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This paper proposes a statistical multiscale homogenization method to extract effective elastic properties
of cement paste on the basis of X-ray microtomography images. The procedure starts at the nanolevel of
the C-S-H matrix. Because the highest resolution of current X-ray microtomography is at micrometer
scale, C-S-H and CH remains unsegmented. The unresolved hydrated cement is homogenized by a
two-step analytical method based on Mori–Tanaka (M–T) scheme. A statistical numerical homogeniza-
tion method based on the Finite Element Method (FEM) was used to homogenize the elastic properties
of cement pastes. Mean elastic properties showed good agreement with experimental results. The pro-
posed multiscale method combines advanced analytical, numerical and experimental methods in a sys-
tematical way so that the inputs are phase material properties and X-ray microtomography images only.
The novelty of this method is in the avoidance of any subjective decision.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

To build a realistic homogenization model, a detailed investiga-
tion of microstructure is primarily required. In particular, we need
to specify the involved phases and their mechanical properties, dis-
tributions, sizes and shapes. In the case of cement paste, the micro-
structure developed by hydration is extremely complex and still
subject to numerous investigations. In the hydration reaction,
anhydrous cement grains react with water to produce hydrates,
and in the process increase the solid volume of the system. This
additional solid bridges the spaces between grains, leading to the
formation of a solid mass. In Portland cement paste, the hydration
reaction is dominated by the reaction of the tricalcium silicate
(C3S), which produces calcium hydroxide (CH) and calcium silicate
hydrate (C-S-H). The deposition of these phases in the microstruc-
ture is quite distinct. CH deposits dominantly in the pore space, but
is engulfed with processing C-S-H. The existence of two types of C-
S-H appears nowadays as a well-established fact in cement chem-
istry. Jennings (2000) and Tennis and Jennings (2000) classified
them as high-density and low density, whereas Richardson
(2000) preferred to call them inner and outer products. In this pa-
per, the high and low density C-S-H are denoted by C-S-HH and C-
S-HL, respectively. More recently, nanoscale CH crystals were
found in the C-S-H of low w/c ratio cement paste (Chen et al.,
2010). The Young’s moduli of C-S-HH and C-S-HL obtained by nan-
ll rights reserved.

: +61 02 49216946.
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oindentation showed independence of water/cement ratio, admix-
tures, etc. This suggests that the properties are intrinsic to all types
of cement-based materials (Constantinides and Ulm, 2004), mak-
ing it possible to estimate the elastic properties of various cement
pastes within a single framework.

The pore size of cement paste ranges from a few nanometres to
tens of micrometers and can be divided into intra-solid pores, gel
pores and capillary pores. Jennings (2000) and Tennis and Jennings
(2000) provided qualitative and quantitative evidence of an amor-
phous colloidal structure of the C-S-H, composed of basic building
blocks and an intra-globules porosity of 18%. This porosity is irre-
spective of the type of C-S-H. The difference between the two types
of C-S-H relates to the gel porosity of roughly 24% for C-S-HH, and
37% for C-S-HL (Jennings, 2000), due to the different packing den-
sity of the C-S-H solid of the two types of C-S-H. Capillary pores
correspond to the originally water filled spaces not filled by hydra-
tion products.

A few experimental techniques, such as X-ray microtomogra-
phy (Bentz et al., 2002) and focused ion beam nanotomography
(Holzer et al., 2006; Munch et al., 2006; Trtik et al., 2009, 2011)
have been attempted to finely resolve the 3-D pore/solid structure
of cement paste. The detailed distribution of phases, however, is of-
ten difficult to obtain because it involves a specification of the
phase that is present at each point in space (Jennings et al.,
2008). Research in this field is still underway.

Despite its complex microstructure, attempts to investigate the
mechanical properties of cement paste have never ceased, because
concrete is by far the most used material in construction engineer-
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Table 1
Cement 133.

Cement /C3 S /C2S /C3 A /C4AF

CCRL cement 133 (June 1999) 0.7018 0.1315 0.0827 0.0840
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ing. Young’s modulus (E) and Poisson’s ratio (m) are important
parameters used in structural design and the analyses of cement-
based materials. Experimental tests, analytical estimates and
numerical homogenizations are typical methods to obtain the elas-
tic properties of cement paste. Although experimental tests are
usually thought of as reliable methods, there are relatively fewer
tests (e.g., Boumiz et al., 1996; Sun et al., 2005) on cement paste
than other materials such as concrete, rock and soil.

Analytical estimates are based on micromechanics homogeniza-
tion theories. The M–T scheme (Mori and Tanaka, 1973), the self-
consistent (SC) scheme (Hill, 1965) and the interaction direct
derivative (IDD) scheme (Zheng and Du, 2001) are commonly used
for the homogenization of cementitious material. An efficient
micromechanical homogenization procedure, which starts at the
nanolevel of the C-S-H matrix, has been developed by Constanti-
nides and Ulm (2004). Estimated Young’s moduli for both sound
and leached ordinary Portland cement pastes with water/cement
mass ratio (w/c = 0.5) showed good agreement with experimental
results. Bernard et al. (2003) used the same two-scale description
of microstructure and the SC scheme to study early-age cement
pastes and predict the solid phase percolation during hydration
process and results consistent with experimental values were ob-
tained. The SC scheme with spheroids was used by Sanahuja
et al. (2007) to predict the elastic properties of hydrating cement
paste. It was assumed that anhydrous grains surrounded by a layer
of inner phase (C-S-HH) are embedded in an outer matrix (C-S-HL).
The Jennings–Tennis model (Jennings, 2000; Tennis and Jennings,
2000) was used to get the volume fractions of C-S-HH and C-S-HL.

The numerical homogenization needs a description of the
microstructure of material. Three types of methods are commonly
used to obtain the microstructure of cement paste. They are
numerical generations, numerical simulations and X-ray microto-
mography. The numerical generation approach has been adopted
by Stefan et al. (2010) and Bary et al. (2009). A burning algorithm
was used by Stefan et al. (2010) to model the setting phenomenon
of cement paste. A percolated cluster was obtained and the FEM
calculation approach was applied to predict the material mechan-
ical properties with time. Bary et al. (2009) compared the perfor-
mance of several effective medium approximation schemes
(M–T, SC, IDD) through their ability to estimate the mechanical
properties of cement paste. Several samples were obtained by
numerical generation and three dimensional FEM was used to
homogenize their elastic properties.

Garboczi et al. (2004) and Haecker et al. (2005) used the NIST
cement hydration model (Bentz, 1997) and a three dimensional
FEM to predict the elastic properties of Portland cement paste.
The required individual phase moduli were adopted from the liter-
ature. Experimental tests were also carried out and their compari-
son with the results obtained by elastic finite element calculations
showed a good agreement for degrees of hydration above 0.5. In-
stead of using numerical homogenization, Smilauer and Bittnar
(2006) presented a combination of the NIST cement hydration
model and the analytical homogenization approach.

The combination of recent advances in X-ray microtomography
together with numerical simulations based on the FEM have led to
a powerful new tool for estimating the properties of porous mate-
rials, particularly their elastic properties. Madadi et al. (2009) de-
scribes a wide range of potential applications of this technology
for estimating the elastic properties of porous materials (ideal
granular packing, sphere pack, sandstones, carbonates, bone sam-
ple and fracture sample). Arns et al. (2002) calculated the elastic
properties of a tomographic image of sandstone. The elastic prop-
erties of the digitized images under dry, water-saturated, and
oil-saturated conditions were considered. The obtained numerical
predictions were in excellent agreement with available experimen-
tal data. Fontainebleau sandstone was chosen because it is made
up of a single mineral (quartz) and does not contain clay. Also
the structure of the sandstone is quite simple as it only displays
intergranular porosity. Modeling the system as a simple two-phase
material may be expected to provide a good match to experimental
data. Such approaches have been applied in homogenizations of
cement paste in recent years. Wriggers and Hain (2007) and Hain
and Wriggers (2008) used three-dimensional X-ray microtomogra-
phy combined with FEM based numerical homogenization tech-
niques to study effective elastic properties of hardened cement
paste. Statistical tests, two- and three-dimensional computations
and a comparison with experimental data have been presented.
The two types of C-S-H were not considered. Krabbenhoft et al.
(2008) and Karim and Krabbenhoft (2010) considered the effective
diffusivities of cement paste on the basis of X-ray microtomogra-
phy images. A general computational homogenization framework
was developed and applied to a variety of cement pastes whose
microstructure has been digitized to a resolution of 0.953 lm3

(Bentz et al., 2002). However, at this resolution, important submi-
cron features are not resolved. Consequently, a simple rule that
incorporates microtomography data was proposed and shown to
yield satisfactory results (Karim and Krabbenhoft, 2010).

The NIST Visual Cement Data Set (Bentz et al., 2002) was ob-
tained at a resolution of 0.953 lm3. As mentioned previously, a de-
tailed phase segmentation cannot be done at such a resolution. For
example, it is impossible to distinguish the two types of calcium
silicate hydrate (C-S-H). In order to use the NIST Visual Cement
Data Set to predict elasticity properties, a multiscale statistical
method is proposed in this paper. The image of cement paste is
segmented into three phases: (1) pores larger than 0.953 lm3, (2)
hydrated cement, and (3) unhydrated cement. This segmentation
approach avoids any subjective decision as will be discussed later.
The unresolved hydrated cement that consists of C-S-HH, C-S-HL,
CH and pores smaller than 0.953 lm3, is homogenized by the
two-step homogenization scheme developed by Constantinides
and Ulm (2004). A statistical numerical homogenization method
based on the FEM was used to estimate the effective elastic prop-
erties of cement paste. Results obtained for degrees of hydration
above 0.4 showed good agreement with experimental data. The in-
puts for the method presented in this paper are phase material
properties and X-ray microtomography images only. This avoids
any subjective decision and differs from previous work.
2. Data segmentation

2.1. Materials and X-ray microtomography data

In the current study, the NIST Visible Cement Data Set was used.
Cement paste specimens were prepared from the Cement and Con-
crete Reference Laboratory (CCRL) cement 133, issued in June of
1999. Complete information on this cement can be found in the
NIST Cement Images database. The volume fractions of the four
chief minerals of cement 133 are listed in Table 1.

Cement pastes with water/cement mass ratios (w/c) between
0.3 and 0.45 were prepared and viewed after various hydration
times. After drill mixing in a plastic beaker, small parts of the paste
were ‘extruded’ into circular tube molds with an internal diameter
of 1 mm. Subsequently, the whole assembly was scanned at a res-
olution of 0.953 lm3, and reconstructed three-dimensional data
sets containing 10243 voxels (volume pixels) were obtained. From
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these data sets, smaller volumes consisting of 3003 voxels were ex-
tracted. These data form the basis of the homogenization con-
ducted in the current study. In order to illustrate the procedures
developed, in the following we will use a particular data set
(pt045_sld_7dv1c300), which describes the microstructure of a ce-
ment paste with an initial water/cement mass ratio of w/c = 0.45
and a hydration time of 137 h.
2.2. Segmentation

Standard X-ray microtomography images comprise grayscale
maps with values proportional to the linear attenuation coefficient
at each material point. Typically, the data is organized as a collec-
tion of cubic volume elements (voxels), each of which is assigned a
unique grayscale value. Next, the data are segmented into a num-
ber of distinct categories corresponding to distinct material phases.
In the current study, the segmentation is based on the frequency
distribution of the grayscale count (e.g., Bentz et al., 2002). This
distribution is shown in Fig. 1. From this plot, several distinct peaks
are evident. First, approximately 6.7% of the voxels have a gray-
scale value of T = 0. This corresponds to air and water filled pores
that are larger than 0.953 lm3 (/p>0:953 lm3 ¼ 0:067). Secondly,
two peaks, at grayscale values of T = 60 and T = 130 are visible.
These peaks are associated with hydrated and unhydrated cement,
respectively. It is not possible to further separate the hydrated ce-
ment into C-S-H, CH and pores smaller than 0.953 lm3 without any
subjective decision. It is thus proposed herein that the cement
paste is separated into three phases: pores larger than 0.953 lm3,
hydrated cement and unhydrated cement. A threshold of
Thu = 114, corresponding the lowest point in the valley between
the two peaks (see Fig. 1) is first chosen. The voxels that have gray-
scale values larger than Thuare treated as unhydrated cement. The
voxels that have grayscale values smaller than Thu, but larger than
zero, are treated as unhydrated cement. The hydrated cement con-
sists of C-S-HH, C-S-HL, CH and pores smaller than 0.953 lm3. An
example of a slice from the data set at this level of thresholding
is shown in Fig. 2. From the individual slices, the full three-dimen-
sional volume may be reconstructed. An example of a 3003 volume
is shown in Fig. 3.

The volume fractions of the three separated phases are esti-
mated by the classic Powers hydration model (Power, 1962).
Although it was introduced back in the 40s, the Powers hydration
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Fig. 1. Grayscale level frequency distribution.
model remains widely used because of its reliability and the ease of
implementation. This model includes the following predictions of
volume fractions of capillary pores and unhydrated cement paste
on the basis of the initial water/cement mass ratio and the current
degree of hydration:

/p ¼
w=c � 0:36a
w=c þ 0:32

/u ¼
0:32ð1� aÞ
w=c þ 0:32

/h þ /u þ /p ¼ 1

ð1Þ

where w/c is the water/cement mass ratio, a is the degree of hydra-
tion, /h, /u and /p are the volume fractions of the hydrated, unhy-
drated and (capillary) pore, respectively. First, /u is estimated by
dividing the number of voxels that have grayscale values larger than
Thu = 114 by the total number of voxels. This gives a value of
/u = 0.154, resulting in a = 0.63. Finally, this degree of hydration, to-
gether with the water/cement mass ratio of w/c = 0.45 gives a
porosity of /p = 0.290. This porosity is the total capillary porosity
consisting of pores larger or smaller than 0.953 lm3.

Seven data sets of cement pastes were selected to be homoge-
nized in this paper. They were selected because there is an obvious
valley (or Thu value) in their frequency distributions of the gray-
scale count. The homogenization of cement pastes without such
valleys is worth further investigations.

The water cement mass ratio (w/c), the volume fraction of pores
larger than 0.953 lm3 (/p>0:953 lm3 ), the grayscale value that sepa-
rates hydrated and unhydrated cement (Thu), the volume fraction
of unhydrated cement (/u), the degree of hydration (a) and the
capillary porosity (/p) of the seven selected data sets are summa-
rized in Table 2.

3. Two-step homogenization of hydrated cement

Although elastic properties of all the main phases present in ce-
ment paste are measurable by nanoindentation techniques and
many data may be found in the literature, it is not possible to
use them directly in the numerical homogenizations based on X-
ray microtomography images. This is because the resolution of
microtomography is 0.953 lm3,individual phases remain undistin-
guished. In the present study, the two-step homogenization proce-
dure developed by Constantinides and Ulm (2004) is adopted for
the homogenization of the unresolved hydrated cement. The first
step is applied to the C-S-H matrix consisting of two types of C-
S-H at a scale of nanometres. The volume fractions of the two types
of C-S-H are obtained based on Jennings–Tennis model. The second
step is applied to the hydrated cement, which consists of the
homogenized medium (C-S-H matrix) of step one, CH and pores
smaller than 0.953 lm3. The volume fractions of C-S-H and CH
are obtained by stoichiometric calculations. The M–T scheme is
used in both steps and individual phase properties are nanoinden-
tation results found in the literature.
3.1. Step I

At step I, the C-S-H matrix behaves as a heterogeneous material
with an inclusion-matrix type microstructure. The C-S-HL plays the
role of a matrix phase, surrounding the C-S-HH as inclusion. The
M–T scheme needs as input the volume fractions of two types of
C-S-H. Jennings (2000) and Tennis and Jennings (2000) proposed
a quantitative model of the distribution of C-S-HH and C-S-HL. An
estimate of the ratio of the mass of low density to the total mass
of C-S-H is given by (in dried conditions):

mLD ¼ 3:017aw=c � 1:347aþ 0:538 ð2Þ



Fig. 2. Micro-CT slices of the cement paste at a resolution of 0.953 lm3. Each slice consists of 300 � 300 � 1 voxels. The left panel shows the original grayscale data and the
right panel shows the result of thresholding into three phases: pores larger than 0.953 lm3 (dark), the hydrated cement (grey) and the unhydrated cement (white).

Fig. 3. Three-dimensional reconstruction of the cement paste: pores larger than 0.953 lm3 (top left), the unhydrated (top right), the hydrated (bottom left), and the combined
cement paste (bottom right). The combined volume consists of 3003 = 27, 000, 000 voxels, each of which is represented by an 8-node finite element.
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By using the mass densities in Table 3, the mass fraction mLD

can be directly converted into the volume fraction /LD:

/LD ¼
mLDqHD

qLD þmLDðqHD � qLDÞ
ð3Þ
The volume fractions of C-S-HL (/LD) of the seven selected data
sets are listed in Table 5. By using the M–T scheme and the prop-
erties of individual phases listed in Table 4, the mass densities and
elastic properties of C-S-H are obtained and listed in Table 5. Also
listed in Table 4 are the elastic properties of anhydrous to be used



Table 2
Seven data sets selected from the NIST Visible Cement Data Set.

Data set w/c /p>0:953 lm3 Thu /u a /p

1 pate03_1_52hv1c300 0.3 0.021 114 0.293 0.432 0.233
2 pt03_spr_2mmv1c300 0.3 0.0003 162 0.252 0.512 0.187
3 p35h40v1c300 0.35 0.082 117 0.261 0.462 0.283
4 cez16_sld_2mmv1c300 0.40 0.021 151 0.087 0.805 0.157
5 cez16_d_6dv1c300 0.40 0.042 112 0.138 0.696 0.222
6 pt045_sld_2mmv1c300 0.45 0.032 142 0.110 0.745 0.245
7 pt045_sld_7dv1c300 0.45 0.066 114 0.154 0.637 0.288

Table 3
Mass densities of C-S-HL and C-S-HH.

Phase q (kg/m3) References

C-S-HL 1700 Jennings et al. (2007) and Ulm et al. (2007)
C-S-HH 2000 Jennings et al. (2007) and Ulm et al. (2007)

Table 4
Elastic properties of phases.

Phase E
(GPa)

m References

C-S-HL 21.7 0.24 Constantinides and Ulm (2004)
C-S-HH 29.4 0.24 Constantinides and Ulm (2004)
CH 38 0.31 Bernard et al. (2003) and Constantinides and

Ulm (2004)
Anhydrous 135 0.3 Sanahuja et al. (2007) and Stefan et al. (2010)

Table 5
Homogenized properties of C-S-H matrix.

Data set /LD qC-S-H (kg/m3) EðM—TÞ
C-S-H (GPa) mðM—TÞ

C-S-H

1 0.385 1884.57 26.13 0.24
2 0.348 1895.71 26.43 0.24
3 0.443 1867.04 25.67 0.24
4 0.465 1860.42 25.50 0.24
5 0.481 1855.77 25.38 0.24
6 0.586 1824.25 24.59 0.24
7 0.585 1824.59 24.60 0.24

Table 6
Mass densities of phases.

Phase q (kg/m3) References

C3S 3150 Taylor (1997)
C2S 3280 Taylor (1997)
CH 2240 Taylor (1997)
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later in the homogenizations of cement paste. For the sake of sim-
plicity, the elastic properties of C3S were used for all of the clinker
phases (e.g., Haecker et al., 2005) in the computations reported in
this paper.
3.2. Step II

At step II, the main phases are the homogenized C-S-H, CH and
pores smaller than 0.953 lm3. Precisely, the C-S-H acts as a matrix
phase in which the other phases are embedded and play the role of
inclusion.

The two chemical equations that define the quantity of C-S-H
formed are (e.g., Tennis and Jennings, 2000)

2C3Sþ 10:6H! C3:4-S2-H8 þ 2:6CH
2C2Sþ 8:6H! C3:4-S2-H8 þ 0:6CH

ð4Þ

In order to determine the volume fractions of C-S-H and CH, the
hydration kinetics model may be used to determine the hydration
degree of each clinker phase (Bernard et al., 2003). For ordinary
Portland cement, by taking only C3S into account, the amounts of
C-S-H and CH can be simply related (e.g., Eijk van and Brouwers,
1998). In the present study, both C3S and C2S are taken into ac-
count. It is assumed however, that C3S and C2S have a same clinker
degree of hydration ac.

The numbers of moles of C3S and C2S per unit volume of cement
are given by

MC3S ¼
/C3SqC3S

MC3S

MC2S ¼
/C2SqC2S

MC2S

ð5Þ

where qC3S and qC2S are the mass densities of C3S and C2S as listed in
Table 6, MC3S and MC2S are the molar mass of C3S and C2S as listed in
Table 7.

Based on Eq. (4), the numbers of moles of C-S-H and CH formed
from one unit volume of cement, are given by

MC-S-H ¼ acðMC3S þMC2SÞ
MCH ¼ acð1:3MC3S þ 0:3MC2SÞ

ð6Þ

The volumes of C-S-H and CH are thus obtained as

VC-S-H ¼
MC-S-HMC-S-H

qC-S-H

VCH ¼
MCHMCH

qCH

ð7Þ

where qCH is the mass density of CH as listed in Table 6, qC-S-H is the
mass density of C-S-H computed by step I (Table 5), MC-S-H and MCH

are the molar mass of C-S-H and CH as listed in Table 7.
The volume fractions of the three phases are given by

/h
p<0:953 lm3 ¼

/p<0:953 lm3

/h þ /p<0:953 lm3

/h
C-S-H ¼ 1� /h

p<0:953 lm3

� � VC-S-H

VC-S-H þ VCH

/h
CH ¼ 1� /h

p<0:953 lm3

� � VCH

VC-S-H þ VCH

ð8Þ

where /h = 1 � /p � /u, /p<0:953 lm3 ¼ /p � /p>0:953 lm3 , /p and /u

have been obtained as listed in Table 2, the superscript h indicates
that the volume fraction is calculated at the level of hydrated ce-
ment, /h

p<0:953 lm3 is the volume fraction of pores smaller than

0.953 lm3, /h
CH is the volume fraction of CH and /h

C-S-H is the volume
fraction of C-S-H.

By using the M–T scheme, the elastic properties of hydrated ce-
ment are obtained and listed in Table 8.



Table 7
Molar mass of phases.

Phase M (g/mol) References

C3S 228.32 Bernard et al. (2003)
C2S 172.24 Bernard et al. (2003)
C-S-H 227.2 Bernard et al. (2003)
CH 74 Bernard et al. (2003)

Table 9
Homogenized properties of cement pastes based on the M–T scheme.

Data set /p /C-S-H /CH /u E(M–T) (GPa) m(M–T) G(M–T) (GPa)

1 0.233 0.365 0.109 0.293 25.34 0.24 10.22
2 0.187 0.431 0.130 0.252 26.72 0.24 10.77
3 0.283 0.352 0.104 0.261 21.61 0.24 8.71
4 0.157 0.584 0.173 0.087 22.44 0.25 8.98
5 0.222 0.494 0.146 0.138 20.81 0.24 8.39
6 0.245 0.500 0.145 0.110 18.78 0.25 7.51
7 0.288 0.432 0.126 0.154 18.14 0.25 7.26
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4. Analytical homogenization of cement paste

After the volume relation between C-S-H and CH has been ob-
tained, it is ready to homogenize directly the elastic properties of
cement paste based on the M–T scheme. For the sake of simplicity,
and because it still correctly captures the main features of the pore
structure, cement paste can be thought of as consisting of anhy-
drous cement grains, CH, C-S-H and pores. It is assumed again that
the C-S-H acts as a matrix phase and the other three phases play
the role of inclusion.

The volume fractions of C-S-H and CH at the level of cement
paste are given by

/C-S-H ¼ ð1� /p � /uÞ
VC-S-H

VC-S-H þ VCH
ð9Þ

/CH ¼ ð1� /p � /uÞ
VCH

VC-S-H þ VCH
ð10Þ

where VC-S-H and VCH are obtained using Eq. (7), /p and /u have been
obtained as listed in Table 2.

The input elastic properties of anhydrous cement grains, CH and
C-S-H are listed in Tables 4 and 5. The volume fractions of the four
phases and the homogenized properties of cement paste are sum-
marized in Table 9. Also listed in Table 9 are the shear moduli,
which will be used later to compare with experimental results.
The shear modulus is calculated as

G ¼ E
2ð1þ mÞ ð11Þ
5. Statistical homogenization of cement paste

In order to study the effect of the random microstructure of ce-
ment paste on its overall elastic properties, a statistical numerical
homogenization method based on X-ray microtomography images
has been developed. In this approach, each voxel of the X-ray mic-
rotomography images is treated as an eight-node finite element. It
should be mentioned that finer mesh has been attempted which
gave slightly different homogenized properties, but the difference
never exceeded two percent. The three phases considered are
anhydrous cement grains, hydrated cement and pores larger than
0.953 lm3. The elements are assigned the physical properties by
their grayscale values and the segmentation method presented in
Section 2. The elastic properties of anhydrous cement grains listed
Table 8
Homogenized properties of hydrated cement.

Data set /h
p<0:953 lm3 /h

C-S-H /h
CH EðM—TÞ

h (GPa) mðM—TÞ
h

1 0.309 0.532 0.160 14.72 0.24
2 0.250 0.576 0.174 16.94 0.24
3 0.305 0.535 0.159 14.60 0.24
4 0.152 0.654 0.194 20.27 0.25
5 0.196 0.620 0.183 17.48 0.24
6 0.249 0.582 0.170 15.97 0.24
7 0.285 0.554 0.161 14.73 0.24
in Table 4 were used. For hydrated cement its homogenized prop-
erties have been obtained by the two-step M–T scheme (Table 8). A
small value of 0.001 was assigned to the Young’s modulus and
Poisson’s ratio of pores.

If the effective material behavior is assumed to be of a general
elastic type, it is necessary to find 21 independent effective mate-
rial coefficients. These entries can be evaluated if six independent
loadings are applied to the RVE. In the current study, it is assumed
that the elastic properties of cement pastes are linear and isotropic
(Haecker et al., 2005).
5.1. Finite element model

Orthogonal-mixed boundary conditions shown in Fig. 4 were
used. Such boundary conditions were proposed by Hazanov and
Huet (1994), Hazanov and Amieur (1995) and Khisaeva and Osto-
ja-Starzewski (2006) and have been used in homogenization of
elastic properties of cement paste (e.g., Stefan et al., 2010) and
other materials (e.g., Kenesei et al., 2004; Iuga and Raether,
2007). Hazanov (1998) showed that such boundary conditions
can only be used for materials having at least orthotropic elastic
symmetry properties. For anisotropic materials, periodic boundary
conditions are usually used, but this is not necessary unless the
microstructures are periodic (Garboczi and Day, 1995).

At the bottom and the two back faces of the RVE, the displace-
ments perpendicular to the respective faces are fixed. A special tied
freedom boundary condition is applied on the top and the two
front faces so that the displacements perpendicular to the respec-
tive faces are constrained to be equal. The nodes of all six faces are
free to move in the directions parallel to the respective faces. A unit
vertical force shown as the red1 arrow in Fig. 4 is applied to the tied
vertical degrees-of-freedom on the top of the specimen. These
boundary conditions ensure that no matter what degree of heteroge-
neity is introduced, such as one shown in Fig. 4, the specimen will
deform as cuboid. From the vertical and horizontal specimen defor-
mations, the homogenized Young’s modulus and Poisson’s ratio can
be easily back-calculated as will be discussed later. More impor-
tantly, these specific boundary conditions reproduce a common
experimental setup, when displacements are applied without fric-
tion on all sides of the specimen. These boundary conditions are
important from a practical point of view as they allow one to com-
pare numerical simulations with experimental results. Another
advantage of these boundary conditions is that, comparing to purely
static and kinematic boundary conditions, a relatively smaller RVE is
required to obtain repeatable results.

To avoid memory overflow, the so-called element-by-element
(EBE) method with preconditioned conjugate gradient (PCG)
scheme (e.g., Smith and Griffiths, 2004) is used. The major advan-
tage of EBE method is that it avoids assembling and storing the glo-
bal stiffness matrix. In addition, since all the elements have the
1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
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same size and shape, the number of element stiffness matrices is
reduced to the number of materials/phases. In the current study,
only three phases are considered. The element stiffness matrices
can be computed and stored in memory prior to the involvement
of the PCG-routine. This strategy avoids the unnecessary computa-
tion of the element stiffness matrices inside the PCG code.



Table 10
Mean homogenized properties.

Data set s Load in 1 Load in 2 Load in 3

lEð1Þ lmð12Þ lmð13Þ lEð2Þ lmð21Þ lmð23Þ lEð3Þ lmð31Þ lmð32Þ

1 64 25.21 0.23 0.23 24.43 0.22 0.22 24.89 0.23 0.22
2 64 25.22 0.24 0.24 25.25 0.24 0.24 25.22 0.23 0.24
3 64 18.94 0.21 0.21 17.87 0.21 0.21 18.79 0.22 0.21
4 64 23.91 0.24 0.24 23.90 0.24 0.24 24.56 0.24 0.24
5 64 20.91 0.23 0.23 20.51 0.23 0.23 20.76 0.23 0.23
6 64 18.88 0.23 0.23 18.63 0.23 0.23 18.83 0.23 0.23
7 64 19.31 0.22 0.23 18.59 0.22 0.22 20.17 0.23 0.23
7 128 18.04 0.22 0.23 17.30 0.22 0.22 18.70 0.23 0.23

Table 11
Standard deviation of homogenized properties.

Data set s Load in 1 Load in 2 Load in 3

rEð1Þ rmð12Þ rmð13Þ rEð2Þ rmð21Þ rmð23Þ rEð3Þ rmð31Þ rmð32Þ

1 64 2.55 0.01 0.01 2.64 0.01 0.01 3.31 0.01 0.01
2 64 2.79 0.01 0.01 3.51 0.01 0.01 3.54 0.01 0.01
3 64 2.53 0.01 0.01 2.36 0.01 0.01 2.41 0.01 0.01
4 64 3.30 0.01 0.01 3.57 0.01 0.01 3.48 0.01 0.01
5 64 2.21 0.01 0.01 2.39 0.01 0.01 2.03 0.01 0.01
6 64 2.98 0.01 0.01 2.76 0.01 0.01 2.73 0.01 0.01
7 64 10.69 0.02 0.02 10.39 0.01 0.01 12.51 0.01 0.01
7 128 2.21 0.01 0.01 2.20 0.01 0.01 3.61 0.01 0.01
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The finite element analysis of the RVE yields the stress and
strain fields within the heterogeneous material. The corresponding
average quantities can be obtained by taking a volume average
Alternatively, the average strain and stress can be related to the
boundary displacements and forces of the RVE by using Gauss the-
orem as:

E ¼ heri ¼
1
V

Xn

r¼1

Z
Vr

er dVr ¼
1
V

Z
C

uðxÞ � ndC; 8x 2 X ð12Þ

R ¼ hrri ¼
1
V

Xn

r¼1

Z
Vr

rr dVr ¼
1
V

Z
C

tðxÞ � ndC; 8x 2 X ð13Þ
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Fig. 9. Mean homogenized Young’s modulus compared to experimental results. Eexp

is the experimental Young’s modulus obtained by Haecker et al. (2005), E(M�T) is the
analytically predicted Young’s modulus (Table 9), lEð1Þ , lEð2Þ and lEð3Þ are the mean
Young’s modulus obtained by the numerical homogenizations loading in the
directions 1, 2 and 3, respectively (Table 10).
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is the experimental shear modulus obtained by Haecker et al. (2005), G(M�T) is the
analytically predicted shear modulus (Table 9), lGð1Þ , lGð2Þ and lGð3Þ are the mean
shear modulus obtained by the numerical homogenizations loading in the
directions 1, 2 and 3, respectively (Table 10).
where n is the number of phases, rr and er are stress and strain ten-
sors of phase r, V is the volume of RVE, u is the prescribed displace-
ments at the boundary, x belongs to the boundary X, t is the
traction vector, n is unit outward normal of the boundary, the sym-
bol ‘‘�’’ stands for scalar product and h i denotes volume average.

Based on the load and boundary conditions shown in Fig. 4,

hr1i ¼ hr2i ¼ 0; hr3i ¼ �1 ð14Þ

he1i ¼
d1

l
; he2i ¼

d2

l
; he3i ¼

�d3

l
ð15Þ

where hr1i, hr2i, hr3i, he1i, he2i and he3i are the volume averaged
normal stresses and strains, d1 , d2 and d3 are the specimen displace-
ments as shown in Fig. 4, l is the side length of the RVE.
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Based on the Hooke’s law,

he1i ¼
1
E
½hr1i � mðhr2i þ hr3iÞ�

he2i ¼
1
E
½hr2i � mðhr1i þ hr3iÞ�

he3i ¼
1
E
½hr3i � mðhr1i þ hr2iÞ�

ð16Þ

Substituting Eqs. (14) and (15) into (16), three parameters can
be obtained,

Eð3Þ ¼ 1
ld3

; mð31Þ ¼ � d1

d3
; mð32Þ ¼ � d2

d3
ð17Þ

where E(3), m(31) and m(32) are the Young’s modulus and Poisson’s ra-
tios obtained by loading in direction 3. The difference between m(31)

and m(32) is a good indicator of anisotropy.
In order to test the assumption that cement pastes are isotropic,

in addition to checking the difference between m(31) and m(32) , each
specimen is loaded separately in directions 1 and 2 as well. The
same FEM model shown in Fig. 4 is used except that loading is ap-
plied in a different direction. The computed elastic properties are
denoted as E(1), m(12) and m(13) for loading in direction 1, and E(2),
m(21) and m(23) for loading in direction 2.

The effect of tied boundary conditions on the homogenized
properties was first studied using data set 7 (pt045_sld_7dv1c300).
Two volumes of size s = 8 were extracted randomly from the image
(s is the side length of the specimen). For each volume, two types
of boundary conditions were applied. One is the proposed bound-
ary conditions as shown in Fig. 4. Another was obtained by remov-
ing the tied freedom conditions from the two front faces (faces
1265 and 2376 in Fig. 5). Two apparent Young’s moduli resulting
from application of these two different boundary conditions were
computed for each volume. This procedure was repeated by
increasing the volume size s with the results depicted in Fig. 5. It
can be seen from this figure that introducing tied freedoms did
not introduce significant constraints on the specimen.
5.2. Statistical homogenization

The statistical computational procedure used for extracting
effective elastic properties follows that of a number of other
authors, notably Zohdi and Wriggers (2001), Kanit et al. (2003)
and Ostoja-Starzewski (2006). The basic procedure is as follows.
A volume of a given size, s, is first selected at random. The govern-
ing equations are then discretized over this volume by means of
FEM, and the apparent property is computed. For each s, this pro-
cedure is repeated N times, where N is sufficiently large for the
computed statistical average to attain a constant value. Next, the
volume size, s, is increased, and the procedure is repeated until
the statistical average is deemed to be independent of the volume
size. The final statistical average is then taken as being the sought
effective property.
Table 12
Suggested statistical elastic properties of cement paste.

Data set w/c a s Young’s modulus (GP

lE

1 0.3 0.432 64 24.84
2 0.3 0.512 64 25.23
3 0.35 0.462 64 18.53
4 0.40 0.805 64 24.13
5 0.40 0.696 64 20.73
6 0.45 0.745 64 18.78
7 0.45 0.637 128 18.02
In order to decide how many simulations are needed to obtain
statistically repeatable results, up to 10,000 specimens (s = 64)
were extracted randomly from data set 7. A FEM analysis with
boundary conditions shown in Fig. 4 was conducted for each spec-
imen. Fig. 6 shows the dependency of the mean Young’s modulus
(lEð3Þ ) and standard deviation (rEð3Þ ) on the number of simulations.
It can be seen from Fig. 6 that 2000 simulations are sufficient to
give reliable and reproducible estimates of the mean Young’s mod-
ulus. It is also interesting to note that the standard deviation of the
Young’s modulus was not reduced by increasing the number of
simulations beyond 2000. It was thus decided to increase the size
of specimen to see if the standard deviation can be reduced. In the
reminder of this study, two thousand simulations were used.

The size effect on the mean properties was studied by changing
the size of specimen in the range of {s = 8, 16, 32, 64 and 128}. The
mean Young’s modulus (lEð3Þ ) and Poisson’s ratio are shown in
Figs. 7 and 8. Also shown in Figs. 7 and 8 are the 90% confidence
interval based on two thousand simulations. It can be observed
that for all data sets except the set No. 7, 643 voxels (s = 64) are
sufficient to give reliable results. It is also interesting to note that
the size effect can be non-monotonic as follows from plots in
Fig. 7 (e.g., Huet, 1990; Kanit et al., 2003).

The mean and standard deviation of the homogenized Young’s
modulus and Poisson’s ratio are summarized in Tables 10 and 11.
Comparing the results obtained by loading the specimen in three
different directions, it can be concluded that the seven considered
cement pastes have isotropic elastic properties.

For data set 7 with specimen size s = 64, the coefficients of var-
iation of Young’s modulus (rE/lE) are 0.55, 0.56 and 0.62 for load-
ing in directions 1, 2 and 3, respectively. When the size of
specimen was increased to s = 128, those coefficients of variation
were reduced to 0.12, 0.13 and 0.19, indicating a size of s = 128
is necessary to obtain reliable results for data set 7. Therefore, in
the following, the results of data set 7 were obtained by using
s = 128 unless otherwise indicated.

It can be seen that the coefficients of variation of Poisson’s ratio
for all 7 data sets are less than 0.1, suggesting that Poisson’s ratio
may be treated as a deterministic variable for the sake of simplicity
(e.g., Fenton and Griffiths, 2008). The coefficients of variation of
Young’s modulus are less than 0.2 for all 7 data sets. The coeffi-
cients of variation of Poisson’s ratio are less than the coefficients
of variation of Young’s modulus for all seven cement pastes. This
is expected because the range of input Poisson’s ratio is narrower
than that of input Young’s modulus as shown in Table 4.

5.3. Comparison of homogenized and experimental results

It should be noted that the Poisson’s ratios obtained by applying
corresponding horizontal specimen displacements are approxi-
mately the same (i.e. m(12) � m(13)). Hence, only one Poisson’s ratio
was used to calculate shear modulus for each loading direction.
The mean Young’s modulus and shear modulus from two thousand
simulations are compared to the experimental results obtained by
a) 6000 simulations Poisson’s ratio 12000 simulations

rE lm rm

2.87 0.23 0.009
3.30 0.24 0.007
2.48 0.21 0.012
3.47 0.24 0.005
2.22 0.23 0.007
2.83 0.23 0.007
2.81 0.22 0.010
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Haecker et al. (2005) in Figs. 9 and 10. It can be seen from these fig-
ures that the results are in very good agreement. Also shown in
Figs. 9 and 10 are the results obtained by analytical homogeniza-
tions (Table 9), which are in good agreement with experimental re-
sults as well.

The comparison shown in Figs. 9 and 10 suggests that by taking
average of the three mean values obtained by loading in three dif-
ferent directions, better agreement with experimental results can
be obtained. Since all seven selected cement pastes showed isotro-
pic elastic properties, it is reasonable to treat the results obtained
by loading in three different directions as independent realizations.
In this way, there will be 6000 simulations for Young’s modulus
and 12000 simulations for Poisson’s ratio. The statistical parame-
ters from 6000 simulations of Young’s modulus and 12000 simula-
tions of Poisson’s ratio are summarized in Table 12.

6. Concluding remarks

The problem of extracting statistical elastic properties of ce-
ment paste based on X-ray microtomography images has been
considered. A general statistical homogenization framework is
developed and applied to selected data sets. The mean homoge-
nized elastic properties of cement pastes are in good agreement
with experimental results. Since the elastic moduli estimated from
analytical homogenization and the mean elastic moduli estimated
from FEM compare well with each other, it could be concluded that
the mean elastic properties are, in first order, mostly governed by
the volume fractions of the different phases only. The numerical
homogenization based on FEM provides statistically however, both
the first moment (mean) and the second moment (standard devia-
tion) of elastic moduli.
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