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A digraph G of order n is said to have property D, if every induced subdigraph 
of order n - k in G has the same degree sequence. In this paper, we characterize all 
digraphs with property D, when k= 1,2. ‘C 1990 Academic Press. Inc 

1. INTRODUCTION 

An n-tournament T is a digraph of order n in which every pair of vertices 
is joined by exactly one arc. If the arc joining vertices u and u of T is 
directed from u to u, then u is said to dominate u. The number S(U) of 
vertices dominated by u is the score of u. The score-list of an n-tournament 
T is the list of the scores of vertices, usually arranged in non-decreasing 
order. An n-tournament T is called: 

(a) a transitive tournament if, whenever vertex u dominates u, and u 
dominates W, then u dominates W; 

(b) a doubly regular tournament if all pairs of vertices jointly 
dominate the same number of vertices; 

(c) an arc-homogeneous tournament if, for every pair of arcs uu and 
wx, there is an automorphism taking u to MI and u to X. 

Jean [ 1 ] considered the n-tournaments with the property that all their 
subtournaments of order n - 2 are isomorphic, and proved the following 
result. 

THEOREM 1. For n > 5, an n-tournament T has the property that all its 
subtournaments of order n - 2 are isomorphic if and only if T is transitive or 
arc-homogeneous. 

Miiller and Pelant [2] proved the following: 
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THEOREM 2. For II 3 5, a non-transitive tournament T of order n has the 
property that all its subtournaments of order n - 2 have the same score-list 
if and only f T is doubly regular. 

The unsolved Problem 45 in Bondy and Murty [3] which was raised by 
Kotzig is as follows: characterize the n-tournaments with the property that 
all their subtournaments of order n - 1 are isomorphic. Li Jiongsheng, 
Huang Guoxun, and Lin Yucai [4] gave a construction of n-tournaments 
with this property, and also obtained a criterion for determining whether 
a non-negative integral vector R = (r,, r2, . . . . r,) in non-decreasing order is 
the score-list of some n-tournament with this property. Moreover, Miiller 
and Pelant [2] gave a characterization of the n-tournaments with the 
property that all their subtournaments of order n - 1 have the same score- 
list. 

Because tournaments form one special class of digraphs, it is natural to 
consider how to extent the results on tournaments mentioned above to 
digraphs. 

Let G be a digraph of order n with vertex set V(G) and arc set E(G), 
where E(G) E V(G) x V(G) -d, V(G) x V(G) is the Cartesian product set of 
V(G) and d = ((v, v) : VE V(G)). For any VE V(G), define 

z-g(u)= (us V(G): (v, U)EE(G)), 

f,(v)= {UE V(G): (u, v)EE(G)}. 

Then dG+(v)=IT,+(v)l and d;(v)= IZQ(v)( are the outdegree and the 
indegree of vertex v, respectively, and (dd (v), d;(v)) is the degree pair of 
v. Assume that V(G) = {v,, v?, . . . . vn} and dG+(vi) = d+ and d,Jv;) = d,:, 
i = 1, 2, . . . . n. Then the sequence D(G)=((d:, d,-), (d+, d;), . . . . (d,+,d,;)) 
is the degree sequence of G. 

Suppose that D(G) = ((d:, d;), (d:, d;), . . . . (d,+, d;)) and D(G) = 
cc&+ 3 a, 11 (a: 3 a; )1..‘, (2; 9 a, 1) are the degree sequences G and c, 
respectively. We say that G and G have the same degree sequence if there 
is an arrangement i, i, ... i, of the natural numbers 1,2, . . . . n such that 
(Ii; = d]? and a, = d,:, j = 1, 2, . . . . n. Clearly, G and G have the same degree 
sequence if G and 6 are isomorphic. 

A digraph G of order n is said to have property Dk if every induced sub- 
digraph of order n-k in G has the same degree sequence, where k is a 
given integer. And a digraph G of order n is said to have property Ik if all 
induced subdigraphs of order n-k in G are isomorphic. Clearly, the 
digraph G has the property D, if G has the property Zk. In Section 2 of this 
paper, we give a characterization of digraphs with property D,. In 

Section 3, we prove that, for n > 5, the digraph G of order n has the 
property Dz if and only if G is the null graph, or the complete symmetric 
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digraph E,,, or the transitive n-tournament, or a doubly regular n-tourna- 
ment. By our result and Theorem 1, we obtain that, for n > 5, the digraph 
G of order n has the property Z, if and only if G is one of the null graph, 
the complete symmetric digraph Z?,,, the transitive n-tournament or an 
arc-homogeneous n-tournament. 

2. THE DICRAPHS WITH PROPERTY D, 

Let G be a digraph of order n. For u E l’(G), define N,(u) = r,+ (u) A 
T,(U), d,(u)=JN,(u)I, ag(u)=Irz(u)-N,(u)1 and z;(u)=IT;(V)- 
No(u It is clear that d,+(u)=~?,+(u)+d,(u) and d;(u)=a;(~)+d,(u). 

We will now introduce the following definition. 

DEFINITION 2.1. A digraph G of order n is called an L(m, h, k, l)- 
digraph or an L-digraph in brief if there exists a partition (I’, , I/,, . . . . V,) 
of V(G) such that 1 Vi1 = h, i = 1, 2, . . . . m and the following conditions are 
satisfied: For any u E Vi, 1 < id m, 

if 1 <j,<i- 1, 
otherwise; 

if l<j<i, 
otherwise; 

(1) 

(7-l 

in which 

&,(4 = 1, (3) 

~~(u,=l(r,‘(u)-n’ri(L’))n V,l, 

de(u)= I(&(u)--NG(u))n V,l, 

&,W = IK# n v, I3 

where j= 1,2, . . . . m. 

It is easy to see that, for an L(m, h, k, I)-digraph G of order n, the 
parameters m, h, k, and 1 satisfy n = mh and h 2 2k + I+ 1. 

As a direct consequence of Definition 2.1 we obtain the following: 

PROPOSITION 2.1. Suppose that G is an L(m, h, k, I)-digraph qf order n. 
Then for any UE V,, 1 di<m, 

ag(u)=mk+i-- 1, (4) 

a;(u)=mk+m-i, (5) 

d,(u) = ml, (f-5) 
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and for any v E V(G), 

a;(v,+a,(v)=2mk+m- 1. (7) 

PROPOSITION 2.2. Suppose that G is an L(m, h, k, I)-digraph of order n. 
Then the degree sequence D(G) of G consists of h degree pairs 
(mp, mp + m - 1 ), h degree pairs (mp + 1, mp + m - 2), . . . . h degree pairs 
(mp+m-l,mp), wherep=k+I. 

From Proposition 2.2 it follows that the L( 1, n, 0, I)-digraphs are just 
l-regular graphs of order n and the L(n, 1, 0, 0)-digraphs are just transitive 
n-tournaments with score-list (0, 1, 2, . . . . n - 1). 

The following theorem is the main result of this section. 

THEOREM 2.3. A digraph G of order n has the property D, if and on1.v lf 
it is an L-digraph. 

Proof: Suppose that G has the property D1 and D(G) = ((d:, d;), 
(dc, d; ), . . . . (d,f , d; )) is the degree sequence of G. Assume that a:, a+, ,.., 
a,+ are all distinct outdegree in d:, d:, . . . . d,f , where d: < a+ < . . < d,’ , 
and Vi = {v E V(G) : d:(v) = d,? }, 1 V, 1 = hi, i = 1, 2, . . . . m. Clearly, 
( Vi, I’?, . . . . I’,,) is a partition of V(G). For any u E I’(G), define d;, (u) = 
Ifd(u)n V,I, d,(u)= Ir;(v)n f’il, and dbJg(v)= IrZ(u)n&(v)n V,I, 
i = 1, 2, . ..) m. We shall prove that G must be an L-digraph by the following 
steps. 

(1) For any u, DE V,, d,(u)=d,(v). 

Suppose that G - u is the subdigraph induced by I’(G) - {u}. It is clear 
that for any x E V( G - u), 

4. Jx) = 
{ 

d;(x) - 1, if XE~;(U), 

d;(x), otherwise. 

Therefore, d&,,(x)<d,+ if XE V,,j= 1, 2, . . . . i- 1, or x~T;(u)n Vi, and 
d,+-,(x) b d+ f or any other vertex x in G-U. Hence, if the number of 
vertices in G - u whose outdegree is less than a,? is denoted by f(u), then 

f(u)=h, +hz+ ... fhi-1 +d,(U). 

Similarly, because v E Vi, 

f(u)=h, +h,+ ... +hipl +d,(v). 

Since G has the property D,, the subdigraphs G-u and G-v have the 
same degree sequence. Thus, f(u) =f(v), i.e., d;,(u) = d;,(v). This shows 
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that statement (1) holds. The value of d;, (u) for any u E Vi is denoted by 
pi, i= 1, 2, . . . . m. 

(2) For a fixed integer i, 1 d id m, and any u E Vi, 

if 1 <j<i, 
otherwise. 

The number of vertices in the induced subdigraph G - u whose outdegree 
is less than d,? is denoted by g(v). It is easy to see that dG+- ,(x) < L$?, if 
XE V,, t= 1,2, . . ..j- 1 or XETJO)~ V,, and d&,,(x)>d,? for other ver- 
tices x in G - u. Therefore, 

g(O)=hl+h*+ . . .  +hj-1 +di,(U)-dj, 

where Sj = 0 ifj d i and Sj = 1 if i + 1~ j. On the other hand, by (1 ), for any 
UE vj, 

f(ll)=h, +A,+ ..’ +hj-1 +dc(U), 

where f(u) is the number of vertices in G-U whose outdegree is less 
than a,?. Since G has the property D,, the induced subdigraphs G-V and 
G-u have the same degree sequence. Thus, g(o) =f(u), i.e., d;,(u) = 
dk(u)+6,= p,+6,. This shows that statement (2) is true. 

Since (V, , V,, . . . . V,) is a partition of V(G), we have that for any v E Vi, 

d;(u) = Il-, (u) n V(G)1 

= f II-,(U)A V,l 
j= I 

= i d,,(u)+ f 
,=I j=ii 

m 

=m-i+ 1 pj. 
j= 1 

dc (u) 
I 

(8) 

Define d; = m - i + CJ.‘=, pj, i = 1, 2, . . . . m. Clearly, d; > d; > . . . > d; , 
and for any u E Vi, the degree pair of u in G is (d+, d; ), i = 1, 2, . . . . m. 

Substituting the outdegree for the indegree in the proofs of statements 
(1) and (2), we obtain that for any UE Vi, 

if 1 <j<i-- 1, 
otherwise. 

The subdigraph induced by Vi in G is denoted by Gi. It is easy to see that 
the sum of all outdegrees of vertices in Gi is equal to the sum of all 
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indegrees of vertices in Gi. Thus, h, pi = hi pi, i.e., pi = pi, i = 1, 2, . . . . m. 
From this it follows the following assertion. 

(3) For any UE Vi, 

d;,(v) = 
i 

Pj+ l5 if 1 <j<i-- 1, 

P/3 otherwise. 

(4) hi=h,andp,=p,, where l<j<i<m. 

Suppose that the number of arcs in G from V, to V, is denoted by eji. 
Then 

ej,= c d:,(v)= C de(u). 

By the statements (2) and (3), eji= hip,= hip,j. On the other hand, if the 
number of arcs in G from Vi to Vi is denoted by e,, then 

e,j= 1 d;,(u)= 1 d,(u). 
TE v, UE v, 

By statements (2) and (3), eti= hi(pj+ 1) = h,(pi+ 1). From this it follows 
that hi= hi and pj=p,. Let us denote the values of h,, hZ, . . . . h, and 
p,, p2, . . . . pm by h and p, respectively. 

From the statements (3) and (4) for any UE Vi, 

d,+(v) = IG (~1 C--I V(G)1 

= f  IrdtUln vjI 

j=l 

i -1 
= c G,(v)+jg, d;(v) 

j=l 

=mp+i-1 

and the equality (8) becomes 

d;(v)=mp+m-i. 

In other words, for any v E Vi, the degree pair of u in G is (mp + i - 1, mp + 
m - i), i = 1, 2, . . . . m. 

(5) For any U, VE V(G), dy,(U)=dys(u), i= 1, 2, . . . . m. 

Assume that t,(v) is the number of vertices in the induced subdigraph 
G - u whose degree pair is (mp + i - 2, mp + m - i - 1). It is not difficult to 
see by the remark after statement (4) that t,(u) = d,(u). Similarly, for 

582b,‘S0,2-I, 
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u E V(G), t,(u) = dy,(u). Since G has the property D,, the induced sub- 
digraphs G - u and G - u have the same degree sequence. Thus, t,(o) = 
t,(u), i.e., dy,(u) =d,,(u). The value of d”,(u) for any UE V(G) is denoted by 
li, i = 1, 2, . . . . m. 

(6) li=I,, 1 Gi, j<m. 

The number of all symmetric arcs in G between V, and V, is denoted by 
E,, i # j. Clearly, 

Eii= C dv,(U)= 1 d,(u). 
C’E b’, UE “; 

It follows by statements (4) and (5) that E, = hl, = hl,, i.e., Ii = I,. 
The common value of I,, I,, . . . . 1, is denoted by 1. Write k = p - I. Then 

by statements (3) and (4), for any u E Vi, 

if l< j<i- 1, 

otherwise. 

From statements (2) and (4) for any UE Vi, 

if l<j<i, 
otherwise. 

By (5) and (6), for any UE V,, dv,(u) = 1. This proves that G is an 
L(m, h, k, l)-digraph. 

Conversely, suppose that G is an L(m, h, k, I)-digraph. Then by Proposi- 
tion 2.2, the degree sequence D(G) of G consists of h degree pairs 
(mp, mp + m - 1 ), h degree pairs (mp + 1, mp + m - Z), . . . . h degree pairs 
(mp + m - 1, mp), where p = k + 1. For any u E V(G), it is not difficult to 
verify by Definition 2.1 that the degree sequence D(G - u) of G - u consists 
of k degree pairs (mp - 1, mp + m - 1 ), 1 degree pairs (mp - 1, mp + m - 2.), 
h - 2k - 1 - 1 degree pairs (mp, mp + m - 1), 2k + 1 degree pairs 
(mp,mp+m-2),...,1 degree pairs (mp+m-2,mp-l), h-2k-l-1 
degree pairs (mp + m - 1, mp), and k degree pairs (mp + m - 1, mp - 1). 
This shows that G has the property D, . 

The proof is completed. 

3. THE DIGRAPHS WITH PROPERTY Dz 

In this section, we discuss the digraphs with property D,. First we prove 
two lemmas as follows. 
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LEMMA 3.1. Suppose that G is a digraph of order n with property D,, 
where n > 5. Then for any u E V(G), the induced subdigraph G-u is an 
L(m, h, k, I)-digraph in which the parameters m, h, k, and 1 are independent 
to the choice of u in G. 

Proof: Since G has the property D,, all induced subdigraphs of order 
(n - 1) - 1 in G - u have the same degree sequence for any UE V(G). In 
other words, G - u has the property D, . By Theorem 2.3, G - ZJ is an 
L(m,, h,, k,, I,)-digraph. We will prove that for any U, u E V(G), m, = m,, 
h,=h,, k,=k,, and l,=l,.. 

Case 1. k,+ I,=0 and k,+ l,=O. In this case, k,= k, =0 and I,= 
1, =O. By counting the number of vertices with minimal outdegree in 
G - u - x and G - u - y, respectively, where x E V(G - U) and y E V(G - u), 
we obtain that h, = h,. From m,,h,, = n - 1 = m,h,, we have that m, = m,. 

Case 2. k,+ l,#O, but k, + 1, =O. In this case, k,.= I, =O. For any 
y E V( G - II), the number of vertices with minimal outdegree 0 in G - u - y 
is h,. For any x E V(G - u), the number of vertices with minimal out- 
degree m,(k,+ I,)- 1 in G-U-X is k, + 1,. Hence h,= k,+ I, and 
m,(k, + 1,) - 1 = 0. It follows that m, = 1, k, + 1, = 1 and h, = 1. Thus, the 
maximal outdegree in G - u - y and G - u - x equal to n - 3 and 1, respec- 
tively. Since G has the property D,, we obtain n - 3 = 1, i.e., n = 4. This 
contradicts the condition n 3 5. 

Case 3. k, + 1, #O and k,,+ l,#O. For any XE V(G- U) and any 
YE V(G - u), the number of vertices with minimal outdegree in G-U-X 
and G - u - y are k, + I, and k, + I,, respectively. Therefore k, + 1, = k, + I, 
and m,(k, + 1,) - 1 = m,(k, + 1,) - 1. It follows that m, = m,. From muhu = 
m,h,=n- 1, we have h,= h,. We divide this case into the following 
subcases. 

Subcase 3.1. k, # 0 and k, # 0. For any x E V(G - u) and any 
YE V(G - u), the number of vertices with both minimal outdegree and 
maximal indegree in G - u - x and G - u - y are k, and k,., respectively, we 
obtain k,=k,.. From k,+l,=k,.+l,,, we have l,=l,.. 

Subcase 3.2. l,#O, and l,#O. The induced subdigraph G-U-X 
has I, vertices with degree pair (m,(k, + 1,) - I, m,(k, + 1,) + m, - 2). 
The induced subdigraph G - u - y has 1, vertices with degree 
pair (m,(k,+ I,)- 1, m,(k,+ I,) + m,-2). Since G has property D, 
and (m,(k, + I,) - 1, m,(k, + 1,) + m, - 2) = (m,(k, + l,.) - 1, m,(k, + 1,) + 
m, - 2) we have 1, = I,,. Hence k, = k,,. 

Subcase 3.3. k, = I, = 0 or k, = 1, = 0. For the case k, = 1, = 0, we have 
I, #O and k, #O. By counting the number of vertices with minimal out- 
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degree in G - u-x and G - u - y, respectively, we obtain that I, = k, and 
m,l,+m,--2=mm,k,+m,- 1. 

This contradicts the result m,=m,. Hence the case k, =I, =0 is 
impossible. Similarly, the case k, = 1, = 0 is also impossible. 

This proved our Lemma 3.1. 

In Lemma 3.1, the condition n > 5 is necessary. The following digraph G 
is a counterexample with n = 4. The digraph G has the property Dz, but for 
which G-U is an L(3, 1, 0, 0)-digraph while G-u is an L(1, 3, 1, O)- 
digraph. 

LEMMA 3.2. Suppose that the digraph G of order n has the property D,, 
where n > 5. Then G is an L-digraph. 

Proof By Lemma 3.1, G has property D, . Thus G is an L-digraph by 
Theorem 2.3. 

The chief result in this section is the following: 

THEOREM 3.3. For n p 5, a digraph G of order n has the property D, if 
and only if G is one of the null graph, the complete symmetric digraph I?,,, 
the transitive n-tournament or a doubly regular n-tournament. 

Proof It is easy to see that G has the property Dz if G is the null graph, 
or the complete symmetric digraph I?,,, or the transitive n-tournament. By 
Theorem 2, G has the property Dz if G is a doubly regular n-tournament. 

Now suppose that G has the property D2 and G is not one of the null 
graph, the complete symmetric digraph zn, the transitive n-tournament or 
a doubly regular n-tournament. We divide the proof into two cases as 
follows. 

Case 1. G is symmetric. Note that an L(m, h, k, I)-digraph is symmetric 
if and only if m = 1, h = n, and k = 0, and in this case it can be thought of 
as an (undirected) l-regular graph. Now, by Lemma 3.2 G is an L-digraph, 
and by Theorem 2.3 G-u is an L-digraph. Thus, both G and G-u are 
regular graphs. However, if one can delete a vertex from a regular graph 
G to get another regular graph, then G must be complete or null. 

Case 2. G is not symmetric. If G is an n-tournament, then G is 
transitive or doubly regular by Theorem 2. However, we have excluded 
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these possibilities. Therefore we may assume that G is not an n-tournament. 
In this case, there exist three vertices U, u, and w  in G such that u E r;(u) - 
N&U) and w$r,‘(u) u r;(u)-NJu). By Lemma 3.1, the induced sub- 
digraphs of order n - 1 in G are L(m, h, k, l)-digraphs. Therefore we have 

From Proposition 2.1, we have 

Since UE~;(U)-NJU) and w$~,‘(u)uT;(u)--N~(u), we know 

ab(~)+a,(u)=2mk+m- 1+ 1=2mk+m, 

a,$(w)+d;(w)=2mk+m-1. 

Thus 

1 Z-,(x,= 1 2c’(x)-%G’(u)4&4 
reV(G--o) XE Y(G) 

= 1 ad(x)-(2mk+m), 

1 J,‘-,,(y)= c a;(y)J;(M’)-2JW) 
.VE Y(G-w) .VE Y(G) 

= c a;(y)-(2mk+m-1). 
YE V(G) 

Clearly, this is impossible. 

The proof is completed. 

The following Corollary 3.4 is a immediate consequence of Theorem 3.3 
and Theorem 1. 

COROLLARY 3.4. For n B 5, a digraph G of order n has the property Iz if 
and only if G is one of the null graph, the complete symmetric digraph I?,,, 
the transitive n-tournament or an arc-homogeneous n-tournament. 
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