The Erdős-Faber-Lovász conjecture for dense hypergraphs

Abdón Sánchez-Arroyo ${ }^{1}$
Instituto Nacional de Estadística, Geografía e Informática, INEGI, Héroe de Nacozari 2301, Puerta 3, Nivel 1, Aguascalientes, Ags., C.P. 20270, Mexico

Received 12 July 2005; accepted 10 September 2007
Available online 4 December 2007

Abstract

A hypergraph, having n edges, is linear if no two distinct edges intersect in more than one vertex, and is dense if its minimum degree is greater than \sqrt{n}. A well-known conjecture of Erdős, Faber and Lovász states that if a linear hypergraph, \mathscr{H}, has n edges, each of size n, then there is a n-vertex colouring of the hypergraph in such a way that each edge contains vertices of all the colours. In this note we present a proof of the conjecture provided the hypergraph obtained from \mathscr{H} by deleting the vertices of degree one is dense.

© 2007 Published by Elsevier B.V.

Keywords: Chromatic number; Linear hypergraph

In 1975 Paul Erdős [1] wrote:
Faber, Lovász and I conjectured that if $\left|A_{k}\right|=n, \quad 1 \leqslant k \leqslant n$ and $\left|A_{k} \cap A_{j}\right| \leqslant 1$, for $k<j \leqslant n$, then one can colour the elements of the union $\bigcup_{k=1}^{n} A_{k}$ by n colours so that every set has elements of all the colours. It is very surprising that no progress has been made with this problem and I offer 50 pounds for a proof or disproof.

This conjecture dates back to 1972, see [2]. To start with we need some definitions. A hypergraph, \mathscr{H}, consists of a finite family $\mathscr{E}_{\mathscr{H}}=\left\{E_{1}, \ldots, E_{n}\right\}$ of non-empty sets, whose union is $\mathscr{V}_{\mathscr{H}}$. The elements of $\mathscr{E}_{\mathscr{H}}$ are called the edges and the elements of $\mathscr{V} \mathscr{H}$ are called the vertices of the hypergraph. The degree of a vertex x is the number of edges containing it. We denote by $\delta(\mathscr{H})$ and $\Delta(\mathscr{H})$, the minimum and maximum degrees, respectively, of \mathscr{H}. A hypergraph \mathscr{H} is dense if $\delta(\mathscr{H})$ is greater than \sqrt{n}.

Let $\mathscr{H}=\left(V_{\mathscr{H}}, \mathscr{E}_{\mathscr{H}}\right)$ be a hypergraph. A (proper) k-vertex colouring of \mathscr{H} is a surjective map of $\mathscr{V}_{\mathscr{H}}$ into a set $\{1, \ldots, k\}$ of colours such that in every edge all vertices have distinct colours. The (vertex) chromatic number $\chi(\mathscr{H})$ of \mathscr{H} is the smallest k such that there is a k-vertex colouring of \mathscr{H}. A hypergraph \mathscr{H} is linear if no two edges intersect in more than one vertex. In this setting the original Erdős-Faber-Lovász conjecture reads:

Conjecture $1(\mathscr{E} \mathscr{F} \mathscr{L})$. If \mathscr{H} is a linear hypergraph consisting of n edges, each of size n, then $\chi(\mathscr{H})=n$.
The results on the problem are very few, for the history of the problem we refer the reader to [3, p. 160].

[^0]Consider a linear hypergraph, \mathscr{H}, having n edges each of size n. Observe that, in each edge there is at least one vertex of degree one. If we can properly colour the vertices of degree at least 2 with n or fewer colours, then certainly we can colour all the vertices of \mathscr{H} with n colours, which is the minimum number required. Finally, given such a hypergraph \mathscr{H}, we first delete all the vertices of degree one from it. Then we are left with a linear hypergraph with n edges of size at most $n-1$ and with minimum degree at least two. Thus Conjecture 1 is equivalent to the following:

Conjecture 2. If \mathscr{H} is a linear hypergraph consisting of n edges, each of size at most n, and $\delta(\mathscr{H}) \geqslant 2$, then $\chi(\mathscr{H}) \leqslant n$.
We now state our result as follows (thanks to Colin McDiarmid for this formulation):
Theorem 3. Consider a linear hypergraph \mathscr{H} consisting of n edges each of size at most n and $\delta(\mathscr{H}) \geqslant 2$. If \mathscr{H} is dense then $\chi(\mathscr{H}) \leqslant n$.

Proof. We colour the vertices in descending order of degrees, and we assume that we have coloured all vertices of degree greater than r. To colour a vertex x of degree r in \mathscr{H}, we consider an edge E that contains x, and answer the question: how many vertices of E are coloured? Observe that there are $n-r$ edges not incident to x. If a vertex y of E has a colour, then it has degree at least r. Thus, by the linearity of \mathscr{H}, there are at most $(n-r) /(r-1)$ vertices in E that have been assigned a colour. Now the same conclusion holds for each edge incident to x. Thus there are at most $r((n-r) /(r-1))$ vertices adjacent to x that have a colour. Finally, there is a colour available for vertex x if n is strictly greater than $r(n-r) /(r-1)$. Thus, if \mathscr{H} is dense, we can colour vertex x.

References

[1] P. Erdős, Problems and results in graph theory and combinatorial analysis, in: Nash-Williams, Sheehan (Eds.), Proceedings of the 5th British Combinatorial Conference, Aberdeen, 1975, Congr. Numer. 15 (1976) 169-192.
[2] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981) 25-42.
[3] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995.

[^0]: E-mail addresses: abdon_sanchez@hacienda.gob.mx, abdon.sanchez@inegi.gob.mx, nodbasa18@gmail.com.
 ${ }^{1}$ Now at Secretaría de Hacienda y Crédito Público.

