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ABSTRACT 

A distance matrix D of order n is symmetric with elements - idfj, where 
d,, = 0. D is Euclidean when the in(n - 1) quantities dij can be generated as the 
distances between a set of n points, X (n X p), in a Euclidean space of dimension p. 
The dimensionality of D is defined as the least value of p = rank(X) of any generating 
X; in general p + 1 and p +2 are also acceptable but may include imaginary 
coordinates, even when D is Euclidean. Basic properties of Euclidean distance 
matrices are established; in particular, when p = rank(D) it is shown that, depending 
on whether erD-e is not or is zero, the generating points lie in either p = p - 1 
dimensions, in which case they lie on a hypersphere, or in p = p - 2 dimensions, in 
which case they do not. (The notation e is used for a vector all of whose values are 
one.) When D is non-Euclidean its dimensionality p = r + s will comprise r real and s 
imaginary columns of X, and (T, s) are invariant for all generating X of minimal rank. 
Higher-ranking representations can arise only from p + 1= (r + 1) + s or p + 1 = r + 
(s + 1) or p + 2 = (r + 1) + (s + l), so that not only are r, s invariant, but they are 
both minimal for all admissible representations X. 

1. INTRODUCTION 

The motivation for the following arises from the statistical problems of 

multidimensional scaling and ordination. However, few of the results obtained 

have immediate statistical applications; rather it is felt that these results have 

an intrinsic interest and eventually may help a better understanding of the 
statistical methodology. 

In multidimensional scaling, an observed positive symmetric matrix is to 
be approximated by the “pan-wise” Euclidean (sometimes other Minkowski) 
distances generated by a set of points whose coordinates are to be estimated 
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in a specified number of dimensions. There are two general classes of 
goodness-of-fit criteria. In metric multidimensional scaling the differences 
between observed and fitted distances are minimized according (in general) 
to some least-squares criterion; in nonmetric multidimensional scaling only 
the ordinal values of the entries in the observed matrix are to be approxi- 
mately reproduced as measured by suitable criteria. The terms metric and 
nonmetric can be misleading in the context of multidimensional scaling, for in 
both cases a metric (usually Euclidean) is fitted to the data--the distinction 
refers to whether the goodnessof-fit criterion is of least-squares type (metric) 
or is ordinal (nonmetric). This is not the place to go into details; see e.g., [3,4] 
for an introduction and further references. 

A problem of metric multidimensional scaling with non-Euclidean ob- 
servations is of direct relevance to the following. The question arises as to the 
existence of a maximum number of Euclidean dimensions that can be fitted, 
after which no further improvement is attainable. Gower [2] shows that a 
non-Euclidean matrix of order n has best Euclidean fit in no more than rr - 2 
real Euclidean dimensions, but it is conjectured that the upper limit is near to 
the number of “real dimensions” in the data, which may be much less than 
n - 2. With Euclidean data, the number of real dimensions is easily defined, 
but with non-Euclidean data, closer examination is needed to define exactly 
what is meant, and this is one of the aims of the paper. Those familiar with 
multidimensional scaling should note that, apart from setting a possible upper 
bound to the number of dimensions that can be fitted, this conjecture has 
little bearing on deciding the smallest number of dimensions required to give 
a good approximation to the data. 

Before attempting detailed analysis of this class of statistical problems, the 
basic mathematical properties of distance matrices are required, but little 
seems available in the literature. The following is an attempt to provide some 
initial results. Incidentally the material on the g-circumhypersphere provides 
some new results on best-fitting circles and hyperspheres. 

Throughout this paper we shall be concerned with a real symmetric n X n 
matrix D with elements - &dFj and with zero diagonal. When a set of n 
points can be found in a Euclidean space of some dimensionality such that all 
tn( n - 1) interdistances generate the values d i j, D is said to be Euclidean. 
Writing e for a vector all of whose values are one, Schoenberg [5] showed that 
D is Euclidean iff 

F = (I - esT)D(I - seT) (1) 

is positive semi-definite (p.s.d.), where s = e/n or s = e,, a unit vector with 
zero everywhere except in the ith position. Gower [l] generalized this result 
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to show that the result was true for any s such that sTe = 1 and Ds Z 0, 
deriving the result ab initio. To derive the general result from Schoenberg’s is 
trivial, for 

Fl=/I-$)D(I-$1 

=(I_$)F(I_!g, 

so that when F is p.s.d., so is F,. Conversely, because F = (I - esT)F,(I - seT), 

it follows that when F is not p.s.d., neither can F, be. 
The condition Ds + 0 turns out to be superfluous, for if Ds = 0 then 

T 2eTDe 
sTF,s = (s e) - 

n2 ’ 

Now eTDe = C( - $dFj) < 0, with equality only when all distances are zero, a 
possibility we exclude. However, because F, is p.s.d., sTF,s > 0, so sTe = 0, a 
result obtained less directly in Section 3 below. This shows that whenever D 
is Euclidean, then sTe = 1 and Ds = 0 are incompatible. If D is non-Euclidean, 
we shall see below that it is possible to find s such that Ds = 0 with sTe = 1; 
with this choice of s, F = D with zero trace, and hence F is not p.s.d., as is 
required for non-Euclidean D. 

If F = XXT is any decomposition of F, then the rows of X give coordinates 
of points that generate the distances d,,, and clearly XTs = 0, so that s 
determines the position of the origin; the different decompositions give 
different orientations about this origin. Schoenberg’s choices s = e/n and 
s = ei place the origin at the centroid and at the i th point of the configuration 
of n points. Gower [l] discussed the geometrical significance of other choices 
of s and, when D is of full rank, found explicit formulae for placing the origin 
at the circumcenter, incenter, and also excenters of the configuration. In what 
follows it turns out that the circumhypersphere and its radius play a central 
role, so that for completeness, and to exhibit the development in its simplest 
form, the case when D is of full rank is reexamined. 

From F = XXT it follows that the ith value of diagF gives the squared 
distance of the ith point from the origin determined by s. Now diagF may be 
exhibited as the column vector: 

(STDs)e - 2Ds. (2) 

This vector, then, gives the squared distances from the origin, and if this 
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origin is to be the center of the circumhypersphere of radius R, then (2) must 
satisfy 

(srDs)e - 2Ds = R2e, 

which, since D is nonsingular, has solution 

s = kD-ie 

for some constant k. The existence of such a solution proves the existence of 
the circumhypersphere when detD f 0. The condition sre = 1 immediately 
determines k to give s = D- ‘e/erD- ‘e, which on substitution into (3) gives 

~2 = - (erD_‘e) -l, 

indicating the additional requirement that erD_‘e # 0 (see Section 3). This 
gives: 

THEOREM 1. Zf D is Euclidean, detD f 0, and eTD ‘e # 0, then a 
circumhypersphere exists with radius given by R2 = - (eTD-‘e)-i. Coordi- 
nates X relative to the circumcenter may be found by setting s = 
D - ‘e/eTD- ‘e in F and using any decomposition F = XXT. 

Because R2 is necessarily nonnegative it follows that: 

COROLLARY. When D is Euclidean and detD # 0, then eTDpe < 0. 

A direct proof of the result seems difficult. 
The following examines what happens when these conditions are succes- 

sively relaxed. First we consider a D not of full rank, establish the condition 
for a circumhypersphere to exist, and examine the consequences of one 
definition of a best approximating hypersphere when an exact one does not 
exist. Then the relationship between the rank of D and the dimensionality of 
X is established, also the relationship between the null spaces of F and D. 
Finally the condition that F is p.s.d. is relaxed, so that X may not be real and 
D may be non-Euclidean. 

2. THE EXISTENCE OF A CIRCUMHYPERSPHERE 

When D is not of full rank, the equations (3) may be inconsistent and have 
no solution. The points generating D then cannot lie on a hypersphere. An 
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approximate circumcenter could then be defined in many ways, but it is 
convenient to work in terms of the deviations from the average squared 
distances from the origin, which are obtained immediately from (2) as 

- 2(1- N)Ds, (4) 

where N = eeT/n. 

DEFINITION. The g-circumcenter, a generalized circumcenter, is defined 
to be the origin given by the setting of s that minimizes the sums of squares of 

(4). 

This sum of squares is 4sTD(I - N)Ds and is to be minimized subject to 
eTs = 1. Thus we must solve 

D(1 - N)Ds = Xe, (5) 

where 4A is the minimum sum of squares. When X = 0 the sum of squares of 
deviations is zero, so that all deviations are zero, a proper circumcenter exists, 
and 

(I - N)Ds = 0, 

giving 

Ds = i (eTDs)e, 

which is a form of Equation (3). When X # 0 only a g-circumcenter exists. 
These two situations have to be considered separately, but premultiplying 
both (5) and (6) by DD- shows that DD-e = e for all real values of X and 
any generalized inverse D- . Similarly, postmultiplying the transposes of (5) 
and (6) by D- D shows that eTD- D = eT. The above argument requires only 
that DD- D = D, which implies that these results must hold for any g-inverse 
D-. It is easy to verify this, for if D= is any other g-inverse, then there exist 
matrices P and Q such that D= = D- + (I - D- D)P + Q(1 - DD- ), giving 
DD= = DD- + DQ(1 - DD- ) and hence DD=e = DD-e = e. It also fol- 
lows that eTD-e is invariant to choice of g-inverse, a result needed below. 
This gives: 

THEOREM 2. Any Euclidean distance matrix D with any generalized 
inverse D - satisfies DD-e = e and eTD- D = eT. 
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This result is trivial for full-rank D, but for other cases gives the identities 
that must be satisfied by distances between a set of n points. The relationship 
between the rank of D and the dimensionality of the points that generate D is 
nontrivial and is discussed in Section 3. 

2.1. Existence of a Circumcenter 
It follows from Theorem 2 that the equations (6) are always consistent 

with solution 

s = kD_e+(I - D-D)P, 

where P is arbitrary and k = (l/n)(erDs) = (erD_e)) ‘. Substituting for s in 
(3) and using Theorem 2 yields 

a2 = - (erD_e) _ ‘, 

which has been shown above to be invariant to the choice of g-inverse. The 
only difficulty occurs when eTD-e = 0, in which case R and k are infinite. In 
a sense this solution is acceptable, for it is a generalization of the concept of 
regarding three collinear points as lying on a circle of infinite radius. 
Nevertheless this solution is rejected in the following, and the concept of the 
g-circumcenter is developed. 

Substituting for s into (1) yields F = D - eeT/eTD-e, which is not only 
invariant to the choice of g-inverse but also to P. This establishes the 
uniqueness of the circumhypersphere and shows that nothing is lost by taking 
P = 0. 

THEOREM 3. For every Euclidean distance matrix D, there exists a 
circumhypersphere iff eTD - e # 0. This has radius given by R2 = 
- (eTD-e))’ corresponding to s = D-e/eTD-e. 

As for Theorem 1, we have the following: 

COROLLARY. When D is Euclidean then eTD-e < 0. 

2.2. The g-Circumcenter 
When eTD -e = 0, the solution to (5) is required. This equation may be 

written 

D’s = Ae + $ (erDs)De. (7) 
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It is now convenient to use the unique Moore-Penrose inverse Dt of D. 
Premultiplying (7) by erD’ ’ and using the commutative properties of D ‘, 
Theorem 2, and eTD+e = 0 gives 

I= eTs = heTD+2e, 

identifying A as being independent of any particular solution for s of (7). In a 
similar manner to that used in Section 2, any g-inverse (D2) may be 
expressed in terms of (D’)’ = D+ 2 to show that eT(D2))e = eTD’2e and 
hence that A may be expressed in terms of any g-inverse of D2. This 
invariance does not extend to eT(D- )2e. 

Premultiplying (7) by sTDt and eTD’ 3 gives, respectively, 

sTDs = AsTD+e + i (sTDe) 

and 

eTD’s = heTD’3e+ i(d.Ds)(e’D”e). 

The squared radius of the g-circumhypersphere is the average squared dis- 
tance from the g-circumcenter and is given by the average value of the 
elements of (2) as 

R”g = sTDs - teTDs, 

which on substituting the values found above gives 

Rf’ 
eTD’ 3e 

(eTD+2e)2 ’ 

showing that Ri does not depend on the particular solution of (7) for s. Again 
eTD + 3e may be written in terms of any g-inverse to give Ri = 
eT(D3))e/[eT(D2)-e12. Expressing (D2) in terms of D+ 2 and arbitrary 
matrices, as above, it may be verified that solutions to (7) are given by 

s=h(D2)-e+p(D2)-De+[I-(D2)-D2]P, (8) 
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where p = erDs and P are arbitrary. Substituting (8) into (1) yields 

F=D-h(Dte+erDi)+A2(erDt3e)eer 

irrespective of the choice of g-inverse of D2 and of P. This establishes the 
uniqueness of the g-circumcenter and also that nothing is lost by taking p = 0 
and P = 0. 

THEOREM 4. For any Euclidean distance matrix D with e*D-e = 0 
there exists a g-circumhypersphere given by s = (D2)-e/eT(D2)-e and with 
radius R, where Rz = eT(D3)-e/[eT(D2)-e] 2. 

3. RANK AND DIMENSION 

DEFINITION. The dimensionality of D is the rank of the matrix X with 
least rank that generates D. 

Thus the dimensionality of D is the dimension of the space containing the 
points that generate D. The requirement of least rank arises from the 
consideration that 

with rank 1 

and 

with rank 2, 

both generating 

We shall see that the dimensionality of D is the same as the rank of F, where 
F is given by (1). 

Consider 

F, = (I - es*)D(I - se’) and F, = (I - et’)D(I - teT), 



DISTANCE MATRICES 89 

where 

ers=eTt=l. 

We have 

F, = (I - etr)F(I - te’), 

and because rank(1 - etT) = n - 1 it follows that rank(F,) < rank(F,). Simi- 
larly rank(F,) < rank(F2) and hence rank(F,) = rank(F,). 

DEFINITION. A matrix of the form (1) is termed an F-matrix. A matrix of 
the form G = D+ ge’ +egr is termed a G-matrix. 

The above shows that all F-matrices have the same rank. By writing 
h = $(sTD)e - Ds we have that F = D + her +ehT, showing that every F- 
matrix is a special case of a G-matrix. Also 

G=F+(g-h)er+e(g-h)r, 

from which it follows that rank(G) Q rank(F)+2 and that F = (I - esr)G 
(I - seT), giving rank(F) < rank(G). Thus 

rank(F) < rank(G) < rank(F)+z. (9) 

Suppose G = F + mer + emr is a G-matrix of minimal rank (i.e., it has the 
same rank as any F-matrix). The eigenvectors of mer +emr span the space 
determined by e and m, and because these do not increase the rank of F, they 
must lie in the column space of F, i.e., there exist nonzero vectors v1 and vz 
such that 

Fv,=e and Fv,=m. 

Hence G = F + Fv,vFF + Fvlv$F, from which we have (I - esT)G(I - ser) = 
G. But from the definition of G, (I - esr)G(I - ser) = F and hence F = G. 
Thus all G-matrices of minimal rank are F-matrices. 

Gower [l] showed that if X generates D, then XXT is a G-matrix. Thus 
F-matrices give matrices X of least rank that generate D. These results may be 
stated as: 

THEOREM 5. All G-matrices of minimal rank are F-matrices. All F- 
matrices are G-matrices of minimal rank. This invariant minimal rank is the 
dimensionality of D. 
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It follows that the dimensionality of D is related to the null space of F. 
Suppose rank(D) = r, so that D has n - r linearly independent null vectors 
Xi(i = 1,2, . . . . n - T), where Dx i = 0. Premultiplying by erD ~ gives eTx i = 0, 
as was shown by a different argument in Section 1. Also 

Fxi=(I-esr)(Dxi-Dserxi)=O. 

Thus the null vectors of D are also null vectors of F, but F will also have other 
nuIl vectors, of which s is cIearly one-the condition sre = 1 ensures that s is 
linearly independent of all the xi. Suppose y is any other null vector of F; 
then 

Dy = ke+ (eTy)Ds, 00) 

where 

k = srDy - (sTDs)(eTy). 

Premultiplying both sides by eTD- shows that either k = 0 or eTDpe = 0. In 
the first case (10) becomes 

D(y - (eTy)s) = 0, 

sothat y-(eTy)s=Cy:lXixi for some Xi (i=1,2,...,n-r), showing that y 
is linearly dependent on the already established null vectors of F. The rank of 
F is therefore r - 1. 

When eT D -e = 0, (10) gives 

D(y - (eTy)s) = ke, 

or 

D(y - (e’y)s - kD-e) = 0, 

giving 

y = (ery)s+ c Aixi + kD-e. 
i=l 

(11) 

Thus the only null vector of F that may be linearly independent of the xi and 
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s is D-e. The condition for dependence is that there exist oi and (Y, not all 
zero, such that 

D-e= ncra,x. + (YS ,I * 
i=l 

Premultiplying respectively by er and D using Theorem 2 gives 

cu=eTD-e and e=cuDs, 

so that when eTD-e = 0 we have a contradiction and linear dependence is 
not possible; D-e is then a further independent null vector of F. It must be 
established that different choices of g-inverse do not give additional indepen- 
dent null vectors. Expressing D - in terms of the Moore-Penrose inverse D+ 
and matrices P and Q gives D- =D’+(I-D+D)P+Q(I-DD+). Hence 
fromTheorem2,D-e=D+e+(I-D+D)pwherep=Pe.NowI-D+D= 
C~,ix,x~ so that D-e = D+e+CT+lixi, where li = x;p. It follows that the 
null vectors xi of D, together with s and D-e (for any g-inverse D- ), span 
the null space of F, which therefore must have rank r - 2. These results, with 
Theorems 3 and 4, may be combined to give: 

THEOREM 6. All the null vectors of D are also null vectors of F, and 
they satisfy eTxi = 0. F always has s as a firther null vector. Zf rank(D) = r 
then the dimensionulity of D is: 

(i) r - 1 iff eTD-e # 0, in which case the generating points lie on the 
surface of a hypersphere, or 

(ii) r - 2 iff eTD-e = 0, in which case the generating points cannot lie 
on the surface of a hypersphere and D-e is a further independent null vector 
of F. 

4. NON-EUCLIDEAN DISTANCE 

When D is non-Euclidean, F is not p.s.d. and no real X can generate D. 
For those D for which DD-e = e remains true, the results found in previous 
sections remain valid. However, when DD-e f e, the equations (5) are not 
consistent and neither a circumcenter nor a g-circumcenter exists. The 
quantity srD(1 - N)Ds may then be made arbitrarily close to zero. Theorem 
5 still gives the dimensionality of D, but the nonreal nature of X needs 
analysis for a full understanding of its structure. We shall see that X derived 
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from any F-matrix will have r real and s purely imaginary columns and that r 
and s are invariant. Further, for any G-matrix the corresponding values will 
not be less than r and s. 

4.1. Rank and Dimension - Non-Euclidean Case 
Although Theorem 5 still gives the dimensionality of D as the rank of F, 

when DD-e # e the rank of F will now equal r, the rank of D. This essential 
difference from the Euclidean case is established as follows. 

When DD-e f e, then D must be singular. Suppose D has nonnull 
vectors xi (i = 1,2,..., r)andnullvectorsxi(i=r+1,r+2,...,n)chosento 
be orthonormal. Then DD+ = x,xT+x,x~ + . . . +x,x: and X~=ixixT= I. 
Thus 

DD+e=e- 2 xixTe. 
i=r+l 

Now DD-e # e implies DD+e # e, so that Cl= ,+ ix i(xTe) # 0 and for at least 
one null vector x of D we must have xre # 0. This differs from the Euclidean 
case, because we may now choose s = x so that sre = 1 but Ds = 0. The 
corresponding F-matrix becomes 

F = (I - esr)D(I - ser) = D. 

The proof of Theorem 5 that rank(F) is minimal and invariant to the choice of 
s such that sTe = 1 remains valid, so that when DD-e f e the dimensionality 
of D is its rank. 

This gives the following: 

THEOREM 7. When D is non-Euclidean, either 

(i) DD-e = e and the diwwnsionality of D is given by Theorems 5 and 

6, or 
(ii) DD-e # e and the dimensionality of D is its rank. 

4.2. Real and Imaginary Dimensions 
The above has shown that dimensionality is well defined in the non- 

Euclidean case but has not established how the dimensions are allocated 
between real and imaginary components. To investigate this is the purpose of 
this section. 

Any symmetric matrix A of rank T + s may be written A = LSLr, where L 
has r + s columns and is of rank r + s, and S is a diagonal matrix of signs 
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with T positive and s negative units. Such decompositions are not unique, but 
the fundamental result on signature is that the values of r and s are invariant 
over all such decompositions; the invariant quantity r - s is termed the 
signature. Suppose U is any matrix such that rank(UAUr) = rank(A). Then 
UAUr = (UL)S(UL)r, and since this has the same rank as A, then rank(UL) = 
rank(L). It follows that A and UAUr have the same signature, because they 
share the same S. Any pair of F-matrices (which have already been shown to 

have equal rank) are related by 

F, = (I - esr)D(I - sier) = (I - esr)F,(I - srer), 

and setting U = I - esr shows that F, and F2, and hence all F-matrices, have 

the same signature. 

Putting F = LSLr, where L = (lr, l,, . . . , 1 r+s), we may expand the 
quadratic form xrFx to give 

xrFx = jjr (1;~)’ - ‘5 (l;~)~, 
p=r+l 

and setting xi = 1, xi = - 1, and xk = 0 (k # i, j) gives 

f;i+fjj-2f;j=d~j= i (zpi-zpj)2- ‘E (zpi-zpj)2' 
p=l p=r+l 

This is the usual “Pythagorean” representation of squared distance in terms 
of coordinates lpi (p = 1,2,. . . , T + s), except that for p > T the coordinates 
become purely imaginary. This has shown: 

THEOREM 8. When D is non-Euclidean, its dimensionality r + s, ob- 
tained from any F-matrix, is derived from a generating matrix of coordinates 

in r real and s imaginary dimensions. The values of r and s are invariant in all 
F-matrices and hence in all least-rank representations. 

4.3. Minimulity Properties of Real and Imaginary Components of Dimension 
Theorem 8 permits one to think in a welldefined manner of dimensional- 

ity associated with non-Euclidean distance matrices. We shall write this 
dimensionality as F( r, s). Although no F-matrix can generate a lower value of 
r or of s, representations derived from higher ranking Gmatrices, which must 
be consistent with (9), might; e.g., it remains to be shown that G( r - 1, s + 2) 
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is impossible. A detailed examination of all possible coordinate representations 
derived from G-matrices other than F-matrices is therefore needed. To do this 
requires an analysis of the relationships between the eigenvalues of an 
F-matrix and of a G-matrix; the numbers of positive and negative eigenvahres, 
of course, give the values of r and s in the coordinate representations. Thus 
we wish to relate the eigenvalues (yr, ya,. . . , y,) of G to the eigenvalues 

(4%’ cpa, f - * 3 +,,) of F, where it is assumed that yr > ys >, . . . >, yn and +r 2 +s 
>, **. >, +,,. We have that G = F + her + ehT. 

The eigenvahres of the rank-2 matrix H = heT + ehT are 

h, = eTh+ [ n(hTh)] 1’2 > 0 

and 

h, = eTh - [ n(h*h)]1’2 < 0 

together with h, = h, = . . . = h,_ 1 = 0. Now the relationship between the 
eigenvahres of G, F, and H is given by the minimax theorem (see [6, p. 1011) 
as 

Y,+,-1 G $, + h,. 

Also writing F = G + ( - H) gives 

4p+q-1 G Yp - hn-q+l~ 

i.e., 

Y, a 4p+q-1 + hn_q+l. 

(12) 

(13) 

Substituting the values indicated below for p and 9 in (12) and (13) gives: 

P 9 

1 1 

From (12) 

YI G +I + 4 

From (13) 

~12 +r+ 4, 
1 2 Ys Q 91 Yr>/+z 
2 2 Y3 G 42 Y2 2 43 

n-l i Y,G4nnl Yn-l>14n 

The interleaving of these eigenvahres is best illustrated diagrammatically as in 
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ZERO 

______,,_____________________L& yn-l 

+* 

$2 $1 

‘n-2 ‘2 

FIG. 1. The interleaving of the eigenvalues of G and F when n is even. The case 
n odd is essentially the same, but the values of y,, , y, _ 2,. then occur above the line 
and those for y, _ , , y,, 3,. occur below the line. 

Figure 1, where the fact that F has at least one zero eigenvalue has been 
indicated by showing +s as zero. 

From Figure 1 it is clear that G has one more nonzero eigenvalue than 
does F, and that when F( r, s) gives the number of positive and negative 
eigenvahres of F, then the corresponding values for G are either G( r + 1, s) or 
G( r, s + l), depending on whether ys is positive or negative. The possibility 
that rank(G) = rank(F)+2 has already been mentioned. This can occur only 
when F has two or more zero eigenvalues. The interleaving is then given by 
Figure 2. G may now have one more positive and one more negative 
eigenvahre than does F, giving G( r + 1, s + 1). These results may be stated as 

THEOREM 9. Zf D is a distance matrix, possibly non-Euclidean, that is 
associated with the fnm F(r, s), then coordinate representations that gener- 
ate D may be derived from F(r, s) itself or from G(r + 1, s), G(r, s + 1) or, 

when r + s < n - 2, from G(r + 1, s + 1). 

Note that this shows that not only do the forms F( r, s) have minimal 
rank, but also they have minimal values of both r and s. Thus coordinates 
derived from F-matrices are the only ones whose ranks are the dimensionality 
of D. 

___________________ 

+n-2 k 

'n-2 

FIG. 2. The interleaving of the eigenvalues of G and F for multiple zero 

eigenvalues of F. 
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4.4. illustration of the Four Forms of Full-Rank 
Distance-matrix 

These results may be illustrated using the matrix 

J. C. GOWER 

Representation of a 

which represents two coincident points at unit distance from a third point. 
Setting s = e, yields an F-matrix F = elel giving the minimal dimension 
coordinate representation with r = 1 and s = 0: 

The rank-2 real representation is typified by 

or any plane rotation of it. Setting g = 0 and hence G = D gives 

while setting g = (g, 1, b)’ gives 

i 

0.30917 0.22014 il.06960 
G(2,l) = 0.33527 - 0.17307 il.46368 

- 0.67940 0.01477 il.20904 

In the last two examples spectral decompositions of G have been used, though 
any other decomposition would suffice to give results of the same forms. 

AU four sets of coordinates generate the same distance matrix D, although 
their ranks and signatures differ. This illustration has represented a Euclidean 
matrix; if D is non-Euclidean, the same four types of representation occur but 
with imaginary columns in every case. 
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Thanks to Dr. A. G. Constantine, especially for his basic work using the 
minimax theorem. 
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