)) = (rU (S), rW (S),a(S),b(S));

(2) ( PU S ′
Rad(PU S ′) , B) is isometric to ( PU S

Rad(PU S)
, B).

We explicitly construct an element of H that sends S to S ′ . For a subspace P1 of a vector space P , let

P � P1

denote the set of subspaces P2 of P such that P = P1 ⊕ P2.

(1) According to rU (S) = rU (S ′), select a linear bijection φ0 : S ∩ U → S ′ ∩ U .
(2) Select U2 ∈ Rad(PU S) � (S ∩ U ) and U ′

2 ∈ Rad(PU S ′) � (S ′ ∩ U ). According to a(S) = a(S ′), select
a linear bijection φ1 : U2 → U ′

2.
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(3) Select U3 ∈ PU S � Rad(PU S). Then (U3, B) is isometric to ( PU S
Rad(PU S)

, B). Likewise, select U ′
3 ∈

PU S ′ �Rad(PU S ′). Then (U ′
3, B) is isometric to ( PU S ′

Rad(PU S ′) , B). Since ( PU S ′
Rad(PU S ′) , B) and ( PU S

Rad(PU S)
, B)

are isometric, we can select an isometry φ2 : U3 → U ′
3 with respect to the form B .

(4) Now according to PU S = (S ∩ U )
 U2 
 U3, the linear map φ := φ0 ⊕φ1 ⊕φ2 is an isometry from
PU S to PU S ′ . By Witt’s extension theorem, φ can be extended to an isometry hU of U , that is,
hU ∈ G(U ).

(5) Next, according to rW (S) = rW (S ′), select a linear bijection ψ0 : S ∩ W → S ′ ∩ W .
(6) Select W1,2 ∈ PW S � (S ∩ W ). Define a linear map ψ̃1,2 : W1,2 → PW S ′ as follows: Choose a basis

{w1, . . . ,wk} of W1,2; for each wi , choose ui ∈ PU S such that ui + wi ∈ S; then φ(ui) ∈ PU S ′;
choose w′

i ∈ PW S ′ such that φ(ui)+w′
i ∈ S ′; define ψ̃1,2(wi) := w′

i . It is routine to check that ψ̃1,2

is a well-defined linear injection and W ′
1,2 := Im ψ̃1,2 ∈ PW S ′ � (S ′ ∩ W ). Let ψ1,2 : W1,2 → W ′

1,2

be the linear bijection defined by ψ1,2(w) := ψ̃1,2(w). Then ψ1,2 is an isometry by (2.6).
(7) Now according to PW (S) = (S ∩ W ) 
 W1,2, the linear map ψ := ψ0 ⊕ ψ1,2 is an isometry from

PW (S) to PW (S ′). By Witt’s extension theorem, ψ can be extended to an isometry hW ∈ G(W ).
(8) Finally, h := hU × hW is an element of H that sends S to S ′ . �
2.3. The stabilizer of S ∈ GrG(r) in the H-action

Let H S denote the stabilizer of S ∈ GrG(r) in the H-action. Then every h ∈ H S is of the form

h = hU × hW ,

where hU ∈ G(U ) stabilizes the subspaces in the flag FU (S) defined in (2.3), and hW ∈ G(W ) stabi-
lizes the subspaces in the flag FW (S) defined in (2.4).

Choose a basis BU := {û1, . . . , ûdim U } of U such that:

(1) Each of the nontrivial subspaces in FU (S), namely

S ∩ U , Rad(PU S), PU S, Rad(PU S)⊥ ∩ U , (S ∩ U )⊥ ∩ U , and U ,

is spanned by the first few vectors of BU .

(2) Note that PU S
Rad(PU S)

and Rad(PU S)⊥∩U
Rad(PU S)

are nondegenerate with respect to their forms induced from

B . We may further assume that ûi ⊥ PU S for i = rU + a + b + 1, . . . ,dim U − rU − a. Then

Rad(PU S)⊥ ∩ U = PU S 

dim U−rU −a⊕
i=rU +a+b+1

Fûi .

With respect to the basis BU ,

hU =

⎡
⎢⎢⎢⎢⎢⎣

A11 ∗ ∗ ∗ ∗ ∗
A22 A23 ∗ ∗ ∗

A33 0 ∗ ∗
A44 ∗ ∗

A55 ∗
A66

⎤
⎥⎥⎥⎥⎥⎦ . (2.9)

Here

• A11 ∈ GLrU (S)(F) and A66 ∈ GLrU (S)(F) uniquely determine each other;

• A22 ∈ GLa(S)(F) and A55 ∈ GLa(S)(F) uniquely determine each other;
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• A33 ∈ G( PU S
Rad(PU S)

);

• A44 ∈ G(
(PU S)⊥∩U
Rad(PU S)

).

Note that hU is in the parabolic subgroup H(S, U ) of G(U ) that preserves the flag

{0} ⊆ (S ∩ U ) ⊆ Rad(PU S) ⊆ Rad(PU S)⊥ ∩ U ⊆ (S ∩ U )⊥ ∩ U ⊆ U

and has the Levi factor GLrU (S)(F) × GLa(S)(F) × G(
Rad(PU S)⊥∩U

Rad(PU S)
). The G(

Rad(PU S)⊥∩U
Rad(PU S)

) factor of hU in

H(S, U ) is
[

A33 0
0 A44

]
.

Next we consider hW ∈ G(W ). In the basis BU of U ,

(S ∩ U ) 

a+b⊕
i=1

FûrU +i = PU S.

For each ûrU +i with i = 1, . . . ,a + b, we select a vector in PW S , denoted ŵrW +i , such that ûrU +i +
ŵrW +i ∈ S . It is easy to see that

(S ∩ W ) 

a+b⊕
i=1

FŵrW +i = PW S.

The set {ŵrW +1, . . . , ŵrW +a+b} can be extended to a basis BW := {ŵ1, . . . , ŵdim W } of W , such that:

(1) Each of the subspaces in FW (S), namely

S ∩ W , Rad(PW S), PW S, Rad(PW S)⊥ ∩ W , (S ∩ W )⊥ ∩ W , and W ,

is spanned by the first few vectors of BW .
(2) ŵi ⊥ PW S for i = rW + a + b + 1, . . . ,dim W − rW − a, so that

Rad(PW S)⊥ ∩ W = PW S 

dim W −rW −a⊕
i=rW +a+b+1

Fŵi .

Then with respect to the basis BW ,

hW =

⎡
⎢⎢⎢⎢⎢⎣

B11 ∗ ∗ ∗ ∗ ∗
B22 B23 ∗ ∗ ∗

B33 0 ∗ ∗
B44 ∗ ∗

B55 ∗
B66

⎤
⎥⎥⎥⎥⎥⎦ . (2.10)

Here

• B11 ∈ GLrW (S)(F) and B66 ∈ GLrW (S)(F) uniquely determine each other;

• B22 ∈ GLa(S)(F) and B55 ∈ GLa(S)(F) uniquely determine each other;

• B33 ∈ G( PW S
Rad(PW S)

);

• B44 ∈ G(
(PW S)⊥∩W
Rad(P S)

);

W
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• The conditions ûrU +i + ŵrW +i ∈ S for i = 1, . . . ,a + b and hU × hW ∈ H S imply that
[

B22 B23
B33

]
=[

A22 A23
A33

]
.

The hW is in the parabolic subgroup H(S, W ) of G(W ) that preserves the flag

{0} ⊆ (S ∩ W ) ⊆ Rad(PW S) ⊆ Rad(PW S)⊥ ∩ W ⊆ (S ∩ W )⊥ ∩ W ⊆ W

and has the Levi factor GLrW (S)(F)× GLa(S)(F)× G(
[Rad(PW S)]⊥∩W

Rad(PW S)
). The G(

[Rad(PW S)]⊥∩W
Rad(PW S)

) factor of hW

is
[

B33 0
0 B44

]
.

Theorem 2.3. Let (G, H, V ) be a triple in Table 1 and S ∈ GrG(r). Then h ∈ H S if and only if h = hU × hW ,
where hU ∈ G(U ) and hW ∈ G(W ) satisfy that:

(1) hU is of the form (2.9) with respect to the basis BU of U .
(2) hW is of the form (2.10) with respect to the basis BW of W .
(3) hU in (2.9) and hW in (2.10) are subjected to the constraint:

[
A22 A23

A33

]
=

[
B22 B23

B33

]
. (2.11)

Corollary 2.4. The dimension of the H-orbit O S of S is

dim O S = dim G(U ) + dim G(W ) − dim H S , (2.12)

and dim H S equals to

1

2

[
dim G(U ) + dim G(W ) − dim G

(
Rad(PU S)⊥ ∩ U

Rad(PU S)

)
− dim G

(
Rad(PW S)⊥ ∩ W

Rad(PW S)

)]

+ dim G

(
(PU S)⊥ ∩ U

Rad(PU S)

)
+ dim G

(
(PW S)⊥ ∩ W

Rad(PW S)

)
+ dim G

(
PU S

Rad(PU S)

)

+ 1

2

[
dim GL(S ∩ U ) + dim GL(S ∩ W )

] − dim HomF

(
Rad(PU S)

S ∩ U
,

PU S

Rad(PU S)

)
.

Proof. It suffices to find the dimension of Lie algebra of H S . Let dim[A23] denote the dimension of
block A23 when h = hU × hW goes through all elements of H S . Then

dim[A11] = dim GL(S ∩ U ), dim[A22] = dim GL

(
Rad(PU S)

S ∩ U

)
,

dim[A23] = dim HomF

(
Rad(PU S)

S ∩ U
,

PU S

Rad(PU S)

)
,

dim[A33] = dim G

(
PU S

Rad(PU S)

)
, dim[A44] = dim G

(
(PU S)⊥ ∩ U

Rad(PU S)

)
.

The other terms can be obtained easily. By the Levi decompositions of H(S, U ) and H(S, W ), and the
constraints of h = hU × hW given by Theorem 2.3, it is straightforward to find dim H S . �
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3. Symplectic groups

Let B be a nondegenerate symplectic form over V  F2n . Let V = U 
 W where dim U = 2m and
dim W = 2n − 2m. Then

G = G(V )  Sp2n(F), H = G(U ) × G(W )  Sp2m(F) × Sp2n−2m(F). (3.1)

We first recall some results in [13,14] regarding the H-invariants and the stabilizer in GrG(r) for
integer r with 0 � r � n. Then we shall study the Bruhat order of H-orbits in GrG(r).

3.1. The H-invariants in GrG(r)

For S ∈ GrG(r), let rU (S), rW (S),a(S) and b(S) be defined in (2.7). Theorem 2.2 verifies the follow-
ing result of D.S. Kim and P. Rabau:

Theorem 3.1. (See [13, Theorem 4.3].) The Sp-type (rU (S), rW (S),a(S), 1
2 b(S)) is a complete set of H-

invariants that uniquely determines the H-orbit of S in GrG(r).

Let (rU (S), rW (S),a(S),b(S)) parameterize the H-orbit of S . Denote the H-orbit by O(rU (S),

rW (S),a(S),b(S)). The range of (rU (S), rW (S),a(S),b(S)) is as follows:

Theorem 3.2. (See [13, Theorem 4.3].) A 4-tuple (rU , rW ,a,b) ∈ N4
0 parameterizes an H-orbit in GrG(r) if and

only if b is even, rU + rW + a + b = r, and

rU + a + b

2
� m, (3.2a)

rW + a + b

2
� n − m. (3.2b)

3.2. The Bruhat order of H\GrG(r)

The Bruhat order of the H-orbits in GrG(r) can be described by elementary linear algebra method.
The idea is that if O ⊆ GrG(r) and S ′ is in the Zariski closure O, then for any subspace decomposition
V = R ⊕ L,

lim
S∈O

dim PR S � dim PR S ′, lim
S∈O

dim
PR S

Rad(PR S)
� dim

PR S ′

Rad(PR S ′)
. (3.3)

We make the following diagram of H-invariants for S ∈ GrG(r):

b(S)

a(S)

rU (S) rW (S)

(3.4)

The Bruhat order of H\GrG(r) is characterized by a majorization relationship over diagram (3.4). De-
fine a partial order on the diagram, where nodes A � A′ if and only if there exists a descending path
from A to A′ . For each node A, we add the values of all nodes no less than node A. The resulting
quantities are:
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b(S) = dim of a maximal nondegenerate subspace of PU S

= dim of a maximal nondegenerate subspace of PW S ,

a(S) + b(S) = dim
PU S 
 PW S

S
= dim

PU S

S ∩ U
= dim

PW S

S ∩ W
,

rU (S) + a(S) + b(S) = dim PU S,

rW (S) + a(S) + b(S) = dim PW S.

Theorem 3.3. The Bruhat order O(rU , rW ,a,b) � O(r′
U , r′

W ,a′,b′) holds in H\GrG(r) if and only if the fol-
lowing inequalities hold:

b � b′, (3.5a)

a + b � a′ + b′, (3.5b)

rU + a + b � r′
U + a′ + b′, (3.5c)

rW + a + b � r′
W + a′ + b′. (3.5d)

The inequality (3.5b) is implied by rU + rW + a + b = r = r′
U + r′

W + a′ + b′ , (3.5c) and (3.5d).

Proof. By (3.3), inequalities (3.5) are necessary for O(rU , rW ,a,b) � O(r′
U , r′

W ,a′,b′). To show that
they are sufficient, we will prove several claims associate to some basic operations over the node
values of diagram (3.4) that preserve the inequalities in (3.5). These basic operations allow us to
change from (rU , rW ,a,b) to (r′

U , r′
W ,a′,b′) whenever inequalities (3.5) hold.

Fix a basis {u1, . . . ,u2m} of U and a basis {w1, . . . ,w2n−2m} of W such that:

[
B(ui,u j)

]
2m×2m =

[
0 1

−1 0

]⊕m

,
[

B(wi,w j)
]
(2n−2m)×(2n−2m)

=
[

0 1
−1 0

]⊕(n−m)

.

Let O(rU , rW ,a,b) be an H-orbit. The following vectors form a basis B S of an element S of
O(rU , rW ,a,b):

u2i−1 + w2i and u2i + w2i−1, for i = 1, . . . ,b/2,

ub+2i + wb+2i, for i = 1, . . . ,a,

ub+2a+2i, for i = 1, . . . , rU ,

wb+2a+2i, for i = 1, . . . , rW .

In the following arguments, we will define a subspace Sx for x ∈ F spanned by all vectors in B S

but a few vectors being replaced. It will be easy to verify that:

(1) The entries of the basis vectors of Sx given below are polynomials of x.
(2) Sx ∈ O(rU , rW ,a,b) for every x ∈ F − {0}.

Then S0 is in the Zariski closure of O(rU , rW ,a,b) since F is an infinite field. In particular, S0 ∈ GrG(r).
If S0 ∈ O(r′

U , r′
W ,a′,b′), then O(rU , rW ,a,b) � O(r′

U , r′
W ,a′,b′) in the Bruhat order. We assume that

the related H-orbits in the following claims always exist.
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(1) Claim: O(rU , rW ,a,b) � O(rU , rW ,a + 2,b − 2).
Applying (3.2) to O(rU , rW ,a + 2,b − 2),

rU + a + b

2
� m − 1, rW + a + b

2
� n − m − 1.

Let Sx for x ∈ F be constructed as follows:

Vector in B S being replaced Replaced by vector

ub + wb−1 x(ub + wb−1) + u2m + w2n−2m

Then Sx ∈ O(rU , rW ,a,b) for x ∈ F − {0} and S0 ∈ O(rU , rW ,a + 2,b − 2).
(2) Claim: O(rU , rW ,a,b) � O(rU + 2, rW ,a,b − 2).

Applying (3.2a) to O(rU + 2, rW ,a,b − 2),

rU + a + b

2
� m − 1.

Let Sx for x ∈ F be constructed as follows:

Vectors in B S being replaced Replaced by vectors

ub−1 + wb ub−1 + xwb

ub + wb−1 x2ub + xwb−1 + u2m

Then Sx ∈ O(rU , rW ,a,b) for x ∈ F − {0} and S0 ∈ O(rU + 2, rW ,a,b − 2).
(3) Claim: O(rU , rW ,a,b) � O(rU , rW + 2,a,b − 2). The proof is similar.
(4) Claim: O(rU , rW ,a,b) � O(rU + 1, rW + 1,a,b − 2).

Let Sx for x ∈ F be constructed as follows:

Vectors in B S being replaced Replaced by vectors

ub−1 + wb xub−1 + wb

ub + wb−1 ub + xwb−1

Then Sx ∈ O(rU , rW ,a,b) for x ∈ F − {0} and S0 ∈ O(rU + 1, rW + 1,a,b − 2).
(5) Claim: O(rU , rW ,a,b) � O(rU + 1, rW ,a + 1,b − 2).

Applying (3.2a) to O(rU + 1, rW ,a + 1,b − 2),

rU + a + b

2
� m − 1.

Let Sx for x ∈ F be constructed as follows:

Vector in B S being replaced Replaced by vector

ub + wb−1 x(ub + wb−1) + u2m

Then Sx ∈ O(rU , rW ,a,b) for x ∈ F − {0} and S0 ∈ O(rU + 1, rW ,a + 1,b − 2).
(6) Claim: O(rU , rW ,a,b) � O(rU , rW + 1,a + 1,b − 2). The proof is similar.
(7) Claim: O(rU , rW ,a,b) � O(rU + 1, rW ,a − 1,b).
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Let Sx for x ∈ F be constructed as follows:

Vector in B S being replaced Replaced by vector

ub+2a + wb+2a ub+2a + xwb+2a

Then Sx ∈ O(rU , rW ,a,b) for x ∈ F − {0} and S0 ∈ O(rU + 1, rW ,a − 1,b).
(8) Claim: O(rU , rW ,a,b) � O(rU , rW + 1,a − 1,b). The proof is similar.

By Theorem 3.2, the set of 4-tuples (rU , rW ,a,b) that parameterize H-orbits in GrG(r) consists of
the integer points in a convex set. If (rU , rW ,a,b) and (r′

U , r′
W ,a′,b′) parameterize two H-orbits in

GrG(r) and they satisfy the inequalities in (3.5), we can find a sequence of 4-tuples

(rU , rW ,a,b) = (
r(0)

U , r(0)
W ,a(0),b(0)

)
,
(
r(1)

U , r(1)
W ,a(1),b(1)

)
, . . . ,

(
r(d)

U , r(d)
W ,a(d),b(d)

)
= (

r′
U , r′

W ,a′,b′),
such that O(r(i−1)

U , r(i−1)
W ,a(i−1),b(i−1)) � O(r(i)

U , r(i)
W ,a(i),b(i)) by one of the above claims for i =

1, . . . ,d. Then O(rU , rW ,a,b) � O(r′
U , r′

W ,a′,b′) and the sufficient part is proved. �
Corollary 3.4. Let (G, H) be the symplectic symmetric pair in Table 1.

(1) When r < min(2m,2n − 2m), the unique open H-orbit in GrG(r) is

{
O(0,0,0, r) if r is even;
O(0,0,1, r − 1) if r is odd.

(2) When min(2m,2n − 2m) � r � n, the unique open H-orbit in GrG(r) is

{
O(0, r − 2m,0,2m) if m � n − m;
O(r − 2n + 2m,0,0,2n − 2m) if m � n − m.

Example 3.5. Let G = Sp4m+8(F) and H = Sp2m(F) × Sp2m+8(F). We describe the Bruhat order of the
H-orbits in the maximal isotropic Grassmannian GrG(2m + 4). Here n = 2m + 4 and r = 2m + 4. By
Theorem 3.2, (rU , rW ,a,b) ∈ N4

0 parameterizes an H-orbit in GrG(2m + 4) if and only if the following
constraints hold:

⎧⎪⎪⎨
⎪⎪⎩

b is even;
rU + rW + a + b = 2m + 4;
rU + a + b

2 � m;
rW + a + b

2 � m + 4.

�⇒

⎧⎪⎪⎨
⎪⎪⎩

b ∈ {0,2,4, . . . ,2m};
a = 0;
rU = m − b

2 ;
rW = m + 4 − b

2 .

By Theorem 3.3, the Bruhat order of H\GrG(2m + 4) is:

O(0,4,0,2m) > O(1,5,0,2m − 2) > O(2,6,0,2m − 4) > · · · > O(m,m + 4,0,0).

Example 3.6. Let G = Sp8(F) and H = Sp4(F) × Sp4(F). Then n = 4 and m = 2. Consider the Bruhat
order of H-orbits in GrG(3), where r = 3. By Theorem 3.2, (rU , rW ,a,b) ∈ N4

0 parameterizes an H-orbit
in GrG(3) if and only if

b is even; rU + rW + a + b = 3; rU + a + b � 2; rW + a + b � 2.

2 2
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So b = 0 or b = 2. There are 6 H-orbits in GrG(3) parameterized by:

(rU , rW ,a,b) ∈ {
(1,1,1,0), (1,2,0,0), (2,1,0,0), (1,0,0,2), (0,1,0,2), (0,0,1,2)

}
.

By Theorem 3.3, the Bruhat order of H\GrG(3) is given by the following diagram:

O(0,0,1,2)

O(1,0,0,2) O(0,1,0,2)

O(1,1,1,0)

O(2,1,0,0) O(1,2,0,0)

3.3. The inclusion order of H-orbits

In [13], P. Rabau and D.S. Kim discuss an inclusion order on the H-orbits of isotropic subspaces in
all possible dimensions, that is, on

H\
(

n⋃
r=0

GrG(r)

)
.

The order is defined as follows:

O(rU , rW ,a,b) � O
(
r′

U , r′
W ,a′,b′)

if there exist S ∈ O(rU , rW ,a,b) and S ′ ∈ O(r′
U , r′

W ,a′,b′) such that S ⊇ S ′ . Obviously, this order is
different from the Bruhat order, as any two distinct H-orbits on a given GrG(r) have no “�” relation.

Theorem 3.7. (See [13, Theorem 4.3].) For symplectic pair (G, H) in Table 1, two H-orbits satisfy
O(rU , rW ,a,b) � O(r′

U , r′
W ,a′,b′) if and only if

rU � r′
U , rW � r′

W , b � b′, rU + a + b

2
� r′

U + a′ + b

2
, rW + a + b

2
� r′

W + a′ + b

2
.

For S ∈ O(rU , rW ,a,b), rU = dim(S ∩ U ), b is the dimension of a maximal nondegenerate subspace
of PU S , and rU + a + b

2 is the dimension of a maximal nilpotent subspace of PU S . Similarly for rW

and rW + a + b
2 .

3.4. Dimensions of orbit and stabilizer

Let S ∈ O(rU , rW ,a,b) ⊆ GrG(r). The stabilizer H S of S under the H-action is discussed in [14,
Section 5.II]. The results are verified by Theorem 2.3.

Theorem 3.8. (See [14, Theorem 5.2].) The codimension of O(rU , rW ,a,b) is

codim O(rU , rW ,a,b)

= rU rW + a(rU + rW ) + 2rU

(
n − m − rW − a − b

2

)
+ 2rW

(
m − rU − a − b

2

)
+

(
a

2

)

= −3rU rW − (rU + rW )(a + b) + 2rU (n − m) + 2rW m +
(

a

2

)
.
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By dim GrG(r) = 2nr − 3
2 r2 + 1

2 r, we get the dimensions of O(rU , rW ,a,b) and H S :

dim O(rU , rW ,a,b) = dim GrG(r) − codim O(rU , rW ,a,b),

dim H S = dim H − dim O(rU , rW ,a,b)

=
(

2m + 1

2

)
+

(
2n − 2m + 1

2

)
− dim O(rU , rW ,a,b).

The results coincide with those of Corollary 2.4.

4. Orthogonal groups on an algebraically closed field

Let F be an algebraically closed field with char(F) �= 2. Let B be a nondegenerate symmetric form
over V  Fn . Suppose V = U 
 W where dim U = m and dim W = n − m. Then

G = G(V )  On(F), H = G(U ) × G(W )  Om(F) × On−m(F). (4.1)

We consider the H-action on the isotropic Grassmannian GrG(r) for 0 � r � �n/2�.

4.1. The H-invariants in GrG(r)

Let S ∈ GrG(r). Then PU S
Rad(PU S)

has a nondegenerate symmetric form B defined in (2.5). The isometry

class of ( PU S
Rad(PU S)

, B) is unique as F is algebraically closed. Theorem 2.2 implies the following result.

Theorem 4.1. The 4-tuple (rU (S), rW (S),a(S),b(S)) defined in (2.7) is a complete set of H-invariants that
determines the H-orbit of S in GrG(r).

Let (rU (S), rW (S),a(S),b(S)) parameterize the H-orbit of S in GrG(r), and denote the H-orbit by
O(rU (S), rW (S),a(S),b(S)). The next theorem determines the range of this 4-tuple. It is similar to
Theorem 3.2. The proof is skipped.

Theorem 4.2. A 4-tuple (rU , rW ,a,b) ∈ N4
0 parameterizes an H-orbit in GrG(r) if and only if :

(1) rU + rW + a + b = r.
(2) The following inequalities hold:

2rU + 2a + b � m, (4.2a)

2rW + 2a + b � n − m. (4.2b)

Let {u1, . . . ,um} and {w1, . . . ,wn−m} be orthonormal bases of U and W , respectively. Choose
i ∈ F such that i2 + 1 = 0. The following vectors span a subspace of O(rU , rW ,a,b) provided that
(rU , rW ,a,b) satisfies the conditions in Theorem 4.2:

⎧⎪⎨
⎪⎩

u j + iw j, j = 1, . . . ,b;
ub+2 j−1 + iub+2 j + wb+2 j−1 + iwb+2 j, j = 1, . . . ,a;
ub+2a+2 j−1 + iub+2a+2 j, j = 1, . . . , rU ;
wb+2a+2 j−1 + iwb+2a+2 j, j = 1, . . . , rW .

(4.3)
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4.2. The Bruhat order of H\GrG(r)

The Bruhat order of the H-orbits in GrG(r) is similar to that of the symplectic case. We make the
following diagram of H-invariants:

b(S)

a(S)

rU (S) rW (S)

(4.4)

The Bruhat order of H\GrG(r) is characterized by the majorization relationship over the diagram. For
each node A in the diagram, we define a quantity by adding the values of all nodes connected to node
A via descending paths. So we get b(S), a(S) + b(S), rU (S) + a(S) + b(S), and rW (S) + a(S) + b(S).

Theorem 4.3. The Bruhat order O(rU , rW ,a,b) � O(r′
U , r′

W ,a′,b′) holds in GrG(r) if and only if the following
inequalities hold:

b � b′, (4.5a)

a + b � a′ + b′, (4.5b)

rU + a + b � r′
U + a′ + b′, (4.5c)

rW + a + b � r′
W + a′ + b′. (4.5d)

The inequality (4.5b) is implied by (4.5c) and (4.5d).

The proof is similar to that of Theorem 3.3 and we omit it here.

Corollary 4.4.

(1) If r � min{m,n − m}, the unique open H-orbit in GrG(r) is O(0,0,0, r).
(2) If min{m,n − m} � r � �n/2�, the unique open H-orbit in GrG(r) is

{
O(0, r − m,0,m) if dim U � dim W ,
O(r − n + m,0,0,n − m) if dim U > dim W .

Example 4.5. Let G = O8(F) and H = O4(F)× O4(F). Then n = 8 and m = 4. Consider the Bruhat order
of H\GrG(3), where r = 3. By Theorem 4.2, (rU , rW ,a,b) ∈ N4

0 parameterizes an H-orbit in GrG(3) if
and only if

rU + rW + a + b = 3; 2rU + 2a + b � 4; 2rW + 2a + b � 4.

Adding the last two inequalities and using the first equality, we have a � 1. The possible 4-tuples
(rU , rW ,a,b) are:

(2,1,0,0), (1,2,0,0), (1,1,0,1), (1,0,0,2), (0,1,0,2), (1,1,1,0), (0,0,1,2).
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By Theorem 4.3, the Bruhat order of H\GrG(3) is given by the following diagram:

O(0,0,1,2)

O(1,0,0,2) O(0,1,0,2)

O(1,1,0,1)

O(1,1,1,0)

O(2,1,0,0) O(1,2,0,0)

Comparing with the case G = Sp8(F), H = Sp4(F) × Sp4(F) and r = 3 in Example 3.6, there is one
additional orbit in the orthogonal case.

4.3. The inclusion order of H-orbits

The inclusion order O(rU , rW ,a,b) � O(r′
U , r′

W ,a′,b′) holds if there exist S ∈ O(rU , rW ,a,b) and
S ′ ∈ O(r′

U , r′
W ,a′,b′) such that S ⊇ S ′ . This order for the case (G, H) = (On(F),Om(F) × On−m(F)) is

determined by the same inequalities as in the symplectic case (cf. Theorem 3.7).

Theorem 4.6. The inclusion order of two H-orbits O(rU , rW ,a,b) � O(r′
U , r′

W ,a′,b′) holds if and only if

rU � r′
U , rW � r′

W , b � b′,

2rU + 2a + b � 2r′
U + 2a′ + b′,

2rW + 2a + b � 2r′
W + 2a′ + b′. (4.6)

Proof. Suppose O(rU , rW ,a,b) � O(r′
U , r′

W ,a′,b′). Let S ∈ O(rU , rW ,a,b) and S ′ ∈ O(r′
U , r′

W ,a′,b′)
satisfy that S ⊇ S ′ . Then

• S ∩ U ⊇ S ′ ∩ U ;
• Every maximal nondegenerate subspace of PU S ′ is contained in a maximal nondegenerate sub-

space of PU S;
• Every minimal nondegenerate subspace of U that contains PU S contains a minimal nondegener-

ate subspace of U that contains PU S ′;
• Similar arguments hold on the W component.

By homogeneity property of orbits, we may assume that S is spanned by the vectors in (4.3). Taking
dimensions, we get inequalities (4.6).

Conversely, suppose (rU , rW ,a,b) and (r′
U , r′

W ,a′,b′) satisfy inequalities (4.6). Let S ∈ O(rU , rW ,

a,b) be spanned by the vectors in (4.3). If a � a′ , it is easy to find a subspace S ′ ⊆ S such that
S ′ ∈ O(r′

U , r′
W ,a′,b′). Otherwise, a < a′ . By a reduction process, we may assume that r′

U = 0, r′
W = 0,

b′ = 0 and a = 0. Then (4.6) implies that 2 min{rU , rW } + b � 2a′ . Again, it is easy to find a subspace
S ′ of S such that S ′ ∈ O(r′

U , r′
W ,a′,b′) = O(0,0,a′,0). �

4.4. Dimensions of orbit and stabilizer

Given S ∈ O(rU , rW ,a,b), Theorem 2.3 and Corollary 2.4 provide the structure of H S as well as
the dimensions of O(rU , rW ,a,b) and H S .
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Theorem 4.7. For S ∈ O(rU , rW ,a,b),

dim O(rU , rW ,a,b) = dim H − dim H S =
(

m

2

)
+

(
n − m

2

)
− dim H S ,

and dim H S equals to

1

2

[(
m

2

)
+

(
n − m

2

)
+ r2

U + r2
W −

(
m − 2rU − 2a

2

)
−

(
n − m − 2rW − 2a

2

)]

+
(

b

2

)
− ab +

(
m − 2rU − 2a − b

2

)
+

(
n − m − 2rW − 2a − b

2

)
. (4.7)

4.5. Decompose an H-orbit into H ∩ G0 and H0 orbits

When F = C, the identity components of G and H are, respectively:

G0 = SOn(F), H0 = SOm(F) × SOn−m(F).

Let In be the n × n identity matrix. Denote the matrices

I+n := In and I−n := In−1 ⊕ (−I1). (4.8)

The group G has two connected components, namely G0 and I−n G0. For t1, t2 ∈ {+,−}, let Ht1
t2

denote

the connected component of It1
m ⊕ It2

n−m in H . Then H decomposes into two (H ∩ G0)-cosets and four
H0-cosets as follows:

H

H ∩ G0 H−+(H ∩ G0)

H++ H−− H−+ H+−

Theorem 4.8. An H-orbit O(rU , rW ,a,b) in GrG(r) always decomposes into 1 or 2 (H ∩G0)-orbits. Moreover,
O(rU , rW ,a,b) decomposes into 2 (H ∩ G0)-orbits if and only if both equalities in (4.2a) and (4.2b) hold, if
and only if r + a = n/2.

Proof. The number of (H ∩ G0)-orbits in the H-orbit of S ∈ O(rU , rW ,a,b) equals to[
H : (H ∩ G0)H S

] ∈ {1,2}.
So [H : (H ∩ G0)H S ] = 2 if and only if (H ∩ G0)H S = H ∩ G0, if and only if H S ⊆ G0. Theorem 2.3
implies that the Levi factor of H S is isomorphic to

GLrU × GLrW × GLa × G(b) × G(m − 2rU − 2a − b) × G(n − m − 2rW − 2a − b),

where for K ∈ {GLrU ,GLrW , G(b)}, the K -component of H is diagonally embedded in a matrix group
K × K , and the GLa-component is diagonally embedded in a matrix group GLa × GLa × GLa × GLa . So
H S ⊆ G0 = SOn(F) if and only if

m − 2rU − 2a − b = 0, n − m − 2rW − 2a − b = 0. (4.9)

These are equivalent to the equalities in (4.2a) and (4.2b).
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It remains to prove the last statement. If both equalities in (4.2a) and (4.2b) hold, the sum of these
two equalities produces r +a = n/2. Conversely, if r +a = n/2, then both equalities in (4.2a) and (4.2b)
must hold. �
Corollary 4.9. An open H-orbit of GrG(r) decomposes into 2 open (H ∩ G0)-orbits if and only if r = n/2, in
which n is even and GrG(r) consists of maximal isotropic subspaces of V .

Theorem 4.10. The (H ∩ G0)-orbit of S ∈ O(rU , rW ,a,b) decomposes into 1 or 2 H0-orbits. Moreover, it
decomposes into 2 H0-orbits if and only if b = 0 and at least one of the equalities in (4.2a) and (4.2b) holds.

Proof. The number of H0-orbits in the (H ∩ G0)-orbit of S equals to

[
H ∩ G0 : H0(H ∩ G0)S

] = [
H ∩ G0 : H0(H S ∩ G0)

] ∈ {1,2}.

Moreover, [H ∩ G0 : H0(H S ∩ G0)] = 2 if and only if H0(H S ∩ G0) = H0, if and only if H S ∩ G0 ⊆ H0.
By the structure of H S described in Theorem 2.3, H S ∩ G0 ⊆ H0 if and only if b = 0, and at least one
of the equalities in (4.2) holds. �
Corollary 4.11. An H-orbit O(rU , rW ,a,b) in GrG(r) decomposes into 1, 2, or 4 H0-orbits. It decomposes
into 4 H0-orbits if and only if b = 0 and r + a = n/2.

5. Real orthogonal groups

Let V := Rp+q be equipped with a nondegenerate symmetric bilinear form B of the type I p ⊕
(−Iq). Let V = U 
 W be an orthogonal decomposition such that B|U is of the type I p1 × (−Iq1 ) and
B|W is of the type I p−p1 × (−Iq−q1 ). Denote

G = G(V )  O(p,q), H = G(U ) × G(W )  O(p1,q1) × O(p − p1,q − q1). (5.1)

We shall discuss the H-orbits in GrG(r) for 0 � r � min{p,q}.

5.1. The H-invariants in GrG(r)

By Theorem 2.2, the H-orbit of S ∈ GrG(r) is determined by the H-invariants rU (S), rW (S), a(S)

and b(S) defined in (2.7) and by the isometry class of ( PU S
Rad(PU S)

, B). According to (2.6), we can denote

bU (S) := the dimension of a maximal positive definite subspace of PU S

= the dimension of a maximal negative definite subspace of PW S , (5.2a)

bW (S) := the dimension of a maximal negative definite subspace of PU S

= the dimension of a maximal positive definite subspace of PW S . (5.2b)

Then b(S) = bU (S) + bW (S) and

G

(
PU S

Rad(PU S)

)
= O

(
bU (S),bW (S)

)
, G

(
PW S

Rad(PW S)

)
= O

(
bW (S),bU (S)

)
.

The following result is obvious.
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Theorem 5.1. The 5-tuple (rU (S), rW (S),a(S),bU (S),bW (S)) is a complete set of H-invariants that deter-
mines the H-orbit of S in GrG(r).

We say that (rU (S), rW (S),a(S),bU (S),bW (S)) parameterizes the H-orbit of S , and the H-orbit is
denoted by O(rU (S), rW (S),a(S),bU (S),bW (S)).

Theorem 5.2. A 5-tuple (rU , rW ,a,bU ,bW ) ∈ N5
0 parameterizes an H-orbit in GrG(r) if and only if the 5-tuple

satisfies all constraints below:

(1) rU + rW + a + bU + bW = r.
(2) The following conditions hold:

rU + a + bU � p1, (5.3a)

rU + a + bW � q1, (5.3b)

rW + a + bW � p − p1, (5.3c)

rW + a + bU � q − q1. (5.3d)

Proof. First we prove the necessary part. Suppose that (rU , rW ,a,bU ,bW ) parameterizes an H-orbit
in GrG(r). Obviously, rU + rW + a + bU + bW = r. Let S+ be a maximal positive definite subspace
of PU S . Then every vector v ∈ S1 := Rad(PU S) 
 S+ satisfies that (v,v) � 0. Let U− be a maximal
negative definite subspace of U . Then S1 ∩ U− = {0} and S1 + U− ⊆ U . So

(rU + a + bU ) + q1 = dim S1 + dim U− = dim
(

S1 ⊕ U−)
� dim U = p1 + q1.

This leads to (5.3a). Similarly for (5.3b), (5.3c), and (5.3d).
Next we prove the sufficient part. If a 5-tuple (rU , rW ,a,bU ,bW ) meets all the constraints

in Theorem 5.2, we find an isotropic subspace S ∈ GrG(r) whose H-orbit is parameterized by
(rU , rW ,a,bU ,bW ). Let {u+

1 , . . . ,u+
p1

,u−
1 , . . . ,u−

q1
} and {w+

1 , . . . ,w+
p−p1

,w−
1 , . . . ,w−

q−q1
} be orthogonal

bases of U and W , respectively, such that

B
(
u+

i ,u+
i

) = 1, B
(
u−

j ,u−
j

) = −1, B
(
w+

t ,w+
t

) = 1, B
(
w−

� ,w−
�

) = −1. (5.4)

Let S be the subspace of V spanned by the following basis vectors:

{
u+

i + w−
i

}bU

i=1 ∪ {
u−

i + w+
i

}bW

i=1 ∪ {
u+

bU +i + u−
bW +i + w+

bW +i + w−
bU +i

}a
i=1

∪{
u+

bU +a+i + u−
bW +a+i

}rU

i=1 ∪ {
w+

bW +a+i + w−
bU +a+i

}rW

i=1. (5.5)

Then S ∈ GrG(r) and the H-orbit of S is parameterized by (rU , rW ,a,bU ,bW ). �
5.2. The Bruhat order of H\GrG(r)

Construct the following diagram of H-invariants for S ∈ GrG(r):

bU (S) bW (S)

a(S)

rU (S) rW (S)

(5.6)
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The Bruhat order of H\GrG(r) can be characterized by the majorization relationship over this diagram.
For each node A in the diagram, we define a quantity by adding the values of all nodes connected to
node A via descending paths. Then we get

bU (S) = dim of a maximal positive definite subspace of PU S ,

bW (S) = dim of a maximal negative definite subspace of PU S ,

a(S) + bU (S) + bW (S) = dim
PU S 
 PW S

S
= dim

PU S

S ∩ U
= dim

PW S

S ∩ W
,

rU (S) + a(S) + bU (S) + bW (S) = dim PU (S),

rW (S) + a(S) + bU (S) + bW (S) = dim PW (S).

Theorem 5.3. The Bruhat order O(rU , rW ,a,bU ,bW ) � O(r′
U , r′

W ,a′,b′
U ,b′

W ) holds in GrG(r) if and only if
the following inequalities hold:

bU � b′
U , (5.7a)

bW � b′
W , (5.7b)

a + bU + bW � a′ + b′
U + b′

W , (5.7c)

rU + a + bU + bW � r′
U + a′ + b′

U + b′
W , (5.7d)

rW + a + bU + bW � r′
W + a′ + b′

U + b′
W . (5.7e)

Inequality (5.7c) is implied by (5.7d) and (5.7e).

Proof. The proof is similar to that of Theorem 3.3. The necessary part is obvious by (3.3). It remains
to prove the sufficient part. We will prove some claims associate to several basic operations on the
node values of diagram (5.6) that preserve the order defined by inequalities (5.7). These operations
allow us to change from (rU , rW ,a,bU ,bW ) to (r′

U , r′
W ,a′,b′

U ,b′
W ) whenever inequalities (5.7) hold.

Fix an orthogonal basis {u+
1 , . . . ,u+

p1
,u−

1 , . . . ,u−
q1

} of U and an orthogonal basis {w+
1 , . . . ,w+

p−p1
,

w−
1 , . . . ,w−

q−q1
} of W that satisfy (5.4). Let (rU , rW ,a,bU ,bW ) be a 5-tuple that meets the constraints

in Theorem 5.2.
In the following arguments, we will define a subspace Sx for x ∈ R spanned by all vectors in (5.5)

but one vector being replaced. It will be obvious that:

(1) The entries of the basis vectors of Sx given below are polynomials of x.
(2) Sx ∈ O(rU , rW ,a,bU ,bW ) for every x ∈ R+ .

Then S0 is in the Zariski closure of O(rU , rW ,a,bU ,bW ). If S0 ∈ O(r′
U , r′

W ,a′,b′
U ,b′

W ), then
O(rU , rW ,a,bU ,bW ) � O(r′

U , r′
W ,a′,b′

U ,b′
W ) in the Bruhat order.

(1) Claim: O(rU , rW ,a,bU ,bW ) � O(rU , rW ,a + 1,bU − 1,bW ).
Applying (5.3b) and (5.3c) to (rU , rW ,a + 1,bU − 1,bW ),

rU + a + bW � q1 − 1, rW + a + bW � p − p1 − 1.



H. Huang, H. He / Journal of Algebra 337 (2011) 141–168 161
Let Sx be constructed as follows:

Vector in (5.5) being replaced Replaced by the vector

u+
bU

+ w−
bU

(1 + x)u+
bU

+ u−
q1

+ w+
p−p1

+ (1 + x)w−
bU

Then Sx ∈ O(rU , rW ,a,bU ,bW ) for x ∈ R+ and S0 ∈ O(rU , rW ,a + 1,bU − 1,bW ).
(2) Claim: O(rU , rW ,a,bU ,bW ) � O(rU + 1, rW ,a,bU − 1,bW ).

Applying (5.3b) to (rU + 1, rW ,a,bU − 1,bW ),

rU + a + bW � q1 − 1.

Let Sx be constructed as follows:

Vector in (5.5) being replaced Replaced by the vector

u+
bU

+ w−
bU

(1 + x2)u+
bU

+ (1 − x2)u−
q1

+ 2xw−
bU

Then Sx ∈ O(rU , rW ,a,bU ,bW ) for x ∈ R+ and S0 ∈ O(rU + 1, rW ,a,bU − 1,bW ).
(3) Claim: O(rU , rW ,a,bU ,bW ) � O(rU , rW + 1,a,bU − 1,bW ). The proof is similar.

The next three claims are similar to the above three:

(4) Claim: O(rU , rW ,a,bU ,bW ) � O(rU , rW ,a + 1,bU ,bW − 1).
(5) Claim: O(rU , rW ,a,bU ,bW ) � O(rU + 1, rW ,a,bU ,bW − 1).
(6) Claim: O(rU , rW ,a,bU ,bW ) � O(rU , rW + 1,a,bU ,bW − 1).
(7) Claim: O(rU , rW ,a,bU ,bW ) � O(rU + 1, rW ,a − 1,bU ,bW ).

Let Sx be constructed as follows:

Vector in (5.5) being replaced Replaced by the vector

u+
bU +a + u−

bW +a + w+
bW +a + w−

bU +a u+
bU +a + u−

bW +a + x(w+
bW +a + w−

bU +a)

Then Sx ∈ O(rU , rW ,a,bU ,bW ) for x ∈ R+ and S0 ∈ O(rU + 1, rW ,a − 1,bU ,bW ).
(8) Claim: O(rU , rW ,a,bU ,bW ) � O(rU , rW + 1,a − 1,bU ,bW ). The proof is similar.

These claims associate to some basic operations on the node values of diagram (5.6) that preserve
the order defined by inequalities (5.7). The last part is similar to that of the proof of Theorem 3.3. �

Theorem 5.3 together with Corollary 5.8 implies the following result:

Corollary 5.4.

(1) When r < min{p1,q − q1} + min{q1, p − p1}, the open H-orbits in GrG(r) are not unique, and they are
given by:

O(0,0,0,bU ,bW ),

where bU + bW = r, 0 � bU � min{p1,q − q1} and 0 � bW � min{q1, p − p1}.
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(2) When min{p1,q − q1} + min{q1, p − p1} � r � min{p,q}, there is a unique open H-orbit in GrG(r)
given by: {

O(r − bU − bW ,0,0,bU ,bW ) if dim U > dim W ,
O(0, r − bU − bW ,0,bU ,bW ) if dim U � dim W ,

where bU = min{p1,q − q1} and bW = min{q1, p − p1}.

Example 5.5. Let G = O(5,5) and H = O(2,3) × O(3,2). Then p = 5, q = 5, p1 = 2, q1 = 3, p − p1 = 3,
q − q1 = 2. Let r = 4. We consider the Bruhat order of H-orbits in GrG(4). By Theorem 5.2, an H-orbit

O(rU , rW ,a,bU ,bW ) satisfies that:

rU + rW + a + bU + bW = 4, rU + a + bU � 2, rU + a + bW � 3,

rW + a + bW � 3, rW + a + bU � 2.

Then (rU , rW ,a,bU ,bW ) could be one of the following 5-tuples:

(0,0,0,1,3), (0,0,0,2,2), (0,1,0,1,2), (1,0,0,1,2), (1,1,0,0,2),

(1,2,0,0,1), (2,1,0,0,1), (1,1,0,1,1), (2,2,0,0,0).

By Theorem 5.3, we obtain the following Bruhat order of H\GrG(4):

O(0,0,0,2,2) O(0,0,0,1,3)

O(1,0,0,1,2) O(0,1,0,1,2)

O(1,1,0,0,2)

O(1,1,0,1,1)

O(2,1,0,0,1) O(1,2,0,0,1)

O(2,2,0,0,0)

There are two open H-orbits in this case.

5.3. The inclusion order of H-orbits

The inclusion partial order “�” for real orthogonal case is determined as follows:

Theorem 5.6. There exist S ∈ O(rU , rW ,a,bU ,bW ) and S ′ ∈ O(r′
U , r′

W ,a′,b′
U ,b′

W ) such that S ⊇ S ′ if and
only if the following inequalities hold:

rU � r′
U , rW � r′

W , bU � b′
U , bW � b′

W ,

rU + a + bU � r′
U + a′ + b′

U , rU + a + bW � r′
U + a′ + b′

W ,

rW + a + bU � r′
W + a′ + b′

U , rW + a + bW � r′
W + a′ + b′

W .

The theorem can be proved by a similar reduction process as in the proof of Theorem 4.6.
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5.4. Dimensions of orbit and stabilizer

Theorem 2.3 characterizes the structure of the stabilizer H S of S ∈ O(rU , rW ,a,bU ,bW ) ∈ GrG(r).
Corollary 2.4 implies the following result.

Theorem 5.7. For S ∈ O (rU , rW ,a,bU ,bW ),

dim O(rU , rW ,a,bU ,bW ) = dim H − dim H S =
(

p1 + q1

2

)
+

(
p − p1 + q − q1

2

)
− dim H S ,

and dim H S equals to

1

2

(
p1 + q1

2

)
+ 1

2

(
p + q − p1 − q1

2

)
+ r2

U + r2
W

2
+

(
bU + bW

2

)
− a(bU + bW )

− 1

2

(
p1 + q1 − 2rU − 2a

2

)
− 1

2

(
p + q − p1 − q1 − 2rW − 2a

2

)

+
(

p1 + q1 − 2rU − 2a − bU − bW

2

)
+

(
p + q − p1 − q1 − 2rW − 2a − bU − bW

2

)
. (5.8)

Formula (5.8) is similar to formula (4.7), because dimR O(p,q) = dimC Op+q(C) and dimR GLa(R) =
dimC GLa(C). A direct consequence of (5.8) is the following corollary.

Corollary 5.8. If both O(rU , rW ,a,bU ,bW ) and O(rU , rW ,a,b′
U ,b′

W ) exist and bU + bW = b′
U + b′

W , then
dim O(rU , rW ,a,bU ,bW ) = dim O(rU , rW ,a,b′

U ,b′
W ).

5.5. Decompose an H-orbit into H ∩ G0 and H0 orbits

We assume that p,q, p1,q1, p − p1,q − q1 > 0 for simplicity. Denote the matrices I+n := In and
I−n := In−1 ⊕ (−I1). Then G = O(p,q) has 4 connected components in Hausdorff topology, namely the
G0-cosets of

It1
p ⊕ It2

q for t1, t2 ∈ {+,−}.
In particular, SO(p,q) = G0 ∪(I−p ⊕ I−q )G0. Similarly, H = O(p1,q1)×O(p− p1,q−q1) has 16 connected
components, denoted by

Ht1t2
t3t4

:= (
It1

p1 ⊕ It2
q1 ⊕ It3

p−p1
⊕ It4

q−q1

)
H0 for t1, t2, t3, t4 ∈ {+,−}.

Obviously, H++++ = H0. Then H and H ∩ G0 decompose into cosets as follows:

H

H ∩ G0 H−−++(H ∩ G0) H+−++(H ∩ G0) H−+++(H ∩ G0)

H0 H−−−− H+−+− H−+−+

(5.9)

Fix an orthogonal basis{
u+

1 , . . . ,u+
p ,u−

1 , . . . ,u−
q

} ∪ {
w+

1 , . . . ,w+
p−p ,w−

1 , . . . ,w−
q−q

}

1 1 1 1
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of V that satisfies (5.4). Let S ∈ O(rU , rW ,a,bU ,bW ) be the canonical subspace spanned by the vec-
tors in (5.5). The number of (H ∩ G0)-orbits in the H-orbit of S equals to

[
H : (H ∩ G0)H S

] ∈ {1,2,4}.

In fact, [H : (H ∩ G0)H S ] = 4/m, where m is the number of (H ∩ G0)-cosets of H that intersect H S .
The number m can be determined by (rU , rW ,a,bU ,bW ) as follows. Recall the constraints (5.3):

rU + a + bU � p1, rU + a + bW � q1,

rW + a + bW � p − p1, rW + a + bU � q − q1.

Lemma 5.9. The following statements hold:

(1) H S intersects H−+++(H ∩ G0) if and only if

rU + a + bU < p1 or rW + a + bW < p − p1.

(2) H S intersects H+−++(H ∩ G0) if and only if

rU + a + bW < q1 or rW + a + bU < q − q1.

(3) H S intersects H−−++(H ∩ G0) if and only if a < r.

Proof. The necessary part can be done by investigating the possible sign combinations in the Levi
factor of h ∈ H S .

The sufficient part can be proved by the following explicit construction:

(1) If rW + a + bW < p − p1, then w+
p−p1

is not a component in the basis (5.5) of S . So w+
p−p1

∈ S⊥
and

I p1 ⊕ Iq1 ⊕ I−p−p1
⊕ Iq−q1 ∈ H S ∩ H++−+ ⊆ H S ∩ [

H−+++(H ∩ G0)
]
.

Similarly, rU + a + bU < p1.
(2) The argument is similar to the preceding one.
(3) If a < r, then at least one of bU , bW , rU , rW is greater than 0. Suppose bU > 0. Then S has a basis

vector u+
1 + w−

1 in (5.5). Let L ∈ GL(V ) have −1 eigenspace span{u+
1 ,w−

1 } and +1 eigenspace
span{u+

1 ,w−
1 }⊥ . Then

L ∈ H S ∩ H−++− ⊆ H S ∩ [
H−−++(H ∩ G0)

]

since H−++− = H−−++ H+−+− . Similar for the other cases. �
Lemma 5.9 leads to the following result.
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Theorem 5.10. The number N of (H ∩ G0)-orbits in an H-orbit is given below:

N G H H-orbit Conditions

4 O(2a,2a) O(a,a) × O(a,a) O(0,0,a,0,0)

2 O(p,2a) O(p1,a) × O(p − p1,a) O(0,0,a,0,0) p1 � a, p − p1 � a, p > 2a

O(2a,q) O(a,q1) × O(a,q − q1) O(0,0,a,0,0) q1 � a, q − q1 � a, q > 2a

O(p,q) O(p1,q1) × O(p − p1,q − q1) O(rU , rW ,a,bU ,bW ) rU + a + bU = p1,
(p = q) rW + a + bW = p − p1,

rU + a + bW = q1,
rW + a + bU = q − q1,
rU + rW + bU + bW > 0

1 all the other situations.

Theorem 5.10 and Corollary 5.4 imply the following decompositions of open H-orbits into open
(H ∩ G0)-orbits.

Corollary 5.11. An open H-orbit in GrG(r) always decomposes into 1 open (H ∩ G0)-orbit except for the case
p = q = r, in which the unique open H-orbit

{
O(0, r − p1 − q1,0, p1,q1) if p1 + q1 � r,
O(p1 + q1 − r,0, r − q1, r − p1) if p1 + q1 > r,

decomposes into 2 open (H ∩ G0)-orbits.

Proof. Let O(rU , rW ,a,bU ,bW ) be an open H-orbit in GrG(r). By Corollary 5.4, we have a = 0 and
bU +bW > 0. According to Theorem 5.10, O(rU , rW ,a,bU ,bW ) decomposes into 1 or 2 open (H ∩ G0)-
orbits, and it decomposes into 2 (H ∩ G0)-orbits if and only if

rU + bU = p1, rW + bW = p − p1, rU + bW = q1, rW + bU = q − q1.

These together with r = rU + rW + bU + bW imply that p = q = r. In such case, Corollary 5.4 gives the
unique open H-orbit. �

Similarly, the number of H0-orbits in the (H ∩ G0)-orbit of S ∈ GrG(r) equals to

[
H ∩ G0 : H0(H ∩ G0)S

] = [
H ∩ G0 : H0(H S ∩ G0)

] ∈ {1,2,4}.

According to (5.9), [H ∩ G0 : H0(H S ∩ G0)] = 4/� where � is the number of cosets in (H ∩ G0)/H0 =
{H0, H−−−−, H+−+−, H−+−+} that intersect H S . This can be determined by the 5-tuple (rU , rW ,a,bU ,bW )

and the sign combinations of the Levi factor of h ∈ H S . We omit the details here as there are many
cases involved.

6. Unitary groups

Suppose that V := Cp+q is equipped with a nondegenerate Hermitian form B of the type I p ⊕
(−Iq). Let V = U 
 W be an orthogonal decomposition such that B|U is of the type I p1 × (−Iq1 ) and
B|W is of the type I p−p1 × (−Iq−q1 ). Denote

G := G(V )  U(p,q), H := G(U ) × G(W )  U(p1,q1) × U(p − p1,q − q1). (6.1)
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We consider the H-orbits in GrG(r) for 0 � r � min{p,q}. Most results in this section are similar to
those in Section 5. Their proofs are hence skipped. In counting the dimensions, the subspaces of V
and the related quotient spaces refer to complex vector spaces, but all groups and orbits refer to real
ones.

6.1. The H-invariants in GrG(r)

Define

bU (S) := the dimension of a maximal positive definite subspace of PU S

= the dimension of a maximal negative definite subspace of PW S , (6.2a)

bW (S) := the dimension of a maximal negative definite subspace of PU S

= the dimension of a maximal positive definite subspace of PW S. (6.2b)

Then b(S) = bU (S) + bW (S), and the following result is true:

Theorem 6.1. The 5-tuple (rU (S), rW (S),a(S),bU (S),bW (S)) is a complete set of H-invariants that deter-
mines the H-orbit of S in GrG(r).

Denote the H-orbit of S ∈ GrG(r) by O(rU (S), rW (S),a(S),bU (S),bW (S)), where (rU (S), rW (S),

a(S),bU (S),bW (S)) parameterizes the H-orbit.

Theorem 6.2. A 5-tuple (rU , rW ,a,bU ,bW ) ∈ N5
0 parameterizes an H-orbit in GrG(r) if and only if the 5-tuple

satisfies all constraints below:

(1) rU + rW + a + bU + bW = r.
(2) The following conditions hold:

rU + a + bU � p1, (6.3a)

rU + a + bW � q1, (6.3b)

rW + a + bW � p − p1, (6.3c)

rW + a + bU � q − q1. (6.3d)

Let G ′ := O(p,q), H ′ := O(p1,q1) × O(p − p1,q − q1). Let V ′ with a real symmetric form B ′ be
the natural representation space of (G ′, H ′). Let GrG ′(r) be the r-dimensional isotropic Grassmannian
of V ′ . Apparently, there is a one-to-one correspondence between H\GrG(r) and H ′\GrG ′(r) for every
0 � r � min{p,q}. So the Bruhat order and the inclusion order here are the same as those in Section 5.

6.2. The Bruhat order of H\GrG(r)

Construct the following diagram of H-invariants for S ∈ GrG(r):

bU (S) bW (S)

a(S)

rU (S) rW (S)

(6.4)
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The Bruhat order of H\GrG(r) can be characterized by a majorization relationship over this diagram,
as in the real orthogonal case.

Theorem 6.3. The Bruhat order O(rU , rW ,a,bU ,bW ) � O(r′
U , r′

W ,a′,b′
U ,b′

W ) holds in GrG(r) if and only if
the following inequalities hold:

bU � b′
U , (6.5a)

bW � b′
W , (6.5b)

a + bU + bW � a′ + b′
U + b′

W , (6.5c)

rU + a + bU + bW � r′
U + a′ + b′

U + b′
W , (6.5d)

rW + a + bU + bW � r′
W + a′ + b′

U + b′
W . (6.5e)

Moreover, inequality (6.5c) is implied by inequalities (6.5d) and (6.5e).

Corollary 6.4.

(1) When r < min{p1,q − q1} + min{q1, p − p1}, the open H-orbits in GrG(r) are not unique, and they are
given by

O(0,0,0,bU ,bW ),

where bU + bW = r, 0 � bU � min{p1,q − q1} and 0 � bW � min{q1, p − p1}.
(2) When min{p1,q − q1} + min{q1, p − p1} � r � min{p,q}, there is a unique open H-orbit in GrG(r)

given by {
O(r − bU − bW ,0,0,bU ,bW ) if dim U > dim W ,
O(0, r − bU − bW ,0,bU ,bW ) if dim U � dim W ,

where bU = min{p1,q − q1} and bW = min{q1, p − p1}.

6.3. The inclusion order of H-orbits

Theorem 6.5. There exist S ∈ O(rU , rW ,a,bU ,bW ) and S ′ ∈ O(r′
U , r′

W ,a′,b′
U ,b′

W ) such that S ⊇ S ′ if and
only if the following inequalities hold:

rU � r′
U , rW � r′

W , bU � b′
U , bW � b′

W ,

rU + a + bU � r′
U + a′ + b′

U , rU + a + bW � r′
U + a′ + b′

W ,

rW + a + bU � r′
W + a′ + b′

U , rW + a + bW � r′
W + a′ + b′

W .

6.4. Dimensions of orbit and stabilizer

Theorem 2.3 gives the structure of O(rU , rW ,a,bU ,bW ). Corollary 2.4 together with the real di-
mensions

dim U(p,q) = (p + q)2 and dim GLrU (C) = 2r2
U

gives the following explicit formulas of dim O(rU , rW ,a,bU ,bW ) and dim H S for any S ∈ O(rU , rW ,

a,bU ,bW ).
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Theorem 6.6.

dim O(rU , rW ,a,bU ,bW ) = (p1 + q1)
2 + (p − p1 + q − q1)

2 − dim H S

and

dim H S = (p1 + q1 + rW )2 + (p − p1 + q − q1 + rU )2 − 2(p + q)r + 2r2

− 4rU rW + 2a2 + (bU + bW )(2a + bU + bW ), (6.6)

where r = rU + rW + a + bU + bW .

Corollary 6.7. If both O(rU , rW ,a,bU ,bW ) and O(rU , rW ,a,b′
U ,b′

W ) exist and bU + bW = b′
U + b′

W , then
dim O(rU , rW ,a,bU ,bW ) = dim O(rU , rW ,a,b′

U ,b′
W ).
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