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1. Introduction

Associated to a curve X is the compactified Jacobian J d
X , or moduli space of rank 1,

torsion-free sheaves of degree d. Examples of rank 1, torsion-free sheaves are line bundles, and the
closure of the corresponding line bundle locus in J d

X is an irreducible component called the smooth-
able component.

Are there other components? Altman–Iarrobino–Kleiman [AIK77] and Kleiman–Kleppe [KK81] have
answered this question. They showed that there are other components (i.e. non-smoothable com-
ponents) precisely when X has a non-planar singularity. This paper is concerned with the natural
follow-up question: when X has a non-planar singularity, what are the additional components? We
prove two theorems addressing this question.
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If X is a curve with a non-Gorenstein singularity p0 ∈ X and d ∈ Z is an integer, then we set
Dd ⊂ J d

X equal to the subset corresponding to sheaves that become isomorphic to the dualizing sheaf
ω upon passing to the completed local ring ÔX,p0 . (See Definition 2.1.)

Theorem A. Let X be a curve with a unique non-Gorenstein singularity p0 ∈ X. Then the closure of Dd is a
non-smoothable component of J d

X .

This is a special case of Theorem 2.7. The latter includes analogous results about the Hilbert
scheme Hilbd

X and the Quot scheme Quotd
ω . In the above statement, we only assume X has a

unique non-Gorenstein singularity to simplify exposition. When X has n non-Gorenstein singularities,
a modification of Theorem A produces 2n − 1 non-smoothable components.

Theorem A accounts for all the non-smoothable components when X has a unique singularity that
is of finite representation type.

Theorem B. Let X be a curve with a unique singularity that is of finite representation type and non-Gorenstein.
Then Jd

X has exactly two components: the smoothable component and the closure of Dd.

As in Theorem A, we only assume X has a unique singularity in order to simplify the exposition.
Theorem B is deduced from Theorem 3.2, and the latter also establishes the analogous result for
Quotd

ω .
Recall that a singularity p0 ∈ X is said to be of finite representation type if there are

only finitely many isomorphism classes of maximal Cohen–Macaulay modules over ÔX,p . Finite rep-
resentation type is a strong condition to impose. The singularities that are of finite representation
type and planar are exactly the ADE curve singularities [GK85]. The non-planar curve singularities
of finite representation type are all non-Gorenstein and fall into one infinite family and three excep-
tional cases. These singularities are listed in Table 1 (p. 341), and their classification is discussed in
Section 4.

The rank 1, torsion-free modules over a singularity that is of finite representation type are listed
in Table 2 (p. 342), and their classification can be summarized succinctly. Given the ring O of a
singularity from the table and a finite extension O′ ⊃ O contained in FracO, both the over-ring O′
and its dualizing module ω′ are rank 1, torsion-free O-modules. Classification shows that if I is a
rank 1, torsion-free O-module, then there exists a unique extension O′ ⊃O such that I is isomorphic
to either O′ or ω′ .

Comparison with past work. The author believes this paper provides the first complete enumeration
of the irreducible components of a reducible compactified Jacobian. The proof that J d

X is reducible
for X non-planar was given by Kleiman–Kleppe in [KK81]. Let g be the arithmetic genus of X and
e the minimal number of generators of the stalk of ω at p0 ∈ X . The authors of [KK81] exhibit a
(g + e − 2)-dimensional locus in J d

X with the property that the general element is not a line bundle
[KK81, Proposition 4]. When e � 2, dimensional considerations show that this locus must be contained
in some non-smoothable component. When X has a unique singularity that is of finite representation
type and non-Gorenstein (hence e = 2), the locus constructed by Kleiman–Kleppe coincides with the
closure of Dd . However, a comparison of dimensions shows that the closure of Dd cannot contain
the Kleiman–Kleppe locus when e � 3. For more general surveys of compactified Jacobians, Hilbert
schemes, and related topics, the author directs the reader to [Iar87] and [CEVV09].

Conventions. We work over a fixed algebraically closed field k of characteristic 0. If t ∈ T is a point
of a k-scheme, then we write k(t) for the residue field of the local ring OT ,t and call this field the
fiber. A curve is an integral projective k-scheme of dimension 1. The local ring of a curve singularity is
the completed local ring ÔX,p of a curve at some closed point p.

Given a coherent OX -module F on a k-scheme X , we write Fx for the stalk of F at x. We
call the k(x)-module Fx ⊗OX,x k(x) the fiber. If X is a curve, then we define the degree of F by
χ(X, F ) = deg(F ) + χ(X,OX ). We say that F is a maximal Cohen–Macaulay (or maximal CM) sheaf
if the localization F p has depth 1 for all closed points p ∈ X . If F additionally has the property that
the generic rank is 1, then we say that F is a rank 1, torsion-free sheaf. We write ω for the dualizing
sheaf of X , which is a rank 1, torsion-free sheaf.
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Given two coherent OX -modules F and G , the OX -module whose sections over an open U ⊂ X
are homomorphisms F |U → G|U is denoted by Hom(F , G). Set F ∨ := Hom(F ,OX ).

The compactified Jacobian J d
X of degree d is the projective k-scheme that parameterizes rank 1,

torsion-free sheaves of degree d on X . (See [AK80, Definition 5.11, Theorem 8.1] for the precise defi-
nition.) We write [I] ∈ J d

X for the closed point corresponding to a rank 1, torsion-free sheaf I .
The Quot scheme Quotd

ω of degree d is the projective k-scheme that parameterizes rank d quotients
q :ω � Q of the dualizing sheaf ω. We write [q] for the closed point corresponding to q. Similarly, the
Hilbert scheme Hilbd

X of degree d is the projective k-scheme that parameterizes rank d quotients of the
structure sheaf OX or, equivalently, degree d closed subschemes Z ⊂ X of X . We write [Z ] ∈ Hilbd

X
for the closed point corresponding to Z . (Precise definitions can be found in [AK80, Definition 2.5,
Theorem 2.6].) Both the kernel ker(q) associated to [q] ∈ Quotd

ω and the ideal I Z associated to [Z ] ∈
Hilbd

X are rank 1, torsion-free sheaves.

2. Proof of Theorem A

Here we prove Theorem A. We begin by recording the definition of the non-smoothable locus Dd
more formally.

Definition 2.1. If x ∈ J d
X is a (possibly non-closed) point, then set k(x) equal to an algebraic closure of

the residue field of J d
X at x.

Set Ix equal to the rank 1, torsion-free sheaf on X ⊗ k(x) that is the pullback of a universal family
on X × J d

X under X ⊗ k(x) → X × J d
X .

We define

Dd ⊂ Jd
X

to be the subset of points x ∈ J d
X such that Ix and the dualizing sheaf ω ⊗ k(x) become isomorphic

after tensoring with ÔX⊗k(x),p0
.

In addition to proving that Dd ⊂ J d
X is non-smoothable, we also prove similar results about the

Hilbert scheme Hilbd
X parameterizing closed subschemes and the Quot scheme Quotd

ω parameterizing
quotients of the dualizing sheaf ω (Theorem 2.7). The schemes Hilbd

X and Quotd
ω are related to J d

X by
an Abel map, the properties of which were studied in [AK80].

The Abel map Aq : Quotd
ω → J (2g−2)−d

X is defined by the rule

[q] ∈ Quotd
ω 	→ [

ker(q)
] ∈ J (2g−2)−d

X .

This map fibers Quotd
ω by projective spaces of possibly varying dimension: the fiber over [I] ∈

J (2g−2)−d
X is P Hom(I,ω). This projective space is non-empty once d � g and of dimension d − g

when d � 2g − 1 [AK80, Theorem 8.4].
The Hilbert scheme Hilbd

X also admits an Abel map. The rule [Z ] 	→ [I Z ] defines a morphism
Ah : Hilbd

X → J−d
X with the property that the fiber over [I] is the projective space P Hom(I,OX ). One

important difference between Aq and Ah is that the fibers of Ah may not all be of dimension d − g

once d � 2g − 1. Indeed, when X is Gorenstein, Hilbd
X can be identified with Quotd

ω in a way that
respects Abel maps, so this condition on the fibers does hold, but in the non-Gorenstein case, the
dimension of a fiber of Ah is non-constant as a function of the base. This problem does not arise if
we restrict our attention to D−d ⊂ J−d

X as will be shown by the following series of lemmas.

Lemma 2.2. Let X be a genus g curve with a unique non-Gorenstein singularity p0 . Then Dd ⊂ J d
X is a g-

dimensional, irreducible locally closed subset.
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Proof. This lemma can be deduced from results in [EGK00], but we include a proof for the sake of
completeness. We begin by showing that Dd is the image of J d−(2g−2)

X under the map L 	→ ω ⊗ L and
that this map is injective. Certainly the image is contained in Dd . To establish the reverse inclusion,
we must show that, given x ∈ Dd , the sheaf Ix on X ⊗ k(x) is isomorphic to (ω ⊗ k(x)) ⊗ L for a line
bundle L. To construct L, observe that an examination of completed stalks shows that

M := Hom
(

Ix,ω ⊗ k(x)
)

is a line bundle. However, Ix is ω-reflexive (by [EGK00, 2.2.1]), so

Ix = Hom
(
M,ω ⊗ k(x)

)

= (
ω ⊗ k(x)

) ⊗ M−1,

and we take L = M−1. This proves the reverse inclusion. Furthermore, the construction shows that L
is unique, so L 	→ L ⊗ ω is injective. (We thank the anonymous referee for suggesting this argument.)

A restatement of this description of Dd is: if we fix base points, then we can identify Dd with
the orbit of a point under a fixed-point free action of the Jacobian J 0

X . Because X is a curve, J 0
X is

a reduced and irreducible group scheme [Kle05, 5.23], and it is a result of Chevalley that the orbit
of any such group scheme is locally closed [Spr98, 2.3.3]. We can conclude that Dd is an irreducible
locally closed subset of dimension dim J 0

X = g . This completes the proof. �
Because Dd ⊂ J d

X is a locally closed subset, it has natural subscheme structure — the reduced
subscheme structure. For the remainder of this article, we will consider Dd as a subscheme rather
than as a subset. The proof of Lemma 2.2 shows that Dd is isomorphic to J 0

X as a scheme.

Definition 2.3. Given d ∈ Z, define integers

d0 := 1 − deg
(
ω∨)

,

nd := d + 2g − 2 + deg
(
ω∨)

= d − d0 + 2g − 1.

Lemma 2.4. If d � d0 − g + 1 (i.e. nd − g � 0), then dim Hom(I,OX ) � nd − g + 1 for all [I] ∈ D−d. Further-
more, equality holds for all I when d � d0 and for some I when d is arbitrary.

Proof. Suppose first d � d0. Given [I] ∈ D−d , the proof of the previous lemma shows that we can
write I = L ⊗ ω for some line bundle L of degree −d − (2g − 2). Then

dim Hom(I,OX ) = dim Hom(ω ⊗ L,OX )

= dim H0(Hom(ω ⊗ L,OX )
)

= χ
(
Hom(ω ⊗ L,OX )

) + dim H1(Hom(ω ⊗ L,OX )
)
.

The degree of Hom(ω ⊗ L,OX ) = ω∨ ⊗ L−1 is strictly larger than 2g − 2, so this sheaf has no higher
cohomology (by [AK80, Proposition 3.5(iii)(g)]). Elementary algebra shows that dim Hom(I,OX ) = nd −
g + 1.

Now suppose d0 > d � d0 − g + 1. Then every element [I] ∈ D−d can be written as I = J ⊗ L for L
a line bundle of degree d0 − d and [ J ] ∈ D−d0 . Computing as before, we have
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dim Hom(I,OX ) = χ
(

J∨) − deg(L) + dim H1( J∨ ⊗ L−1)

� χ
(

J∨) − deg(L)

= nd − g + 1.

This establishes the desired lower bound. A sheaf achieving this lower bound is J (p1 + · · · + pd0−d)

for [ J ] ∈ D−d0 arbitrary and p1, . . . , pd0−d ∈ X general (as vanishing at a general point is a non-trivial
linear condition). �
Definition 2.5. If d � d0 − g + 1, set

Do
−d := {[I] ∈ D−d: dim Hom(I,OX ) = nd − g + 1

}
.

Lemma 2.6. Let X be a genus g curve with a unique non-Gorenstein singularity p0 . If d � d0 − g + 1, then
Do

−d ⊂ D−d is open and the restriction of the Abel map

Ah : A−1
h

(
Do

−d

) → Do
−d (2.1)

is smooth with fibers isomorphic to Pnd−g .

Proof. We prove this by using the description of Hilbd
X as the projectivization of a coherent sheaf

on J−d
X . Recall that if we choose a universal family Iuni on X × J−d

X , then Hilbd
X = P(H) for

H = H(Iuni,OX× J−d
X

) (defined in [AK80, Section 1]). Given y ∈ D−d , the fiber A−1(y) = P Hom(I,OX )

equals P Hom(H ⊗ k(y),k) by [AK80, 1.1.1]. This fiber is thus isomorphic to Pnd−g precisely when
dim Hom(I,OX ) = nd − g + 1 or, in other words, y ∈ Do

−d . Furthermore, nd − g + 1 is the minimal
possible value of dimk H ⊗ k(y) for y ∈ D−d by the previous lemma. We can conclude that Do

−d ⊂ D−d
is open.

To complete the proof, we must show that the restriction of Ah to A−1
h (Do

−d) is smooth. The scheme
Do

−d is reduced as it inherits this property from D−d (which was defined to be reduced). Now consider
the sheaf H⊗ODo

−d
on ODo

−d
. This sheaf has the property that all the fibers (H⊗ODo

−d
)⊗k(y) have the

same dimension. Because Do
−d is reduced, we can conclude that H ⊗ODo

−d
is locally free. In particular,

Ah : A−1
h (Do

−d) → Do
−d is the projectivization of a locally free sheaf, hence smooth. This completes the

proof. �
We now deduce Theorem A in its most general form.

Theorem 2.7. Let X be a curve with a unique non-Gorenstein singularity p0 ∈ X. Then

1. the closure of Dd is a g-dimensional irreducible component of J d
X ;

2. the closure of the inverse image A−1
q (D2g−2−d) is a d-dimensional irreducible component of Quotd

ω pro-
vided d � 0;

3. the closure of the inverse image A−1
h (D−d) is a nd-dimensional irreducible component of Hilbd

X provided
d � d0 − g + 1.

Furthermore, Jd
X (respectively Quotd

ω , Hilbd
X ) is k-smooth at a general closed point of Dd (respectively

A−1
q (D2g−2−d), A−1

h (D−d)).

Proof. We give three separate arguments, one for each moduli space.
The compactified Jacobian. The author claims that J d

X is smooth of local dimension g at every

point [I] ∈ Dd . First, we establish this for J 2g−2
X at the point [ω] using deformation theory. The
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groups Extq(ω,ω) vanish for q > 0 by [BH93, Theorem 3.3.10]. We can conclude that the edge
map H p(X,OX ) → Extp(ω,ω) associated to the local-to-global spectral sequence H p(Extq(ω,ω)) ⇒
Extp+q(ω,ω) is an isomorphism for all p.

In particular, Ext2(ω,ω) = 0 and Ext1(ω,ω) is g-dimensional. The vanishing of Ext2(ω,ω) implies
that J 2g−2

X is smooth at [ω], so the local dimension of J 2g−2
X at [ω] equals the tangent space dimen-

sion, dim Ext1(ω,ω) = g . This proves the claim for I = ω, and we can conclude that the result holds
for arbitrary [I] ∈ Dd by homogeneity. Thus the closure of Dd must be an irreducible component of
J d

X because the local dimension of J d at any [I] ∈ Dd equals the dimension of Dd .

The Quot scheme. When d � 2g − 1, the Abel map Aq : Quotd
ω → J 2g−2−d

X is smooth with fibers
isomorphic to Pd−g [AK80, Theorem 8.4(v)]. We can conclude from item (1) that the claim holds
and additionally Quotd

ω is k-smooth at every closed point of A−1
q (D2g−2−d). In fact, the proof of

[AK80, Theorem 8.4(v)] shows that the obstruction group Ext1(ker(q), Q ) vanishes for all [q :ω �
Q ] ∈ A−1

q (D2g−2−d).
We can deduce the case where d is arbitrary from the case where d is large. Given a quotient map

q :ω � Q and a collection of closed points p1, . . . , pe ∈ Xsm disjoint from the support of Q , we write

qi :ω � ω/ω(−pi) = k(pi)

for the quotient map ω � ω/ω(−pi) and

q × q1 × · · · × qe :ω � Q × k(p1) × · · · × k(pe)

for the map into the product. The locus A−1
q (D2g−2−d) is always non-empty for it contains the points

[q1 × · · · × qd], p1, . . . , pd ∈ Xsm. In fact, the closure Y d ⊂ Quotd
ω of the subset of all such points is

irreducible and d-dimensional.
d is also equal to the dimension of the tangent space to Quotd

ω at any closed point of
A−1

q (D2g−2−d). We prove this as follows. Given [q] ∈ A−1
q (D2g−2−d), fix e large and p1, . . . , pe gen-

eral. Then [q′ := q × q1 × · · · × qe] lies in A−1
q (D−d−e), and the dimension of the tangent space at this

point is d + e. But this tangent space can be rewritten as

T[q′] Quotd+e
ω = Hom

(
ker

(
q′), Q × k(p1) × · · · × k(pe)

)

= Hom
(
ker(q), Q

) ⊕ Hom
(
ker(q1),k(p1)

) ⊕ · · ·
⊕ Hom

(
ker(qe),k(pe)

)

= T[q] Quotd
ω ⊕Hom

(
ker(q1),k(p1)

) ⊕ · · ·
⊕ Hom

(
ker(qe),k(pe)

)
.

Taking dimensions, we get dim T[q] Quotd
ω = d. A similar computation shows that the Ext1(ker(q),

Q ) = 0, so Quotd
ω is k-smooth of local dimension d at [q].

We can conclude that Y d is an irreducible component of Quotd
ω . To complete the proof, we must

show that Y d equals the closure of A−1
q (D2g−2−d). Thus suppose that Cd is an irreducible component

of the closure. Because the local dimension of Quotd
ω at any point of A−1

q (D2g−2−d) is d, the compo-

nent Cd must have dimension d. Now fix e large. If we define Cd+e to be the closure of the subset of
points [q × q1 × · · · × qe] with [q] ∈ Cd and p1, . . . , pe ∈ Xsm general, then Cd+e is contained in the
closure of A−1

q (D2g−2−d−e). Both subsets of Quotd+e
ω are (d + e)-dimensional, irreducible, and closed,

hence the containment is an equality. But Cd+e does not contain the general element of the form
[q1 ×· · ·× qd+e] (as the analogous statement holds for Cd). A contradiction! This completes the proof.
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The Hilbert scheme. To begin, I claim that A−1
h (D−d) is open in Hilbd

X . It is, of course, enough to

show that D−d ⊂ J−d
X is open, and this can be established as follows. Lemma 2.2 states that D−d is

open in its closure D−d . Furthermore, the proof of Theorem 2.7 shows that J−d
X is smooth at every

point of D−d , so the only component of J−d
X that meets D−d is the closure D−d . We can conclude that

D−d is open in J−d
X as its complement is the union of the irreducible components distinct from D−d

together with the closed subset D−d \ D−d .
Now consider A−1

h (Do
−d). This subset must also be open in Hilbd

X as Do
−d is open in D−d by

Lemma 2.6. Furthermore, the same lemma states that Ah : A−1
h (Do

−d) → Do
−d is smooth with fibers

isomorphic to Pnd−g . We can immediately conclude that A−1
h (Do

−d) is nd-dimensional, irreducible,

and k-smooth. The Hilbert scheme Hilbd
X must also be k-smooth at every point of A−1

h (Do
−d) as

A−1
h (Do

−d) ⊂ J−d
X is open. We can conclude that the closure of A−1

h (D−d) is an irreducible component

of J−d
X . (The subset A−1

h (D−d) is open in any irreducible component containing it, hence A−1
h (D−d) is

dense is any such component.) This completes the proof. �
3. Proof of Theorem B

Here we prove Theorem 3.2, which is Theorem B and the analogous statement for Quotd
ω . The

theorem concerns non-planar curve singularities of finite representation type. The classification of
these singularities is recalled in Section 4, where the singularities are listed in Table 1. Table 2 of that
section contains a list of the rank 1, torsion-free modules over the ring of a singularity from Table 1.
We advise the reader to look at Section 4 before reading the proof of Theorem 3.2.

In proving Theorem 3.2, we need the following lemma, which we use to argue that it is enough to
work with modules over ÔX,p0 rather than sheaves over X .

Lemma 3.1. Let X be a curve with a unique singularity p0 ∈ X. Suppose that I is a rank 1, torsion-free sheaf
on X and Îa ⊂ ÔX,p0 ⊗ k�a� is an ideal with k�a�-flat quotient such that there exists an isomorphism

Îa ⊗ k�a�/(a) ∼= I ⊗ ÔX,p0 .

Then there exists a k�a�-flat family of rank 1, torsion-free sheaves Ia on X ⊗ k�a� with the property that
there exists an isomorphism

Îa ∼= Ia ⊗ (
ÔX,p0 ⊗ k�a�

)
.

Proof. Define Ja ⊂OX ⊗ k�a� to be the kernel of the composition

OX ⊗ k�a� → ÔX,p0 ⊗ k�a� → ÔX,p0 ⊗ k�a�/̂Ia.

The quotient OX ⊗k�a�/ Ja is canonically isomorphic to ÔX,p0 ⊗k�a�/̂Ia , and hence is k�a�-flat. In
particular, Ja is itself k�a�-flat. Furthermore, the fibers of Ja are rank 1, torsion-free sheaves. Indeed,
the generic fiber of Ja is rank 1 and torsion-free because it is a subsheaf of OX ⊗ Frac k�a� that is
nonzero (as the quotient is supported at p0). Similarly, because the quotient OX ⊗k�a�/ Ja is k�a�-flat,
the reduction J := Ja ⊗ k�a�/(a) →OX of the inclusion map is injective, and so the special fiber J is
a nonzero subsheaf of OX , hence rank 1 and torsion-free. We have now shown that the sheaf Ja has
all of the desired properties except that the special fiber J := Ja ⊗ k�a�/(a) may not be isomorphic
to I .

We proceed to modify Ja so that J is isomorphic to I . While J and I may not be isomorphic, these
two sheaves do become isomorphic after passing to ÔX,p0 . Thus the completed stalk of Hom(I, J ) at
p0 is free of rank 1 as the formation of Hom(I, J ) commutes with completion. Consequently, there
exists an open neighborhood U ⊂ X of p0 and an isomorphism φ1 : J |U ∼= I|U . (Pick φ1 to map to a
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generator of the completion of Hom(I, J ).) Away from p0, the sheaves J and I are locally isomorphic
because both sheaves restrict to line bundles on X \ {p0}. Now the complement X \ U consists of
a finite number of points, so we can find an open subset V ⊂ X that contains X \ U and has the
property that there exists an isomorphism φ2 : J |V ∼= I|V . On the overlap U ∩ V , the automorphism
φ−1

2 ◦ φ1 : J |U∩V ∼= J |U∩V is an automorphism of a line bundle and so is defined by multiplication
with a fixed function f ∈ H0(U ∩ V ,O∗

X ). Define L to be the line bundle obtained by glueing OV to
OU over U ∩ V by the automorphism defined by f . Then an isomorphism

J ⊗ L ∼= I

is defined by

s ⊗ 1 	→ φ1(s) on U ,

s ⊗ 1 	→ φ2(s) on V .

We can conclude that the tensor product of Ja with the constant family of line bundles with fiber L
satisfies all of the desired properties. This completes the proof. (We thank the anonymous referee for
suggesting this argument.) �

We now prove the main theorem.

Theorem 3.2. Let X be a curve with a unique singularity p0 ∈ X that is of finite representation type and
non-Gorenstein. Then

1. J d
X has exactly two irreducible components: the smoothable component and the closure of Dd;

2. Quotd
ω has exactly two irreducible components provided d � 2g − 1: the smoothable component and

closure of A−1
q (D2g−2−d).

Proof. First, we reduce to the problem of deforming the modules in Table 2, and then we deform
those modules on a case-by-case basis. To make the reduction, consider the following hypothesis:

Hypothesis 1. Let R be a ring that is a finite product of rings of curve singularities. If M is a rank 1,
torsion-free R-module, then we say that (R, M) satisfies Hypothesis 1 if there exists an ideal Ma ⊂
R ⊗ k�a� with k�a�-flat cokernel such that there exists an isomorphism

Ma ⊗ k�a�/(a) ∼= M

over the special fiber and an isomorphism over the completed generic fiber that is either of the form

Ma ⊗̂ Frac k�a� ∼= R ⊗̂ Frac k�a�

or of the form

Ma ⊗̂ Frac k�a� ∼= ω ⊗̂ Frac k�a�.

Note that we require the existence of an isomorphism over the completed tensor product
R ⊗̂ Frac k�a�, not the uncompleted tensor product R ⊗ Frac k�a�. The ring R ⊗ Frac k�a� may fail
to be complete, and it is the relevant completed tensor product that is isomorphic to the completed
local ring of X ⊗ Frac k�a� at p0 for X as in the statement of the theorem. We also point out that
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R is a finite product of rings of singularities, not the ring of a singularity. We allow for finite prod-
ucts because a finite extension of the ring of a singularity may be a product of rings of singularities.
(E.g. k�t � × k�t � is a finite extension of the ring of the A1-singularity.)

The theorem quickly follows if we assume Hypothesis 1 holds when R = ÔX,p0 and M is arbitrary.
Indeed, let us prove this first for the compactified Jacobian and then for the Quot scheme.

The compactified Jacobian. For item (1), we need to show that J d
X ∪Dd is dense in J d

X . It is enough to
prove that the closure of J d

X ∪ Dd contains every closed point of J d
X , so let [I] ∈ J d

X be a given closed
point. Apply Hypothesis 1 to M := I ⊗ ÔX,p0 . If Îa := Ma is as in the conclusion of Hypothesis 1, then
Lemma 3.1 asserts that there is a flat deformation Ia of I with the property that

Îa ∼= Ia ⊗ (
ÔX,p0 ⊗ k�a�

)
.

The family Ia corresponds to a morphism Spec(k�a�) → J d
X that sends the special point to [I] and the

generic point to an element of J d
X ∪ Dd , proving item (1) (under the assumption that Hypothesis 1

holds).
The Quot scheme. Given item (1), item (2) follows immediately as Aq is a Pd−g -bundle for d � 2g −1.
Hypothesis 1 holds. We now prove that Hypothesis 1 holds when R is of finite representation type.

Our strategy is as follows. We begin by making some preliminary reductions. These reductions will
let us set up an inductive argument which reduces the claim that Hypothesis 1 holds to the claim
that fifteen specific modules deform. We complete the proof by deforming these modules by hand.

Reduction one. In Hypothesis 1, we may assume that the rank 1, torsion-free module M is an
ideal M ⊂ R . Indeed, we can construct an embedding as follows. The natural map M → M ⊗ Frac R is
injective (as M is torsion-free) and M ⊗ Frac R is isomorphic to Frac R (as M is rank 1). If we fix an
isomorphism M ⊗ Frac R ∼= Frac R , then the composition

M
i→ M ⊗ Frac R ∼= Frac R

is an injection. The image may not lie in R , but if we fix a nonzero divisor t ∈ R , then the image of
tb · i will lie in R once b is sufficiently large.

Reduction two. Hypothesis 1 holds when R is a finite product of rings of planar singularities. It is
enough to consider the case R = ÔX,p0 for X a locally planar curve. Let M be given. We have just
shown that we can realize M as an ideal M ⊂ ÔX,p0 . Define Z ⊂ X to be the closed subscheme of X
that corresponds to the quotient map OX → ÔX,p0 → ÔX,p0/M . The main result of [AIK77] implies
that the point [Z ] of the Hilbert scheme Hilbd

X lies in the closure of the locus of Cartier divisors.
By [Gro61, Proposition 7.1.4], this containment is witnessed by a morphism S → Hilbd

X out of the
spectrum of a valuation ring that maps the special point to [Z ] and the generic point to a point in
the locus of Cartier divisors. Furthermore, S can be chosen so that it is the spectrum of a complete
discrete valuation ring with residue field k. Hence S is isomorphic to Spec(k�a�), and we obtain a
suitable ideal Ma by pulling back the universal family to X × S and then further restricting to R ⊗k�a�.

Reduction three. We now establish a result that will let us set up an induction. Let O = ÔX,p0 be
the completed local ring of the curve X at a closed point p0. Suppose O ⊂ O′ is a finite extension
contained in FracO and assume Hypothesis 1 is satisfied in the following two cases:

• R equals O and M equals the ring O′ or its dualizing module ω′;
• R equals O′ and M equals an arbitrary O′-module M ′ .

Then Hypothesis 1 holds when R = O and M = M ′ is a O′-module considered as a O-module. To
prove this, say Î ′ := M ′ is a given such module.

We can construct a finite birational morphism f : X ′ → X such that O′ is the completion of the
localization of X ′ at a finite set of closed points. Indeed, O′ is a rank 1, torsion-free module over O,
so it is isomorphic to some ideal Ĵ ⊂O. If we form the kernel J of the composition OX →O →O/̂ J ,
then we can take X ′ = Spec(End( J )). The ring O′ is then the completion of the localization of X ′ at
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f −1(p0). Similarly, we can assume Î ′ is isomorphic to I ′ ⊗ O′ for some rank 1, torsion-free sheaf I ′
on X ′ . (Construct I ′ as an ideal.)

Now Hypothesis 1 is satisfied when R = O′ , so we can conclude that J d′
X ′ ∪ D′

d′ is dense in J d′
X ′ .

By [AK90, Proposition 3], this compactified Jacobian J d′
X ′ embeds in J d

X by the rule I ′ 	→ f∗(I ′) (for
suitable d). Now Hypothesis 1 is also satisfied when R = O′ and M = O′ or ω′ , so we can conclude
that the closure of J d

X ∪ Dd contains the image of J d′
X ′ ∪ D′

d′ , and hence the entire image of J d′
X ′ .

We now construct a suitable deformation of Î ′ as follows. We have just shown that [ f∗ I ′] lies in the
closure of J d

X ∪ Dd , and this containment is witnessed by a morphism out of S = Spec(k�a�) [Gro61,
Proposition 7.1.4]. Pulling back the universal family to ÔX,p0 ⊗ k�a� produces a suitable module Ma =
Îa except that Îa is not obviously an ideal.

We can, however, arrange that Îa is an ideal as follows. We can make the degree d of I as large as
we wish, and if we make the degree large enough, then the Abel map Aq out of Quotd

ω is smooth. In
particular, we can lift S → J d

X to a morphism S → Quotd
ω , and we can thus assume that Îa ⊂ ω⊗k�a�

is a submodule with k�a�-flat cokernel. If we fix an injection ω ↪→O, then the composition

Îa ⊂ ω ⊗ k�a� ↪→ O ⊗ k�a�

realizes Îa as a suitable ideal.
Hypothesis 1 holds. We now prove that Hypothesis 1 holds when R = O is the ring of a non-

Gorenstein singularity that is of finite representation type. Our argument makes use of the classifica-
tion of rank 1, torsion-free modules over such a ring, and it is recommended that the reader look at
Section 4 before proceeding.

Table 2 of Section 4 lists the modules over the ring of a non-Gorenstein curve singularity that is
of finite representation type. The rank 1, torsion-free O-modules are all listed together. The portion
of the table containing the modules over a fixed O is further subdivided by blank horizontal lines.
(E.g. the modules R + R · t2 and R + R · t over the E8(1)-singularity are in the same subdivision.) The
modules within a given subdivision are arranged so that the endomorphism ring of a module M is
contained in the endomorphism ring of the module directly below it. (E.g. for the E8(1)-singularity,
the endomorphism ring of R + R · t2 is contained in the endomorphism ring of R + R · t .)

We now use this table to prove that Hypothesis 1 holds when R = O is the ring of a non-
Gorenstein singularity that is of finite representation. We induct on the delta invariant δ(O) =
dimk Õ/O. Thus let O be non-Gorenstein and of finite representation type and assume Hypothe-
sis 1 holds whenever R is a ring that also satisfies these conditions but has delta invariant strictly
smaller than δ(O).

By the induction, it is enough to prove that the hypothesis is satisfied when M = Î equals a module
Î that is the topmost element not equal to the ring O or its dualizing module ω within a subdivision
of Table 2. (E.g. when O is the E8(1)-singularity, it is enough to show the hypothesis is satisfied by
M = R + R · t and M = R + R · t4.) Indeed, suppose Î is any rank 1, torsion-free O-module. If Î is equal
to O, ω, or one of the modules that we are assuming satisfies Hypothesis 1, then there is nothing to
prove. Otherwise, let Î0 be the topmost module in the subdivision containing Î that does not equal
O or ω. Set O′ := End(̂I) and O′

0 := End(̂I0). Inspecting Table 2, we see that O � O′
0 � O′

0.
We now use the inductive hypothesis. The ring O′

0 is a ring of finite representation type and
satisfies δ(O′

0) < δ(O). By applying either the inductive hypothesis (when O′
0 is non-Gorenstein) or

Reduction two (when O′
0 is planar), we can conclude that Hypothesis 1 is satisfied when R =O′

0 and
M = Î (considered as a O′

0-module). Furthermore, an inspection of Table 2 shows that Hypothesis 1
is satisfied when R =O and M equals either the ring O′

0 and its dualizing module ω′
0 (i.e. such an M

is topmost within its subdivision). We can therefore conclude that Hypothesis 1 holds when R = O
and M = Î by Reduction three. This proves the assertion. We now complete the proof by showing that
Hypothesis 1 holds when M = Î is a topmost element.

There are fifteen such modules, and we deform these modules one-by-one. In every case, the gen-
eral technique is the same. Given one of the fifteen modules Î , we begin by constructing a surjective
O ⊗ k�a�-linear map
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φa : P̂ ⊗ k�a� → Q ⊗ k�a�. (3.1)

Here P̂ is a rank 1, torsion-free module and Q is a module of finite length.
In the constructions below, it is perhaps not always clear what the O ⊗ k�a�-module structure

on Q ⊗ k�a� is. Most often Q = k, and the O-module structure is defined by making f ∈ O act as
f · v = f (0)v for v ∈ k. The O ⊗ k�a�-module structure on Q ⊗ k�a� is then defined by extending
scalars. In a few constructions, however, Q = k[ε]/(ε2) or k[ε1, ε2](ε1, ε2)

2. These k-algebras do not
have distinguished O-module structure, but the map φa that we construct will be a k�a�-algebra map.
In this case, we endow Q ⊗ k�a� with the induced O ⊗ k�a�-module structure.

The kernel Îa := ker(φa) certainly has k�a�-flat cokernel — the cokernel is Q ⊗k�a�. The conclusion
of Hypothesis 1 requires that Îa is an ideal, and we can arrange this by fixing an injection P̂ ↪→ O
and then forming the composition Ia ↪→ P̂ ⊗ k�a� ↪→O ⊗ k�a�.

To verify that Îa satisfies the conclusion of Hypothesis 1, we also need to exhibit an isomorphism

Îa ⊗ k�a�/(a) ∼= Î

and either an isomorphism

Îa ⊗̂ Frac k�a� ∼= O ⊗̂ Frac k�a�

or an isomorphism

Îa ⊗̂ Frac k�a� ∼= ω ⊗̂ Frac k�a�.

In every construction, both Î and P̂ are submodules of FracO, and the isomorphism Îa ⊗ k�a�/(a) ∼= Î
is constructed as the restriction of the map FracO → Õ given by multiplication with a fixed nonzero
divisor f ∈ Õ. Such a map is always injective, so we just need to check that the map is well-defined
and surjective. The second isomorphism is constructed in a similar manner.

We construct these isomorphisms and the surjection φa using power series methods. The normal-
ization Õ is isomorphic to a self-product of the power series ring k�t �. The tensor product k�t � ⊗k�a�
is not isomorphic to k�t,a�, but the natural map k�t � ⊗k�a� → k�t,a� is injective. Thus we can think
of an element of the tensor product as a power series in t and a or, alternatively as a power series in
t with coefficients in k�a�. Given f ∈ k�t � ⊗k k�a�, we write fn ∈ k�a� for the coefficient of tn in the
image of f in k�a� �t �. We will also abuse notation and write af in place of f ⊗ a.

We now proceed to show that the fifteen modules from Table 2 satisfy Hypothesis 1. We will con-
struct all of the relevant maps, but we do not always verify that the maps have the desired properties
(e.g. that φa is a surjective homomorphism). We verify these details for the first module only and
leave remaining cases to the interested reader.

To make notation consistent with that of Table 2 (and [GK85]), we will write “R” in place of “O”
and “M” in place of “̂I” for the remainder of this section.

The An ∨ L-singularity, n even. We need to deform the three modules R + R · (tn−1,0), R · (1,0) +
R · (tn−3,1), and R + R · (1,0).

We begin by deforming R + R · (tn−1,0) to the dualizing module ω = R · (1,0)+ R · (tn−1,1). Define

φa : R + R · (1,0) + R · (tn−1,0
) ⊗ k�a� → k�a�,

( f , g) 	→ f0 − g0 − a( fn−1 − g0).

To see that φa is a R ⊗ k�a�-module homomorphism, observe that a typical element of the source
can be written as a pair ( f , g) of power series satisfying f1 = f3 = · · · = fn−3 = 0, and such a power
series lies in R when we additionally have fn−1 = 0 and f0 = g0. Given (p,q) ∈ R and ( f , g) ∈ R + R ·
(1,0) + R · (tn−1,0), we compute:
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φa
(
(p,q) · ( f , g)

) = p0 f0 − q0 g0 − a(p0 fn−1 − q0 g0)

= p0 f0 − p0 g0 − a(p0 fn−1 − p0 g0)

= p0φa( f , g)

= (p,q) · φa( f , g).

This shows that φa is linear, and the map is visibly surjective.
The fiber Ma ⊗k�a�/(a) is equal to the submodule R + R ·(tn−1,0) ⊂ R̃ , so to show that Ma satisfies

the conclusion of Hypothesis 1, we just need to verify that the completed generic fiber is isomorphic
to ω ⊗̂ Frac k�a�. An isomorphism between these modules is given by

Ma ⊗̂ Frac k�a� → ω ⊗̂ Frac k�a�,

( f , g) 	→ (
a − tn−1,a − 1

) · ( f , g). (3.2)

This map is well-defined because

(
a − tn−1,a − 1

) · ( f , g) = ((
a − tn−1) f − (a − 1)g0tn−1,af0

) · (1,0)

+ (
(a − 1)g0, (a − 1)g

) · (tn−1,1
)
,

and an inspection of the relevant power series shows that the coefficients appearing in the right-hand
side of the above equation lie in R ⊗̂ Frac k�a� provided ( f , g) ∈ Ma ⊗̂ Frac k�a�.

The injectivity of Eq. (3.2) is automatic, and surjectivity follows from the identities

(
a − tn−1,a − 1

) · (a−1 + a−2tn−1 + · · · ,0
) = (1,0),

(
a − tn−1,a − 1

) · (a−1tn−1 + a−2t2(n−1) + · · · , (a − 1)−1) = (
tn−1,1

)
.

This shows that the conclusion of Hypothesis 1 holds when M = R + R · (tn−1,0) ⊂ R̃ .
We now deform the module R · (1,0) + R · (tn−3,1) to R . Define

φa : R ⊗ k�a� → k[ε1, ε2]/(ε1, ε2)
2 ⊗ k�a�,

( f , g) 	→ f0 + ε1( f2 + afn+1) + ε2
(

g1 + (a − 1) fn+1
)
.

A computation shows that this is a surjective k�a�-algebra map.
The kernel Ma := kerφa is a deformation of R · (1,0) + R · (tn−3,1) because the homomorphism

R · (1,0) + R · (tn−3,1
) → Ma ⊗ k�a�/(a),

( f , g) 	→ (
t4, t

) · ( f , g)

is an isomorphism. The module is a deformation to R because the map

R ⊗̂ Frac k�a� → Ma ⊗̂ Frac k�a�,

( f , g) 	→ (
tn+1 − at2, (1 − a)t

) · ( f , g)

is an isomorphism. This shows that Hypothesis 1 is satisfied when M = R · (1,0) + R · (tn−3,1).
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Finally, we show that R + R · (1,0) deforms to R . Define

φa : R + R · (1,0) ⊗ k�a� → k�a�,

( f , g) 	→ g0 − af0 − ag0.

As with the previous maps, a computation shows that φa is a R ⊗ k�a�-linear surjection. Set Ma =
kerφa . Because the maps

R + R · (1,0) → Ma ⊗ k�a�/(a),

( f , g) 	→ (1, t) · ( f , g)

and

Ma ⊗̂ Frac k�a� → R ⊗̂ Frac k�a�,

( f , g) 	→ (
a, (1 − a)

) · ( f , g)

are isomorphisms, Ma is a deformation of R + R · (1,0) to R . This proves that Hypothesis 1 is satisfied
when M = R + R · (1,0).

The An ∨ L-singularity, n odd. There are five modules that we need to deform: R + R · (t(n−1)/2,0,0),
R · (1,1,0) + R · (t(n−3)/2,0,1), R + R · (1,0,0), R + R · (0,1,0), and R + R · (0,0,1). We begin with
the first module.

We deform R + R · (t(n−1)/2,0,0) to ω = R · (1,1,0) + R · (t(n−1)/2,0,1). Define

φa : R ⊗ k�a� → k�ε�/
(
ε2) ⊗ k�a�,

( f , g,h) 	→ f0 + ε( f1 + g1 − 2h1 − af(n+1)/2 + ag(n+1)/2 + ah1).

This is a surjective homomorphism. Set Ma := kerφa . The homomorphisms

R + R · (t(n−1)/2,0,0
) → Ma ⊗ k�a�/(a),

( f , g,h) 	→ (t, t, t) · ( f , g,h),

and

Ma ⊗̂ Frac k�a� → ω ⊗̂ Frac k�a�,

( f , g,h) 	→ (
at−1 − t(n−3)/2,at−1 + t(n−3)/2,at−1 − 2t−1) · ( f , g,h)

are isomorphisms, so the module Ma satisfies the conclusion of Hypothesis 1.
A similar construction deforms the module R · (1,1,0) + R · (t(n−3)/2,0,1) to R . Form the kernel

Ma of the map

φa : R ⊗ k�a� → k[ε1, ε2]/(ε1, ε2)
2 ⊗ k�a�,

( f , g,h) 	→ f0 + ε1
(
(1 + a)( f(n+1)/2 − g(n+1)/2) − h1

)

+ ε2
(
(1 + a)( f1 + g1) − ah1

)
.

As before, this map is a surjective homomorphism. The rule
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R · (1,1,0) + R · (t(n−3)/2,0,1
) → Ma ⊗ k�a�/(a),

( f , g,h) 	→ (
t2, t2, t

) · ( f , g,h)

defines an isomorphism, which shows that Ma is a deformation of R · (1,1,0)+ R · (t(n−3)/2,0,1). This
deformation is a deformation to R because the rule

R ⊗̂ Frac k�a� → Ma ⊗̂ Frac k�a�,

( f , g,h) 	→ (
a + t(n−1)/2,a − t(n−1)/2,1 + a

) · (t, t,2t) · ( f , g,h)

defines an isomorphism. We can conclude that Hypothesis 1 is satisfied when M = R · (1,1,0) + R ·
(t(n−3)/2,0,1).

Next we deform R + R ·(1,0,0) to R . One such deformation is the kernel Ma of the homomorphism

φa : R + R · (1,0,0) ⊗ k�a� → k[t]/(t(n+1)/2) ⊗ k�a�,

( f , g,h) 	→ (1 + a) f (t) − ag(t)
(
mod t(n+1)/2),

which is a surjective homomorphism. The maps

R + R · (1,0,0) → Ma ⊗ k�a�/(a),

( f , g,h) 	→ (
t(n−1)/2,1,1

) · ( f , g,h)

and

Ma ⊗̂ Frac k�a� → R ⊗̂ Frac k�a�,

( f , g,h) 	→ (
a−1 − 1,1,1

) · ( f , g,h)

are isomorphisms, and this shows that M = R + R · (1,0,0) satisfies Hypothesis 1 .
To complete this case, we need to deform the modules R + R · (0,1,0) and R + R · (0,0,1). If we

modify the construction of the deformation of R + R · (1,0,0) by swapping the roles of f and g , then
we obtain a suitable deformation R + R · (0,1,0) to R . If we instead swap f and h and change the
target of φa to k�a�, then we obtain a deformation of the module R + R · (0,0,1) to R .

The E6(1)-singularity. It is enough to show that R + R · t2 deforms to the dualizing module ω =
R + R · t . Define Ma to be the kernel of the map

φa : R̃ ⊗ k�a� → k�a�,

f 	→ f1 − af2.

This map is a surjection. The fiber Ma ⊗ k�a�/(a) of the kernel Ma := ker(φa) is equal to R + R · t2,
and the map

Ma ⊗̂ Frac k�a� → R + R · t ⊗̂ Frac k�a�,

f 	→ (
1 − a−1t

) · f

is an isomorphism. This proves that M = R + R · t2 satisfies Hypothesis 1.
The E7(1)-singularity. The endomorphism ring of R + R · (1,0) is contained in the endomorphism

ring of R + R · (t2,0), so it is enough to deform R + R · (t2,0) and R · (1,0) + R · (t,1).
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The module R + R · (t2,0) deforms to the dualizing module ω = R + R · (t,0). Indeed, the map

φa : R + R · (t,0) + R · (t2,0
) ⊗ k�a� → k�a�,

( f , g) 	→ f1 − a( f2 − g1)

is a linear surjection, and the kernel Ma = kerφa is a suitable deformation. To see this, observe that
the fiber Ma ⊗ k�a�/(a) is equal to R + R · (t2,0), and the map

Ma ⊗̂ Frac k�a� → ω ⊗̂ Frac k�a�,

( f , g) 	→ (
1 − a−1t,1

) · ( f , g)

is an isomorphism. We can conclude that M = R + R · (t2,0) satisfies Hypothesis 1.
We deform the module R · (1,0) + R · (t,1) to R using the map

φa : R + R · (t,0) ⊗ k�a� → k�a�,

f 	→ f0 − af1.

This map is a surjective homomorphism, and the kernel kerφa is a deformation of R · (1,0)+ R · (t,1)

to R . Indeed, an isomorphism of the special fiber is given by

R · (1,0) + R · (t,1) → Ma ⊗ k�a�/(a),

( f , g) 	→ (t, t) · ( f , g)

and an isomorphism of the completed generic fiber is given by

Ma ⊗̂ Frac k�a� → R ⊗̂ Frac k�a�,

( f , g) 	→ (
a2 − at + t2,a2) · ( f , g).

This proves that M = R · (1,0) + R · (t,1) satisfies Hypothesis 1.
The E8(1)-singularity. We need to deform the modules R + R · t4 and R + R · t . We begin with

R + R · t4.
The module R + R · t4 deforms to the dualizing module ω = R + R · t2. One such deformation is

given by the kernel Ma := kerφa of the surjective homomorphism

φa : R + R · t2 + R · t4 ⊗ k�a� → k�a�,

f 	→ f2 − af4.

To see this is a suitable deformation, observe that the special fiber of Ma is equal to R + R · t4, and
the map

Ma ⊗̂ Frac k�a� → R + R · t2 ⊗̂ Frac k�a�,

f 	→ (
a − t2) · f

is an isomorphism.
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Finally, we deform R + R · t to R . Define Ma to be the kernel of

φa : R ⊗ k�a� → k[ε1, ε2]/(ε1, ε2)
2 ⊗ k�a�,

f 	→ f0 + ε1( f3 + af5) + ε2( f7).

This map is surjective. Furthermore, if Ma := kerφa , then the maps

R + R · t → Ma ⊗ k�a�/(a),

f 	→ t5 · f

and

Ma ⊗̂ Frac k�a� → R ⊗̂ Frac k�a�,

f 	→ (
at−3 − t−1 + a−1t

) · f

are isomorphisms. This shows that M = R + R · t satisfies Hypothesis 1. Because R + R · t was the last
module that we needed to deform, the proof is now complete. �
4. Tables

Here we list the non-planar curve singularities of finite representation type (Table 1) and the
rank 1, torsion-free modules over the ring of such a singularity (Table 2). Both classification results
are derived from [GK85], where Greuel and Knörrer enumerate the maximal CM modules over the
ring of an ADE singularity [GK85, pp. 423–425].

Their work can be used to classify the curve singularities of finite representation type as follows.
The main result of their paper states that a curve singularity is of finite representation type if and
only if it dominates an ADE singularity [GK85, Satz 1]. As a consequence, we can conclude that the
rings of singularities of finite representation type are the algebras of the form End(M) for M a rank 1,
torsion-free sheaf over an ADE singularity. Indeed, if R ⊂ R ′ corresponds to a dominance relation, then
R ′ considered as a R-module satisfies EndR(R ′) = R ′ .

The singularities that arise in this manner are listed in Table 1. The first column (“Singularity”)
is the name of the singularity. The second column (“Parameterization”) presents the ring of the
singularity as the subring of a product of power series rings topologically generated by an explicit set
of elements. The names we use for singularities are the names used in the literature on simple curve
singularities (e.g. [FK99]). Each singularity arises as a partial desingularization of a DE singularity. The
singularity An ∨ L is a partial desingularization of the Dn+3-singularity. Indeed, the local ring of the
An ∨ L-singularity is the extension of the local ring of the Dn+3-singularity that is generated by either
(0, t) or (0,0, t) (depending on the parity of n). Similarly, the local ring of Ek(1) is generated over the
local ring of the Ek-singularity by t5 for k = 6, (t4,0) for k = 7, and t7 for k = 8.

The rank 1, torsion-free modules over a ring from Table 1 are listed in Table 2. Again, this has
been derived from [GK85]. Given an extension R ⊂ R ′ contained in Frac R with R the ring of an ADE

Table 1
Non-planar singularities of finite representation type.

Singularity Parameterization

An ∨ L, n � 2 and even k�(tn+1,0), (t2,0), (0, t)�
An ∨ L, n � 1 and odd k�(t(n+1)/2,−t(n+1)/2,0), (t, t,0), (0,0, t)�
E6(1) k�t3, t4, t5 �
E7(1) k�(t2, t), (t3,0), (t4,0)�
E8(1) k�t3, t5, t7 �
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Table 2
Rank 1, torsion-free modules.

Singularity Greuel-Knörrer
module

Endomorphism
ring

Isomorphic
to a ring?

Isomorphic to a
dualizing module?

An ∨ L, n even R + (tn+1,0) · R An ∨ L Yes
R + (tn−1,0) · R An−2 ∨ L Yes
· · · · · · · · · · · ·
R + (t3,0) · R A2 ∨ L Yes
R + (t,0) · R A1 Yes

R · (1,0) + R · (tn−1,1) An ∨ L Yes
R · (1,0) + R · (tn−3,1) An−2 ∨ L Yes
· · · · · · · · · · · ·
R · (1,0) + R · (t3,1) A2 ∨ L Yes

R + R · (1,0) An ∪ sm Yes
R + R · (1,0) + R · (tn−1,0) An−2 ∪ sm Yes
· · · · · · · · · · · ·
R + R · (1,0) + R · (t3,0) A2 ∪ sm Yes
R + R · (1,0) + R · (t,0) sm ∪ sm Yes

An ∨ L, n odd R + R · (t(n+1)/2,0,0) An ∨ L Yes
R + R · (t(n−1)/2,0,0) An−2 ∨ L Yes
· · · · · · · · · · · ·
R + R · (t2,0,0) A3 ∨ L Yes
R + R · (t,0,0) A1 ∨ L Yes

R · (1,1,0) + R · (t(n−1)/2,0,1) An ∨ L Yes
R · (1,1,0) + R · (t(n−3)/2,0,1) An−2 ∨ L Yes
· · · · · · · · · · · ·
R · (1,1,0) + R · (t,0,1) A3 ∨ L Yes
R · (1,1,0) + R · (1,0,1) A1 ∨ L Yes

R + R · (1,0,0) A1 ∪ sm Yes

R + R · (0,1,0) A1 ∪ sm Yes

R + R · (0,0,1) An ∪ sm Yes
R + R · (0,0,1) + R · (t(n−1)/2,0,0) An−2 ∪ sm Yes
· · · · · · · · · · · ·
R + R · (0,0,1) + R · (t2,0,0) A3 ∪ sm Yes
R + R · (0,0,1) + R · (t,0,0) A1 ∪ sm Yes
R̃ sm ∪ sm ∪ sm Yes

E6(1) R + R · t5 E6(1) Yes
R + R · t2 A2 Yes
R + R · t + R · t2 sm Yes

R + R · t E6(1) Yes

E7(1) R + R · (t4,0) E7(1) Yes
R + R · (t2,0) A2 ∨ L Yes
R + R · (t,0) + R · (t2,0) A1 Yes

R + R · (t,0) E7(1) Yes
R · (1,0) + R · (t,1) A2 ∨ L Yes

R + R · (1,0) A2 ∪ sm Yes
R + R · (1,0) + R · (t,0) sm ∪ sm Yes

E8(1) R + R · t7 E8(1) Yes
R + R · t4 E6(1) Yes
R + R · t2 + R · t4 A2 Yes
R̃ sm Yes

R + R · t2 E8(1) Yes
R + R · t E6(1) Yes
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singularity, the rank 1, torsion-free R ′-modules are exactly the rank 1, torsion-free R-modules M with
the property that the inclusion R ⊂ End(M) extends to an inclusion R ⊂ End(M).

Table 2 was generated by checking this condition for the modules listed in [GK85] and should be
read as follows. The first column (“Singularity”) lists a curve singularity from Table 1. The module
in the second column (“Greuel-Knörrer module”) is a module over the ring of the singularity in
the first column. The module is presented as a submodule of the total ring of fractions Frac(R) gener-
ated by an explicit set of elements. Some of the modules we list do not appear in [GK85, pp. 423–425]
because Greuel and Knörrer only list the indecomposable modules. For an indecomposable module,
the presentation in Table 2 is chosen to coincide with the presentation from [GK85]. The third column
(“Endomorphism Ring”) lists the endomorphism ring of the module. This ring is always a prod-
uct of rings of ADE singularities and the singularities appearing in Table 1. We write “∪” to indicate
that the endomorphism ring is a product (or, geometrically, a disjoint union) of the listed singular-
ities. Finally, every listed R-module M is either isomorphic to the ring S := End(M) (considered as
a R-module) or the dualizing module ωS of that ring. In the fourth column (“Isomorphic to a
ring?”), we write “Yes” if M is isomorphic to its endomorphism ring, and we leave the entry blank
otherwise. We leave the entry in the final column (“Isomorphic to a dualizing module?”)
blank if M is isomorphic to its endomorphism ring, and otherwise we write “Yes” as M is then iso-
morphic to ωS . Note that when S is Gorenstein and M is isomorphic to S , we leave the last entry,
titled “Isomorphic to a dualizing module?”, blank even though M is isomorphic to ωS = S .

Acknowledgments

We would like to thank the anonymous referee, Daniel Erman, Eduardo Esteves, Steven Kleiman,
Robert Lazarsfeld, Louisa McClintock, and Filippo Viviani for helpful comments concerning exposition.

References

[AIK77] Allen B. Altman, Anthony Iarrobino, Steven L. Kleiman, Irreducibility of the compactified Jacobian, in: Real and Com-
plex Singularities, Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, Sijthoff and Noordhoff, Alphen
aan den Rijn, 1977, pp. 1–12.

[AK80] A.B. Altman, S.L. Kleiman, Compactifying the Picard scheme, Adv. Math. 35 (1) (1980) 50–112.
[AK90] Allen B. Altman, Steven L. Kleiman, The presentation functor and the compactified Jacobian, The Grothendieck

Festschrift, Vol. I, in: Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 15–32, MR1086881 (92e:14023).
[BH93] Winfried Bruns, Jürgen Herzog, Cohen–Macaulay Rings, Cambridge Stud. Adv. Math., vol. 39, Cambridge University

Press, Cambridge, 1993, MR1251956 (95h:13020).
[CEVV09] Dustin A. Cartwright, Daniel Erman, Mauricio Velasco, Bianca Viray, Hilbert schemes of 8 points, Algebra Number

Theory 3 (7) (2009) 763–795.
[EGK00] Eduardo Esteves, Mathieu Gagné, Steven Kleiman, Abel maps and presentation schemes, Comm. Algebra 28 (12)

(2000) 5961–5992, Special issue in honor of Robin Hartshorne, MR1808614 (2002e:14046).
[FK99] Anne Frühbis-Krüger, Classification of simple space curve singularities, Comm. Algebra 27 (8) (1999) 3993–4013,

MR1700205 (2000f:32037).
[GK85] G.-M. Greuel, H. Knörrer, Einfache Kurvensingularitäten und torsionsfreie Moduln, Math. Ann. 270 (3) (1985) 417–425.
[Gro61] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes,

Publ. Math. Inst. Hautes Etudes Sci. (8) (1961) 222, MR0163909 (29 #1208).
[Iar87] A. Iarrobino, Hilbert scheme of points: Overview of last ten years, in: Algebraic Geometry, Bowdoin, 1985 (Brunswick,

Maine, 1985), in: Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 297–320.
[KK81] Hans Kleppe, Steven L. Kleiman, Reducibility of the compactified Jacobian, Compos. Math. 43 (2) (1981) 277–280.
[Kle05] Steven L. Kleiman, The Picard scheme, in: Fundamental Algebraic Geometry, in: Math. Surveys Monogr., vol. 123,

Amer. Math. Soc., Providence, RI, 2005, pp. 235–321, MR2223410.
[Spr98] T.A. Springer, Linear Algebraic Groups, second ed., Progr. Math., vol. 9, Birkhäuser Boston Inc., Boston, MA, 1998,

1642713 (99h:20075).


	An explicit non-smoothable component of the compactiﬁed Jacobian
	1 Introduction
	2 Proof of Theorem A
	3 Proof of Theorem B
	4 Tables
	Acknowledgments
	References


