The Erdős–Faber–Lovász conjecture for dense hypergraphs

Abdón Sánchez-Arroyo

Instituto Nacional de Estadística, Geografía e Informática, INEGI, Héroe de Naco zari 2301, Puerta 3, Nivel 1, Aguascalientes, Ags., C.P. 20270, Mexico

Received 12 July 2005; accepted 10 September 2007
Available online 4 December 2007

Abstract

A hypergraph, having \(n \) edges, is linear if no two distinct edges intersect in more than one vertex, and is dense if its minimum degree is greater than \(\sqrt{n} \). A well-known conjecture of Erdős, Faber and Lovász states that if a linear hypergraph, \(\mathcal{H} \), has \(n \) edges, each of size \(n \), then there is a \(n \)-vertex colouring of the hypergraph in such a way that each edge contains vertices of all the colours. In this note we present a proof of the conjecture provided the hypergraph obtained from \(\mathcal{H} \) by deleting the vertices of degree one is dense.

© 2007 Published by Elsevier B.V.

Keywords: Chromatic number; Linear hypergraph

In 1975 Paul Erdős [1] wrote:

Faber, Lovász and I conjectured that if \(|A_k| = n \), \(1 \leq k \leq n \) and \(|A_k \cap A_j| \leq 1 \), for \(k < j \leq n \), then one can colour the elements of the union \(\bigcup_{k=1}^{n} A_k \) by \(n \) colours so that every set has elements of all the colours. It is very surprising that no progress has been made with this problem and I offer 50 pounds for a proof or disproof.

This conjecture dates back to 1972, see [2]. To start with we need some definitions. A hypergraph, \(\mathcal{H} \), consists of a finite family \(\mathcal{E} \mathcal{H} = \{E_1, \ldots, E_n\} \) of non-empty sets, whose union is \(\bigcup_{k=1}^{n} E_k \). The elements of \(\mathcal{E} \mathcal{H} \) are called the edges and the elements of \(\bigcup_{k=1}^{n} E_k \) are called the vertices of the hypergraph. The degree of a vertex \(x \) is the number of edges containing \(x \). We denote by \(\delta(\mathcal{H}) \) and \(\Delta(\mathcal{H}) \), the minimum and maximum degrees, respectively, of \(\mathcal{H} \). A hypergraph \(\mathcal{H} \) is dense if \(\delta(\mathcal{H}) \) is greater than \(\sqrt{n} \).

Let \(\mathcal{H} = (\bigcup_{k=1}^{n} E_k, \mathcal{E} \mathcal{H}) \) be a hypergraph. A (proper) \(k \)-vertex colouring of \(\mathcal{H} \) is a surjective map of \(\bigcup_{k=1}^{n} E_k \) into a set \(\{1, \ldots, k\} \) of colours such that in every edge all vertices have distinct colours. The (vertex) chromatic number \(\gamma(\mathcal{H}) \) of \(\mathcal{H} \) is the smallest \(k \) such that there is a \(k \)-vertex colouring of \(\mathcal{H} \). A hypergraph \(\mathcal{H} \) is linear if no two edges intersect in more than one vertex. In this setting the original Erdős–Faber–Lovász conjecture reads:

Conjecture 1 (EFL). If \(\mathcal{H} \) is a linear hypergraph consisting of \(n \) edges, each of size \(n \), then \(\gamma(\mathcal{H}) = n \).

The results on the problem are very few, for the history of the problem we refer the reader to [3, p. 160].
Consider a linear hypergraph, \mathcal{H}, having n edges each of size n. Observe that, in each edge there is at least one vertex of degree one. If we can properly colour the vertices of degree at least 2 with n or fewer colours, then certainly we can colour all the vertices of \mathcal{H} with n colours, which is the minimum number required. Finally, given such a hypergraph \mathcal{H}, we first delete all the vertices of degree one from it. Then we are left with a linear hypergraph with n edges of size at most $n - 1$ and with minimum degree at least two. Thus Conjecture 1 is equivalent to the following:

Conjecture 2. If \mathcal{H} is a linear hypergraph consisting of n edges, each of size at most n, and $\delta(\mathcal{H}) \geq 2$, then $\chi(\mathcal{H}) \leq n$.

We now state our result as follows (thanks to Colin McDiarmid for this formulation):

Theorem 3. Consider a linear hypergraph \mathcal{H} consisting of n edges each of size at most n and $\delta(\mathcal{H}) \geq 2$. If \mathcal{H} is dense then $\chi(\mathcal{H}) \leq n$.

Proof. We colour the vertices in descending order of degrees, and we assume that we have coloured all vertices of degree greater than r. To colour a vertex x of degree r in \mathcal{H}, we consider an edge E that contains x, and answer the question: how many vertices of E are coloured? Observe that there are $n - r$ edges not incident to x. If a vertex y of E has a colour, then it has degree at least r. Thus, by the linearity of \mathcal{H}, there are at most $(n - r)/(r - 1)$ vertices in E that have been assigned a colour. Now the same conclusion holds for each edge incident to x. Thus there are at most $r((n - r)/(r - 1))$ vertices adjacent to x that have a colour. Finally, there is a colour available for vertex x if n is strictly greater than $r(n - r)/(r - 1)$. Thus, if \mathcal{H} is dense, we can colour vertex x. □

References

