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Al~tract--This paper is the second in a series of investigations into the benefits of multiquadrics (MQ). 
MQ is a true scattered data, multidimensional spatial approximation scheme. In the previous paper, we 
saw that MQ was an extremely accurate approximation scheme for interpolation and partial derivative 
estimates for a variety of two-dimensional functions over both gfidded and scattered data. The theory 
of Madych and Nelson shows for the space of all conditionally positive definite functions to which MQ 
belongs, a semi-norm exists which is minimized by such functions. 

In this paper, MQ is used as the spatial approximation scheme for parabolic, hyperbolic and the elliptic 
Poisson's equation. We show that MQ is not only exceptionally accurate, but is more efficient than finite 
difference schemes which require many more operations to achieve the same degree of accuracy. 

1. INTRODUCTION 

In the previous paper [1], we have shown multiquadrics (MQ) is an excellent approximation to 
two-dimensional surfaces and their partial derivatives. We have referred to the work of Franke [2] 
who tested 29 different techniques of spatial approximation using a variety of exact test functions. 
He concluded that of all of the methods tested, MQ developed by Hardy [3, 4] outperformed all 
methods tested. Likewise, Stead [5] had shown that the partial derivative estimates obtained by MQ 
on those surfaces with significant curvature were excellent. She recommended a quadratic 
approximation for relatively flat surfaces and MQ for intermediate to high curvature. 

The theoretical justification for the success of MQ has been given by Micchelli [6] and Madych 
and Nelson [7]. Micchelli [6] proved that the MQ coefficient matrix is always invertible for distinct 
points. Madych and Nelson [7] showed that for the space of conditionally positive definite functions 
to which MQ belongs, a semi-norm exists and is minimized by such functions. 

In the previous paper [1], we showed that MQ can yield approximations of exceptionally high 
accuracy by permitting the shape parameter, r 2, to vary with the basis functions. By numerical 
experimentation, we found that the best results occurred with the following expansion 

r 2 ( j )  = r 2 • 2 2 U-l)/~N-t~ m m ( r m a x / r m i , )  , j = 1, 2 . . . . .  N ,  (1) 

and r max 2 and r min 2 are input parameters. Using equation (1), the MQ expansion is given as 
N 

f(x) = ~ a j g ( x  - -  xj), (2) 
j=l 

where 

g(x - xj) = [d:(x - xj) + r2/] u2, (3) 

d2(x - xj) = (x - xj) 2 + (y - yj)2 + . . . .  (4) 

The coefficients, {aj} are found by solving a set of linear equations in terms of the basis functions. 
For example, for traditional MQ we solve 

N 
~ ,  a j g ( x  i - -  xj) = F(x,), i -- 1, 2 . . . . .  N, (5) 

j~l  
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andf(x~) = F(x~) which are given. Exceptional accuracy using MQ is achieved by transforming the 
original set to appear more scattered, and by domain decomposition. These schemes greatly 
improve the condition number of the MQ coefficient matrix. 

Madych and Nelson [6] consider a general case of interpolants which includes a polynomial of 
degrees less than some fixed integer m given by 

N 

f(x) = ~ a/g(x--  xj) + ~ k,x', (6) 
.=1 bl<m 

where a/and k, must satisfy 

N 

ajg(x~- xj) + ~ k~x~ =f (x i )  -- Fi, i = {1, 2 . . . . .  U}, (7a) 
J=, L~l<m 

N 

E a/xy=0, I l<m. (7b) 
) = l  

In this paper, we use MQ as spatial approximate rather than the standard local polynomial 
approximation. We show that MQ greatly reduces the spatial truncation error eliminating the 
restrictions of uniform gridding, numerical diffusion and signal dispersion. We show MQ is an 
excellent approximation for fixed nodal Eulerian calculations, variable spaced moving nodal 
problems, and two-dimensional scattered data problems. We will show MQ works excellently on 
the parabolic, hyperbolic and the elliptic Poisson's equation. Not only are the MQ results more 
accurate than the finite difference results, but the MQ is computationally more efficient since far 
fewer nodal values are required to obtain highly accurate results. 

2. APPLICATION OF MQ TO PARTIAL DIFFERENTIAL EQUATIONS 

Z 1. The linear advection-diffusion problem 

The literature, see Adams [8], contains may schemes to solve the linear advection-diffusion 
equation with various degrees of success. We present an implicit time marching scheme on the 
Eulerian frame using MQ for the spatial approximations. We show that adding numerical diffusion 
for an MQ representation is not necessary. Further, our MQ scheme is quite accurate to cell Peclet 
or Reynold's numbers for 0.5-10.0. We compare our scheme with a finite difference (FD) scheme 
and find MQ is superior. 

The following moving front problem which is taken from Adams [8] has an analytic solution. 
We solve the following advection-diffusion equation 

Of/Ot + u ~f/ax - D 02f/~x2 = 0, (8) 

with initial and boundary conditions 

f ( x ,  0) = 0, for 0 ~< x < ~ ,  (ga) 

f(0, t ) = l ,  for t > 0 ,  (9b) 

f (L ,  t) = 0, for t > 0, L--* or, (9c) 

where x and t are the space, and time coordinates, u is a constant input velocity and D is the 
diffusion coefficient. 

The exact solution is given for two cases: D > 0 and D = 0. For D > 0, we have 

f (x ,  t) = 0.5[erfc(w 1) + exp(ux/D)erfc(w2)], (10a) 

where 

w 1 = (x - ut)/2x/f f t ,  

w2 --- (x + ut) /2x/~t ,  

and erfc is the complementary error function. 

(lOb) 

(10c) 
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For D = 0, we have 

f =  1, for x < ur  (1 la) 

= 0, otherwise. ( l ib)  

The advective-diffusion equation can be written compactly for either the FD or MQ approximation 
as  

Of/Ot = Wf,  (12) 

where 

W = I ( D  O2/Ox 2 - u O/Ox), 

and where I is the identity operator. 
Using the standard implicit approximation to equation (12) gives 

Oc] +' - f ] )  = 0 A t W f ]  +' + At(1 - O ) W f ; ,  

where 

and 

We collect like terms to obtain 

where 

and 

f] =f(xfi t"), 
f]+' =f(xj; r+'), 

0 ~ 0 ~ 1 .  

I-I +f]  +' = I-I_f] ,  

H+ = I -- AtOW, 

H_ = I + At(1 - O ) W .  

The advanced time solution is given by 

f ]+ '  = e f ]  = H+'  H _ f ] ,  

subject to the boundary conditions, 

(13) 

(14) 

(15a) 

(15b) 

(16) 

(16a) 

(16b) 

(17) 

f(0, t ) =  1, 

f ( L ,  t)  = O. 

approximation to the solution of the advection-diffusion Consider first the finite difference 
equation. The spatial coordinate, x, is discretized uniformly 

xj = 6 x ( j  - 1), for 1 ~<j ~< N. (18) 

We use a central difference approximation for the diffusion term and upwind differencing for the 
convective term to give 

Wfj = (n /Ax2) f j+ ,  - ( 2 D / A x  2 + u / A x ) f j +  (u /Ax ) f j _ ,  for 1 < j  < N, (19) 

and for the boundaries, 

Wf~ = Wfu = 0. (20) 

The matrix representation of the operators H+ and H_ are: 

H + f ]  +' = ( I  - A t O W ) f ]  +' , (21a) 

H f ]  = ( I  + At(1 -- O ) W ) f ] ,  (21b) 
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where H _ f j  is a column vector given in terms of the known values of f a t  time t". f ,+t  is found 
by solving a triadiagonal system of linear equations. 

Because the inverse of a tridiagonal matrix is generally full, we find that there are fewer 
operations involved by solving for the unknowns using the tridiagonal algorithm which typically 
requires 8N operations. Consider next the MQ representation and solution of the advection- 
diffusion equation. 

Following Madych and Nelson [7], we expand any continuous function, f, in terms of MQ basis 
functions and appended polynomial. One can show that the following expansion with a linear 
polynomial and MQ expansion is given by 

N 

f ( x )  = al + a2x + ~ a j ¢ ( x  --  x j ) ,  (22) 
j=3  

where 

and 

~ ( x  - x j )  = g ( x  - x j )  - [(x2 - x j ) g ( x  - x I ) + (x j  - x l  ) g ( x  - x : ) ] / ( x  2 - x l  ), (23) 

g ( x  - xj) = [(x --  x j )  2 + r~. ] '/2. (24) 

The set of linear equations transforming the expansion coefficient {a~} to the set of discretized 
values off ,  {f}, 1 ~< i ~< N is given by 

N 

f = ~ Goaj ,  (25) 
j= l  

where the ith row of the coefficient matrix is given by 

Gi.t = 1, (26) 

Gi.2 = x i ,  (27) 

G u = g(x~ - x j ) ,  for 3 ~<j ~< N. (28) 

Since G is non-singular for distinct points, see Micchelli [6], then 

a = G - i f .  (29 )  

To construct the solution of the advection-diffusion equation, we obtain the first and second partial 
derivatives o f f  with respect to x: 

N 

(Of/c3x),  = as + ~ {O¢o/Oxlaj ,  (30) 
j=3  

N 

(02 f /dx2 ) ,  = E {d2gu/dx2]aJ,  (31) 
n=3 

where 

and 

C3~q/Ox = OgUOx --  [(x2 --  x i )  Ogit/Ox + (Xj - -  x l  ) Og,20x]/(x2 --  x l  ), 

O2gO/Ox 2 = 02go/O2x --  [(x2 --  x j )  c32git/c3x 2 + ( x j -  x l  ) c32g,~/O2x]/(x2 --  x j  ), 

ag i j / ax  = (xi  - x j )  . [(xi - xj) 2 + r]]-'/~, 

O2go/ax  2 = [ 1 -  (x/ - -  x j ) 2 / [ ( x i - -  x j )2  2r r2]] " [(xi  - x j )2  3L I j ]2 -1/2 .  

Using the operator notation for the ith value off ,  f ,  
N 

W f  = ( D  02 /dx2  - u a / d x ) f  = ~ ,  w,yaj, 
j=l 

(32) 

(33) 

(34) 

(35) 

(36) 



MQ: a scattered data approximation--II 151 

where 

w~l = 0, (36a) 

w,: = - u, (36b) 

w ~ j = \  ~ - u  , for 3~<j~<N. (36c) 

In the numerical examples to be presented, we solve the advection-diffusion equations in the 
Eulerian frame with the spatial nodes fixed for all time. As with finite element approximations, we 
assume that the spatial basis functions are fixed, and that the expansion coefficients vary in time, 
i.e. 

aj = aj(t) .  (37) 

With this approximation, the advection-diffusion equation is written as 

Of/~3t = Wf ,  or equivalently 

G d a / d t  = wa. (38) 

We choose to solve equation (38) implicitly using the following approximation 

da /dt  = (a "+ l _ a") /At ,  (39) 

and 

to obtain 

Writing 

we have 

provided 

Recalling 

we obtain 

where 

wa = Owa "+t + (1 - O)wa", 

(G - A tOw)a  "+~ = [G + At(l - O)w]a". (40) 

a "+l = H ~ I H _ a  ", (41) 

H+ is non-singular. 

a = G - ~ (42) 

f " + '  = P f " ,  (43) 

P = G H  T- t H_ G - l, (44) 

for all interior nodes 1 < j  < N. However, the advection-diffusion equation has the boundary 
conditions 

f(0,  t) = 1, (45) 

f ( L ,  t )  = 0, for t > 0. (46) 

H+ = G - AtOw, (40a) 

H_ = G + At(l - O)w, (40b) 
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Table 1. Variation of diffusion coefficient, cell 
number and effective diffusion coefficient 

D Pe Dcf r 

0.1 0.5 0.125 
0.01 5.0 0.035 
0.001 50.0 0.026 

Peclet 

These boundary conditions are readily implemented by expanding the matrix P to have such 
boundary conditions by requiring 

Pl:  = 1, (47) 

Pi.j = 0, for 2 ~<j ~< N, (48) 

and 

PN,i = 0, for 1 ~< j < N, (49) 

PN,N = 1. (50) 

Note that we may readily impose boundary conditions on the partial derivatives with respect 
to x at either x = 0 or x = L by using the partial derivatives of  the basis functions. 

As in previous examples in Ref. [1], we used domain decomposition to reduce the full matrix 
into a set of seven overlapping segments, each containing nine nodal values. Thus each segment 
is a full block matrix with 81 elements. There are 567 elements over all segments. The solution from 
the right and left are blended using the method of  weighted averages. 

We performed a series of  calculations using both MQ and FD schemes in which the following 
parameters were held constant: u = 1.0, Ax = 0.05, N = 51, At = 0.002, tfinat = 1.000. We varied 
only the diffusion coefficients, D: 0.1, 0.01, 0 and 0.001. We can show that for an upwind FD 
scheme, the effective diffusion coefficient is given by 

where 

I De~ = D(I + 5Pecell), (51) 

Peeeu = u A x  / D.  

Table 1 shows variation of  diffusion coefficient, cell Peclet number, and effective FD diffusion 
coefficient. 

Since the cell Peclet number varies linearly with grid size, Ax should be 0.002 rather than 0.05 
for the case D = 0.001. Figures 1-3 show the FD solutions at time, t = 1.0, for D = 0.1, 0.01 and 
0.001 given by the long dashed lines. The exact solution is given by solid lines. The plots show a 
clear need for grid refinement as the diffusion coefficient is reduced. For  both the MQ and FD 
schemes, we used an implicit time scheme with 0 = 0.5. 

1.0, ~ 1.0 

0.8 

0.6 

~ o . 4  ! 

0.2 ~ . ~  

I I I I " ~ " ~ b  - ~ - - -  
0 0.4 0.8 1.2 1.6 2.0 2.4 

X 

Fig. 1. FD solution of the linear advection-diffusion equa- 
tion using upwinding run  to time = 1.0, Ax = 0.05, u = 1.0, 

D =0 .1  and P e r 0 . 5 .  
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Fig. 2. F D  solution o f  the linear advection-diffusion equa- 
t ion using upwinding run to time = 1.0, Ax = 0.05, u = 1.0, 

D = 0.01 and Pe = 5.0. 
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Fig. 4. M Q  so lu t ion  of  the l inear  advect ion-di f fus ion  
equa t ion  run  to t ime = ! .0 Ax = 0.05, u = 1.0, D = 0.1 and  

Pe = 0.5. 

Figures 4-6 show the exact solutions which are indicated by the solid line and the MQ solutions 
which are indicated by the short dashed line. The MQ solutions were run for D = 0.1 0.01 and 
0.001. The results for MQ at D = 0.1 and 0.01 are excellent whereas the results for D = 0.001 show 
good agreement at the sharp front, but not at the end points where rounding has occurred. 

Figure 7 shows the results for the finite difference solution for D = 0.001 run with a pure central 
difference algorithm. Note the ringing behind the front. Figure 8 shows the results run with 55% 
central differencing and 45% upwinding for the D = 0.01 and Ax = 0.05 problem. Note the 
dramatic reduction of the frontal spreading. Figure 9 shows the results for the D = 0.001 using 
FDs, 55% central differencing and 45% upwind differencing executed for a grid spacing of 
Ax = 0.005 for a total of 510 points. 

The FD result for the D = 0.001 case using 510 points has comparable accuracy to the MQ result 
run with 51 points. At each time step, the MQ solution requires 567 operations. The number of 
operations using Thomas's algorithm for tridiagonal matrices requires about 8N operations or 4080 
operations. In this case, MQ is about seven times more efficient. Figure 8 shows, however, that 
FD on a coarse grid is more efficient than MQ provided a stable balance between central and 
upwind differencing can be found for the FD scheme. 

In this set of advection-diffusion problems, we used, in both the MQ and FD spatial schemes, 
the identical second order accurate Crank-Nicholson time integration scheme. In the FD schemes, 
a weighted average of upwind and central differencing was used since some amount of upwinding 
is required to stabilize the advection term. Furthermore, FD results are reasonably accurate for 
cell Peclet numbers ~< 5.0. On the other hand, MQ does not require upwinding and is accurate for 
all cell Peclet numbers ~< 50.0. Our operation count shows that FD is more efficient for low cell 
Peclet numbers than MQ for a given mesh, but MQ is more accurate and efficient for larger cell 
Peclet numbers. Furthermore, we perturbed in input boundary condition at x = 0.0 and changed 
the boundary value from 1.0 to 1.0001 and ran both the FD and MQ schemes for the cell Peclet 
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Fig. 5. M Q  so lut ion  of  the l inear  advect ion-di f fus ion  
equat ion  run to  t ime = 1.0 Ax = 0.05, u = 1.0, D = 0.01 and 

P c =  5.0. 
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Fig. 6. M Q  solut ion of  the l inear  advect ion-di f fus ion  
equa t ion  run  to  t ime  -- 1.0 Ax = 0.05, u = 1.0, D = 0.001 

and Pe = 50.0. 

CAMWA 19-8/9---K 



154 E . J .  KANSA 

/ \  
~ .o - .,. / "~.\ j l  

0 . 8 -  

.~_ 
~ 0 . 6 -  

~ o.4- 
o 
U 

0 . 2 -  

I 
0 0.4 

\ 

I ~ \1"~  _ 
0.8 1.2 

X 

1 I 
1.6 2.0 2.4 

Fig. 7. F D  solution of the linear advection-diffusion equa- 
tion using central differencing run to time --- 1.0 A x  = 0 .05 ,  

u = 1.0, D = 0.001 a n d  P e  = 50.0.  
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Fig. 8. F D  solution of the linear advection-diffusion equa- 
tion using 55% central and 45% upwind differencing to 

time = 1.0, Ax = 0.05, u = 1.0, D -- 0.01 and Pe = 5.0. 

number of  5.0. No  numerical instabilities were seen for either case and the solutions are graphically 
indistinguishable from Figs 2 and 5. 

A natural question to raise is the behavior of  MQ as the diffusion coefficient tends toward zero, 
giving rise to a front which tends toward a step-function. We have observed that the flat regions 
before and after the shock are very noisy using MQ. These fiat regions require very large r 2 
parameter base functions which in turn, give rise to very ill-conditioned MQ coefficient matrices. 
Consequently, the flat regions are very noisy. We recommend that regions which behave as 
step-functions be approximated by step-functions, and moving node schemes be used, see Ref. [9]. 

2.2. Dynamic  one-dimensional  yon Neumann blast wave 

The problem to be solved is a one-dimensional spherical symmetry problem of von Neumann 
[10]. In a sphere of  radius one, a gas is suddenly heated and a shock is formed. Immediately ahead 
of  the shock u = p = 0 and the gas density is one. The pressure behind the shock is 100 and its 
density is 4 for a T = 5/3 ideal gas. Because of  spherical divergence, the gas velocity and pressure 
behind the shock eventually decay, but the density remains at 4. The exact time dependent solutions 
for the 7 = 5/3 gas are listed in Ref. [11]. 

From the primitive dependent variables, one can construct the momentum and total energy 
densities given by 

m = pu, (52) 

E =P/ (7  - 1) + 1/2pu 2. (53) 

In spherical coordinates, the conservation equations are 

~p/~t + dm/dr + (2/r)m = O, (54) 
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Fig. 9. F D  solution of  the linear advection-diffusion equation using 55% central and 45% upwinding 
differencing run to time = 1.0, u -- 1.0, D ffi 0.001 and Pe = 5.0. Here the grid was refined to Ax = 0.005. 
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dm/dt  + Op/dr + d(m2/p)/dr + (2/r)m2/p = 0, (55) 

dE~at + d (u [E + p])/dr + (2/r)u [E + p] = 0. (56) 

At the origin, the momentum profile is asymmetric at r = 0, while p and E are symmetric. The 
boundary conditions at r = 0 are m = (dp/dr)  = (BE~dr) = 0. To avoid the singularity at the origin, 
L'H6pital 's rule is invoked for the (2/r) terms. 

Equations (54)-(56) may be written compactly as: 

dU/dt  + V ' F  = 0, (57) 

where U = Lo, m, E] and F is the vector of the corresponding fluxes. We have two sources of 
truncation errors; one from the spatial differencing, and the other from the time integration scheme. 
In this exercise, we wish to minimize spatial truncation errors which propagate along charac- 
teristics. This model problem was chosen because we can compare the exact solution of three 
coupled non-linear equations with the numerical solutions, and it is typical of a fluid dynamics 
problem involving coupled, non-linear partial differential equations. 

In order to minimize the time truncation errors, we choose a moving node scheme so that 
equation (57) becomes 

dU/dt  + V .  F - v .  V U  =0.  (58) 

We track the shock as in Ref. [11], and in the interior, we move the nodes. The nodal velocity, 
v, is chosen to transform equation (58) into a nearly stationary set of conservation equations in 
the least squares sense, [11]. In addition, a fourth order Runge-Kutta  (RK) scheme is used to time 
integrate equation (58) in the following manner: 

U"k +~/' = U"k + (At/4)G"k, (59a) 

U~+,/3 = U"k + (At/3)G"k + i/4, (59b) 

~At/2~Gn+ i/3 (59c) U"k +j/2 = U"~ + ~ i t k , 

U"k +j = U"~ + AtG"k +l/z, (59d) 

where k denotes the node number, n + j ,  j = {0, 1/4, 1/3, 1,/2} denotes the time step. 

GZ +k = v~ +j" VU~ +j - V" F~ +j, (60) 

and 

At = 0.9. (Ar)min/(]u[ + C)max (61) 

is the explicit CFL time step, and c is the sound speed. 
The object of this exerise is only vary the method by which derivatives are approximated. Using 

MQ to construct partial derivatives, a total of 35 points were used in the domain. Domain 
decomposition and blending was used to simplify the problem more. Also, three (FD) calculations 
of 50, 500 and 5000 points were used having second order spatial accuracy. Table 2 shows the initial 
gradients using the MQ and FD schemes. Table 3 gives the solution after marching in time to 
t/to = 1.1523. 

From Tables 2 and 3, we see that the MQ results are excellent approximations to the exact 
solution whereas the FD scheme converges rather slowly. To determine whether the extra effort 
of using MQ for the spatial scheme is warranted in the von Neumann problem, let us estimate the 
total operations required assuming all simple arithmetic operations are comparable. 

First, let us consider the operations count for the 35 point, MQ--moving node---fourth order 
RK scheme. Using domain decomposition, we have two rank 18 matices to be inverted at the 
beginning of the RK cycle for a total of 10,710 operations. An estimate of 510 operations are 
required to form the basis vectors and corresponding derivatives. At each RK subcycle, we require 
7560 operations to find the expansion coefficients, and 816 operations to form the gradients and 
flux divergences. An additional 455 operations are required to form the nodal velocities and 105 
operations are required to obtain an estimate of the RK dependent variable. Considering the four 
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Table 2. Initial derivative at t = t o for the yon Neumann blast wave problem 

Method r Op /Or Om /Or OE /Or 

Exact 0.053666 0.11713 0.030429 
MQ--35 pts 0.053667 0.11713 0.030421 
FD---50pts 0.2577 0.040696 0.08231 0.19831 
FD--500pts 0.052224 0. l 1310 0.29147 
FD---5000pts 0.053519 0.11823 0.30289 
Exact 0.580824 2.49562 12.6258 
MQ--35pts 0.580824 2.49562 12.6258 
FD---50pts 0.50516 0.496276 2.03000 9.7852 
FD--500pts 0.572414 2.44943 12.3448 
FD--5000pts 0.579979 2.49098 12.5976 
Exact 3,25215 21.8323 153.517 
MQ--35pts 3.25215 21.8323 153.517 
FD---50pts 0.75277 2.79231 18.0928 125.19 I 
FD---500pts 2.20719 21.4631 150,717 
FD--5000pts 3.25304 21.8315 153.511 
Exact 48.0000 484.974 3600.000 
MQ---35pts 48.0000 484.974 3599.999 
FD--50pts 1.00000 41.4423 412.826 3066.345 
FD--500pts 47.2719 476.913 3540.387 
FD--5000pts 47.9335 484.225 3594.457 

RK subcycles, we estimate 42,026 operations/time cycle and 70 operations to update the positions 
after one time cycle to give 

M Ncy~e = 42,096 operations/time cycle, (62) 

or 1202 operations/time cycle/node. 
Next, let us consider the operation count to one full time cycle using F D  scheme for the spatial 

derivative approximation. The weight factor for a three point local derivative approximation from 
a quadratic Lagrange polynomial is 15 operations/node. There are three gradients, three flux 
divergences per node, also requiring 36 operations/node. 13 operations/node are required for the 
local grid velocity, and three operations/node/dependent variables are required to update the 
dependent variables. 

The positions are updated at the end of  the RK cycle requiring two operations/node. The 
estimated operation count for the F D  scheme is 

FD Nc~cle = 249 operations/node/time cycle. NVD. (63) 

The total number of  complete time cycles to run to completion is 

Nti,,~ ~ycles = (te - to) At = (te - to)" (lul + C)max/(O.9Armin). (64) 

In this yon Neumann blast wave problem, each grid velocity is positive so that we may take the 
initial minimum velocity throughout the calculation. For the F D  example, Armin = 1/NFD, and for 
the MQ example, Attain = 0.045. 

Table 3. Comparison of numerical and exact solution at tit  o = 1.1523 

Method r p u p 

Exact 0.00599 1.9026 25.840 
MQ--35pts 0.00599 1.9028 25.841 
FD--50pts 0 .3164 0.00813 2.3141 28.374 
FD--500pts 0.00412 1.7178 23.019 
FD--5000pts 0.00517 1.8734 24.770 
Exact 0.17811 4.0579 27.207 
MQ---35pts 0.17811 4.0579 27.206 
FD--50pts 0 .6656 0.19409 4.1121 27.070 
FD--500pts 0.17827 4.0566 27.17 I 
FD--5000pts 0.18103 4.0611 27.248 
Exact 3.1492 7.6322 7 I. 176 
MQ--35pts 3.1492 7.6321 71.173 
FD--50pts 1.0365 3.8476 7.4644 66.588 
FD--500pts 3.1248 7.6436 71.468 
FD---5000pts 3.1417 7.5501 71.809 
Exact 4.0000 7.9540 84.355 
MQ--35pts 4.0000 7.9538 84.356 
FD--5Opts 1.0584 3.9244 8.0203 82.453 
FD--500pts 3.9291 8.0129 82.711 
FD---5000pts 3.9315 8,0140 82.878 
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The total operations count for the MQ scheme is: 

N~t ° = 42,096. (t F - -  to)" (lul + C)m,x/(0.9" 0.045). (65) 

For the FD scheme, we have 

NtFot o = 249-N~D ( tF-  to)" (lU l+ C)max/0.9. (66) 

Taking the ratios of equations (65) and (66) gives 

NMO/~FD 1.645, 0.01645 and 0.0001645. (67) tot I'" tot 

for NFD = 50,500 and 5000, respectively. The operations count of this 35 point MQ scheme is equal 
to a 64 point FD scheme. 

There are many variations of familiar FD schemes. Local mesh refinement may drastically reduce 
the number of FD nodes required, but we must realize low order FD schemes still are slowly 
convergent. Just how the operations counts compare between MQ and FD schemes in the two and 
three dimensions, with and without adaptive mesh refinement, etc. requires further research. 

2.3. The solution of  a two-dimensional elliptic Poisson's equation 
In this section, we will examine the solution technique used to solve the elliptic Poisson's equation 

subject to either Dirichlet or Neumann boundary conditions. 
The sample problem to be solved is the following elliptic Poisson's equation 

02f/Ox 2 + t~2/Oy2 = (,~2 + / . t 2 ) e x p ( 2 x  + / ~ y ) ,  (68) 

in the interior. On the boundary, we have either Dirichlet conditions 

f = exp(2x +/~y), (69) 

or Neumann boundary conditions 

o r  

8f/Ox = 2 exp(2x +/~y) (70a) 

and 

where 

~ ( x  - x j )  = g ( x  - x j )  - g ( x  - x ~ )  

2 1/2 g(x -- xj) = [(x - -  x / )  2 + (y _yj)2 + ry] . (71c) 

The partial derivatives of the basis functions have been presented previously, see equations (37) 
and (38). We partitioned the points Xi into three classes: (1) those points belonging to the interior 
set, I; (2) those boundary points who are Dirichlet points, D and (3) those boundary points who 
are Neumann, N, points. 

In order to solve for the N expansion coefficients, a, we construct an appropriate MQ coefficient 
matrix, S, and the corresponding column vectors, b. The coefficient matrix is constructed in the 
following manner 

Si., =0 ,  

S,.j = (O2g/c~x 2 + O2g/Oy2),.y, for 2 ~<j ~< N, (72) 

bi = (22 +/~ 2)exp(2x~ + #y~), 

(71b) 

c3f/Oy =/~ exp(2x +/~y). (70b) 

In the MQ example, we used 30 nodal values, 12 scattered points in the interior and 18 along the 
boundary. The domain was a unit square on [0, 1] x [0, 1]. The location of the data points will be 
presented later. 

The expansion used is the Madych-Nelson expansion with an appended constant, i.e. 
N 

f(x) = a, + ~ ¢(x - xj)aj, (71a) 
)=2 
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Si, I ~ 1~ 

S~j = ¢(x~ - x:),  for  2 ~<j ~< N, 

b i = exp(2xi + PYi), 

Si, I ~ O, 

S,,j = (OglOx) U, 

(&,lOY)o,  

b~ = 2 exp(Axi +/ayi) ,  

(73) 

(74) 

/~ exp(2xi + pyi) if i e N 

The MQ expansion coefficients are found as the solution of  

Sa = b, (75) 

where 

a = S-~b, assuming S is invertible. (76) 

The values of  the function, f ,  at x~ are given by equations (76) and (71). 
Our results for Poisson's equations, equation (68) are presented in Tables 4 and 5 run with 

2 = 2.0 and p = 3.0. Table 4 was run with all boundaries being Dirichlet boundaries. Table 5 
was with Dirichlet boundaries at y = 0.0 and y = 1.0 and Neumann boundaries at x = 0.0 and 
x =  1.0. 

Table 4. Scattered data solution of Poisson's equation over a 
unit square with all Dirichlet boundary conditions 

Table 5. Scattered data solution of Poisson's equation over 
a unit square using both Neumann and Dirichlet boundary 

conditions 

X Y M Q - - F  EXACT--F  X Y M Q - - F  EXACT--F  

0.0 0.0 1.000 1.000 0.0 0.0 1.000 1.000 
0.0 0.25 2.117 2.117 0.0 0.25 2.572 2.117 
0.0 0.50 4.482 4.482 0.0 0.50 4.906 4.482 
0.0 0.75 9.448 9.488 0.0 0.75 9.949 9.488 
0.0 1.0 20.09 20.09 0.0 1.0 20.09 20.09 
I.O 0.0 7.389 7.389 1.0 O. 7.389 7.389 
1.0 0.25 15.64 15.64 1.0 0.25 15.64 15.64 
1.0 0.50 33.12 33.12 1.0 0.50 33.12 33.12 
1.0 0.75 70.11 70.22 1.0 0.75 70.11 70.22 
1.0 1.0 148.4 148.4 1.0 1.0 148.4 148.4 
0.20 0.0 1.492 1.492 0.20 0.0 1.492 1.492 
0.20 1.0 29.96 29.96 0.20 1.0 29.96 29.96 
0.40 0.0 2.226 2.226 0.40 0.0 2.226 2.226 
0.40 1.0 44.70 44.70 0.40 1.0 44.70 44.70 
0.60 0.0 3.320 3.320 0.60 0.0 3.320 3.320 
0.60 1.0 66.69 66.69 0.60 1.0 66.69 66.69 
0.80 0.0 4.953 4.593 0.80 0.0 4.953 4.593 
0.80 1.0 99.48 99.48 0.80 1.0 99.48 99.48 
0.05 0.05 1.299 1.284 0.05 0.05 1.408 1.284 
O. 13 0.26 2.794 2.829 O. 13 0.26 3.245 2.829 
0.46 0.16 3.998 4.055 0.46 0.16 5.040 4.055 
0.31 0.42 6.229 6.554 0.31 0.42 7.023 6.554 
0.07 0.58 6.516 6.554 0.07 0.58 6.783 6.554 
0.12 0.73 11.28 11.36 0.12 0.73 11.39 11.36 
0.42 0.91 35.45 35.52 0.42 0.91 33.34 35.52 
0.51 0.57 14.61 15.33 0.51 0.57 15.94 15.94 
0.68 0.82 45.48 45.60 0.68 0.82 47.38 45.60 
0.84 0.37 15.14 16.28 0.84 0.37 17.89 16.28 
0.97 0.68 55.39 53.52 0.97 0.68 54.94 53.52 
O. 17 0.93 22.83 22.87 O. 17 0,93 22.93 22.87 

Max norm error = 1.877; L-2 norm error = 0.074. Max norm error = 1.772; L-2 norm error = 0.106. 
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The results presented in Tables 4 and 5 are quite good, considering that over the unit square 
the exact function varies from 1 to 148. In addition, the interior points were scattered. Because 
of  the global, rather than local, connectivity, we are guaranteed that the MQ coefficient matrix is 
always invertible for distinct points, see Ref. [6]. 

In order to estimate the computational effort required to achieve the same accuracy as our MQ 
results, we experimented with the grid size to an/2 norm error of  2.0 in the estimates of the first 
and second partial derivatives throughout the domain [0, 1] x [0, 1]. We found that a minimum 
uniform grid spacing Ax = Ay = 0.03 or a 33 x 33 grid was required, whereas only 30 points were 
used for the MQ solution. 

In the next set of examples, we used another scattered data arrangement with 10 boundary points 
and 20 interior points. We ran two cases, 

V~f = 13 exp( - 2x + 3y) (2 = - 2  and g = 3.0) 

and 

VZf = 32.16 exp(4.01x + 4.01y) (2 --/~ = 4.01). 

These two cases are presented in Tables 6 and 7. The errors change in magnitude with the steepness 
of the function. In the first case, f varies from 0.25 to 20 in [0, 1] x [0, 1] with a max error of 0.44. 
In the second case, f varies from 1.0 to 3041 in [0, 1] x [0, 1]. This function is too steep to be 
represented by only 30 data points, and much of the structure is missing. To test this hypothesis, 
we excluded the last two interior points given in Table 12. We found for a total of  28 points, this 
problem gives an/2 error of 14.9 and a max error of 255. With 29 points, the 12 error was 9.82 
and the max error was 122. Franke [2] also observed the goodness-of-fit improves as more sample 
points were included. 

Braess [12, 13] and Braess and Hackbusch [14], used multigrid methods for solving Poisson's 
equation in two dimensions. They experienced problems with convergence on reentrant corner 
which may produce pollution effects on the solution, and recommended extra relaxation steps to 
reduce the errors. 

Table 6. Scattered data solution of Poisson's equation over a 
unit square V Z F = 1 3 . 3 e x p ( - 2 x + 3 y )  using all Dirichlet 

boundary conditions 

Table 7. Scattered data solution of Poisson's equation over a 
unit square, V2F ~ 32.16" exp(4.01x + 4.01y) using all Dirichlet 

boundary conditions 

X Y MQ---F EXACT--F  X Y MQ---F EXACT--F  

0.0 0.0 1.000 1.000 0.0 0.0 1.000 1.000 
0.0 0.22 1.935 1.935 0.0 0.22 2.416 2.426 
0.0 0.50 4.482 4.482 0.0 0.50 7.526 7.426 
0.0 1.0 20.09 20,09 0.0 1.0 55.15 55.15 
0.50 0.0 0.3679 0.3679 0.50 0.0 7.426 7.426 
0.50 1.0 7.389 7.389 0.50 1.0 409.5 409.5 
1.0 0.0 0.1353 0.1353 1.0 0.0 55.15 55.15 
1.0 l.O 2,718 2.718 1.0 0.50 409.5 409.5 
1.0 0.50 0.6065 0.6065 1.0 0.70 913.2 913.2 
1.0 0.70 1.105 1.105 1.0 1.0 3041.0 3041.0 
O. 13 0.26 1.627 1.682 O. 13 0.26 9.774 4.777 
0.31 0.42 1.720 1.896 0.31 0.42 46.90 18.68 
0.77 0.58 1,195 1.221 0.77 0.58 225.1 224.4 
0.22 0.73 5.464 5.755 0.22 0.73 48.83 45.13 
0.93 0.18 0.2598 0,2671 0.93 0.18 108.7 85.72 
0.86 0.78 1.997 1.859 0.86 0.78 672.0 718.0 
0.42 0.91 6.490 6.619 0.42 0.91 191.2 207.1 
0.51 1.57 1,910 1.994 0.51 1.57 109.8 76.01 
0.68 0.82 3.024 3,004 0.68 0.82 348.6 409.5 
0.72 0.62 1.514 1.522 0.72 0.62 216.5 215.6 
0.64 0.33 0.7345 0.7483 0.64 0.33 78.37 48.90 
0.84 0.37 0.5701 0.5655 0.94 0.37 149.3 128.0 
0.97 0.68 l.127 1.105 0.97 0.68 722.2 747.3 
0.27 0.93 9,040 9.488 0.27 0.93 125.9 123.0 
0.53 0. I l 0.4778 0.4819 0,53 0.11 26.72 13.02 
0.15 0.21 1.338 1.391 0.13 0.21 5.752 3.909 
0.69 0.95 4.385 4.349 0.69 0.95 650.6 718.0 
0.48 0.44 1.225 1.433 0.48 0.44 52.06 40.01 
0.21 0.57 3.462 3.633 0.19 0.57 31.06 21.06 
0.59 0.94 5.272 5,155 0.59 0.94 403.6 461.9 

Max norm error = 0.4480; L-2 norm error = 0.0225. Max error = 67.40; L-2 error = 4.585. 
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Regarding the MQ solution of the two-dimensional Poisson's equation over scattered data, we 
find that Franke's [2] observations regarding the goodness of the approximation and the number 
of data ponts considered is relevant. Also to be taken into account is whether too many distances 
between points are similar which leads to poor coefficient matrix conditioning. The most effective 
strategy with MQ still remains to be developed since MQ is a fairly new tool in computational 
fluid-dynamics. 

3. SUMMARY 

Multiquadrics (MQ) has been used as a spatial approximation scheme for parabolic, hyperbolic 
and the elliptic partial differential equations (PDEs). When comparing the MQ results with the 
exact solutions, the agreement is very good. 

We have shown with the parabolic linear advection-diffusion equation that MQ can be cast into 
an implicit time marching scheme. Furthermore, no special stabilizing treatment of the advective 
term is required with MQ as compared to standard finite difference (FD) approximations. Because 
MQ is a very high order scheme, we can obtain excellent results using a coarser distribution of 
data points than with an FD approximation. We have shown that as the FD distribution becomes 
increasingly refined, that the MQ scheme on the coarser distribution is more efficient and more 
accurate than the FD scheme. 

We have demonstrated MQ is an excellent spatial approximation scheme for non-linear systems 
of hyperbolic PDEs. Using an explicit time marching scheme combined with moving nodes, we have 
shown MQ is not only far more efficient and accurate than FD. FD converges slowly to the exact 
solution. Even though the operational/node for the FD scheme is relatively small, the FD scheme 
becomes inefficient compared to the MQ scheme since many more FD nodes are required to achieve 
the same accuracy as with an MQ calculation. Note that grid staggering is unnecessary using MQ, 
simplifying our bookkeeping. 

We have shown MQ is an excellent approximation scheme for solving a two-dimensional elliptic 
Poisson's equation especially with the interior nodes being scattered. When MQ is used in a 
scattered data scheme, we need not be concerned with long skinny triangles since the connectivity 
is shared with all points considered. We have a straightforward procedure for calculating either 
Neumann or Dirichlet boundary conditions by merely changing the rows of the appropriate MQ 
coefficient matrix. 

Micchelli [6] and Madych and Nelson [7] have provided a theoretical justification for the 
performance of MQ. Micchelli showed that MQ belongs to a class of conditionally positive definite 
functions, and that the MQ coefficient matrix is invertible for distinct points. Madych and Nelson 
have shown for all functions in the space of conditionally positive-definite functions, a semi-norm 
exists which is minimized by all such functions. 

Per se, MQ is a global approximation scheme which would be impractical for large scale fluid 
dynamics problems. However, we have shown that domain decomposition into many overlapping 
subdomains has been proven very effective and efficient. Over each subdomain, we deal with not 
only smaller coefficient matrices which could be partitioned to parallel processsors, but each 
coefficient matrix has a much better condition number thereby improving accuracy. By this process 
of subdomain decomposition and blending, MQ can be made more competitive than the 
corresponding simple slowly converging FD schemes. 

As shown in the previous paper [1], MQ is an excellent spatial approximation scheme in steep 
regions, but is rather poor in the flat regions. For this reason, we advocate a hybrid scheme in which 
MQ would be the spatial approximation scheme in rapidly varying regions and the monotonic cubic 
spline can be used elsewhere. Because MQ does very well in steep regions, we can minimize the 
operations count because excessive grid refinement is unnecessary as with the slowly converging 
low order FD schemes. If we use different approximation schemes for different regions such as done 
with ordinary differential equation solvers, we can optimize both accuracy and computational 
efficiency. 

The next phase of inquiry will be directed toward thoroughly understanding a suite of 
two-dimensional dynamic problems to gain more experience and understanding. MQ performs very 
well in steep regions where most low order polynomial schemes fail, but becomes noisy and 
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inefficient in shallow gradient regions. Therefore, we advocate a hybrid scheme in which either 
standard FD schemes or monotonic splines be used in shallow gradient regions, and MQ be used 
in steep regions. Furthermore, front tracking methods such as in Ref. [11] can be used for shocks, 
contact discontinuities and material interfaces. We believe that a more sophisticated approach 
would be to use spatial approximation schemes which are best suited for a particular situation. It 
appears that the brute force trend of relying on the number of processors, memory and arithmetic 
performance alone is not justified. 
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