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Let b be a p-block of a finite group G with an abelian defect group P and e a
root of b in Cg(P). If the inertial quotient E (= Ng(P, e)/C;(P)} is a Klein four
group, there is a so called perfect isometry from the group of generalized characters
of a suitable twisted group algebra of the semidirect product of E and P onto the
group of generalized characters of G in 4. © 1993 Academic Press, Inc.

1. INTRODUCTION

1.1. Let p be a prime number, £ an algebraically closed field of charac-
teristic p, ¢ a complete discrete valuation ring with residue field £ and
quotient field o of characteristic zero, G a finite group, b a p-block of G
(ie., a primitive idempotent of Z(£G)), P a defect group of b, e a root of
bin C4(P) (ie., a p-block of C;(P) such that ¢ = b in Brauer’s notation),
and E the inertial quotient Ng (P, e)/P-Cs(P). We assume that X4 con-
tains the |P|th roots of unity. In [1] Alperin states a remarkable conjec-
ture on the number /(b) of isomorphism classes of simple £Gb-modules.
When P is abelian, Alperin’s conjecture announces that /(b) is the number
of isomorphism classes of simple £N (P, ¢) e-modules. This is known to be
true if | E] <3 by the results of Brauer [S, Proposition (6G)] (see also [9,
(1.ex.3)]) and Usami [15] (except if |E| =3 and p=2), and our main
result here proves it in the case where the inertial quotient is a Klein four
group. Actually, although our method would likely handle all the previous
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cases (including when |E[=3 and p=2), to push it further certainly
demands some new argument, the case where E is cyclic of order 4 being
already an example of such a demand.

1.2. When P is abelian, it is not difficult to translate Alperin’s conjecture
in terms of a suitable #*-central extension £ of E. Indeed, setting
Ng(P,e)=Ng(P, e)/P, C;(P)= Cs;(P)/P, and denoting by é the image of
e in £C;(P), it is well-known from Brauer that #C;(P)é is a simple
£-algebra (ie., a full matrix algebra over £) and therefore the action of
N (P, e) on £C;(P)é determines a central extension N (P, e) of N;(P, e)
by £* and a group homomorphism

p: N(P, €)— (4C4(P) é)*,

that is to say, a “projective representation” in Schur’s terms. Moreover, the
converse image p ' (Cg(P)e) of C;(P)é is canonically isomorphic to the
direct product £* x C,;(P). Hence, the quotient of N;(P, ) by the image
of C;(P) is a #*-central extension of E and we denote by E the opposite
one (see 2.4 below for more detail). Then it is not difficult to see that any
simple £N; (P, ¢) e-module is (isgmorphic to) a tensor product of a simple
t*F;-module by the simple £, N;(P, e}-module determined by p, where
A, Ng(P, e) and £ *E denote the corresponding twisted algebras (see
Lemma 2.5 below). That is, when P is abelian, Alperin’s conjecture affirms
that /(b) is the number of isomorphism classes of simple £, £-modules or,
equivalently, of simple Ji’*E‘-modules since E is a p’-group.

1.3. From this, it can be easily foreseen what should be the number k(5)
of isomorphism classes of ordinary irreducible S -representations of G
lying in the p-block &, in terms of the semidirect product L of £ and P: as
an inductive argument would show, Alperin’s conjecture implies that k(5)
is the number of isomorphism classes of simple Jt’*l:-modules or, equiva-
lently, denoting respectively by %, (L) and £, (G, b) the Grothendieck
groups of the categories of Ji’*l‘,-modules and ordinary ) -representations
of G in b, that there is a bijective isometry between ¥, (L) and L (G, b).
But, as Broué points out in [7], the existence of a suitable kind of
isometries between £, (L) and %, (G, b) implies much more than the
equality of Z-ranks: for instance the existence of an algebra isomorphism
between the centers Z((D*I:) and Z(0Gh), where b denotes the unique
primitive idempotent lifting b to Z(0G)—to apply Broué’s results, note that
there are a finite subgroup L' of L (not unique!) and a p-block &’ of L such
that the inclusion L' < £ induces a bijective isometry £, (L) .2, (L, b')
and an algebra isomorphism ¢, L = OL'6’ (see for instance Lemma 5.5 and
Proposition 5.15 in [14]). Our main result shows the existence of such a
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good isometry when E is a Klein four group which allows one non-splitting
possibility for E£. Actually, it seems likely that such an isometry always
exists when P is abelian, without any hypothesis on E,

1.4. To describe the special features of our isometry, let us consider the
(-modules 6 %, (L) and 6 #.(G, b) of central ¢-linear forms over @*E and
¢Gb endowed with the usual scalar product (see (2.8.2) below) and identify
respectively EX-(I:) and &, (G, b) with their canonical images in %%‘(E)
and €%,(G, b) (ie., identify any element of the Grothendieck group with
its character). Moreover, denoting similarly by €%, (P)* the ¢-module of
E-stable central functions on P, let us recall the ¥.%,(P)*-module structure
of €#,(L) and €F,(G, b} introduced by Broué and Puig in [8] (note
that, by Proposition 4.21 in [2], the E-stable central functions on P are
(G, e)-stable in Broué and Puig’s terms): if y e €%, (G, b) and L e €%, (P)"
we set

(A * x)usb) =Y Aus) ylusgh),

where u is a p-element of G, s is a p'-element of C (u), g runs over the set
of p-blocks of C(u) such that g“=5, and, for any g, x, is an element of
G such that ue P and e¢“<'“® = g¢ and ¢ denotes the unique primitive
idempotent of Z(¢C,(u)) -lifting g; we define similarly 475 for any
ne(g.ﬂ"e‘(ﬁ) (note that the inclusion L'< L induces a bijective isometry
€%, (LY=¢F,.(L, b’) too). We are ready to state our main result:

THEOREM 1.5. With the notation above, assume that P is abelian and E
is a Klein four group. There is a bijective isometry

A4:6F L) >CF, (G b)
such that we have
NLYy (D)=L (G, b)  and  A(Axn)=ixd(n) (1.5.1)

for any L€ 6%, (P)t and any ne 6%, (L).

1.6. It is quite clear that the second equality in condition (1.5.1) implies
that 4 fulfills Definition 4.3 in [7] (it guarantees the existence of a local
system in Broué’s terms) and therefore, by Lemma 4.5 in [7], 4 is a perfect
isometry in Broué’s terms. In particular, Theorem 1.5 in [7] applies and
the algebra isomorphism Z(%*f,)gZ(f Gb) determined by 4 maps
Z((C‘*E) onto Z(CGbh). We give here an independent proof of the last
statement which depends on the following eclementary fact on symmetric
algebras. If 4 is an (-algebra, we denote by #.%,(4) the ¢-module
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of symmetric (or central) ¢-linear forms over A and set €F,(A)=
A @, €F.{A). Moreover, we identify Z(4) and €%,(4) with their respec-
tive images in X ®, Z(A) and 6%, (A). Note that the multiplication in
A induces a Z(A)-module structure on ¥%,(A) and, consequently, a
X ®. Z{A)-module structure on 6%, (A4).

Lemma 1.7, If A is a symmetric O-algebra and u is a symmetric non-
singular form over A then €%,(A) is a free Z(A)-module of rank one
generated by u. In particular, ze X ®, Z(A) belongs to Z(A) if and only if
6F,(A)c€F.(A).

Praof. The A-module homomorphism from A4 to its (-dual
AY=Hom, (A, ¢) mapping a€ 4 on a -y is an isomorphism and it is quite
clear that a-ue€%,(A4) if and only if ae Z(4).

COROLLARY 1.8. With the notation and hypothesis of Theorem 1.5, the
algebra isomorphism A* from Z(Jf”*[‘,) onto Z(A Gb) determined by the
isometry A maps Z(0,L) onto Z(¢Gb). In particular, all the irreducible
ordinary characters of G in b have height zero.

Proof. 1t is well-known that the set Irr (L) of irreducible ordinary
characters of L is a X '-basis of 4%, (L) and determines a . -basis
ey} nermpis, Of Z(H, L) such that e,-n'=3,,n' for any 7, n' el (L)
In these 2 -bases it is easily checked that

A(z-n)=4*(z)-4(n) (1.8.1)

for any ze Z(X, L) and any ne €%, (L) and, in particular, if ze Z(¢, L)
then

A%(z)-6Z,(G, b) < €F,(G, b)

which implies that 4*(z)e Z(€¢Gh) by Lemma 1.7. Similarly, we get
(4*)" ' (z)e Z(0 L) for any z e Z(€Gb) and so 4*(Z(C, L)) = Z(0Gb).

Thus, (1.8.1) shows that A4 is a Z(Cf‘*l:)-module isomorphism between
‘&Z(I:) and Res  .(%4%,(G, b)) and, in particular 4 maps a generator of
the first onto a generator of the second; but, by Lemma 1.7, the central
(’-linear forms

1 1
Yy y—(—-ln and Y X—I(EI—)X

nelry (L) lPI zeltry (G.b)

are respectively generators of 6%, (L) and 4%, (G, b). Consequently, the
sum

_am)_
'lehr,(L‘)n(])'G:Pl g

4%1 160-1-14
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is an inversible element of Z((O*i) and therefore y{1)/|G : P| e O* for any
yelrr (G, b).

1.9. A last remark. If » is the principal block of G then E splits and
therefore Theorem 1.5 implies that /(b)=4, a fact alrecady proved by
Watanabe in [17]. In the general case, Usami had already proved that
l(b)=4 or 1 when P is elementary abelian [16].

2. NOTATION AND AUXILIARY RESULTS

2.1. We keep all the notation introduced in Section 1. Following [2] and
[81, the Brauer morphism associated to a p-subgroup Q of G is the £4-linear
map

Bry: (£G)2 — £C4(Q)

mapping x e C;(Q) onto x and ye G — C,(Q) onto zero, which is actually
an algebra homomorphism; in particular, Br, induces a homomorphism
from Z(£G) to Z(£#C;(Q)) already considered by Brauer, and therefore
any p-block f of C;(Q) determines a unique p-block of G, usually denoted
by /¢ such that Br,(f°)f=/ Here we are only interested in the
restriction

Br,: (£Gb)° — £C;(Q) Bry(b).

2.2. Following [8] a (b, G)-Brauer pair is any pair (Q, f) where Q
is a p-subgroup of G such that Br,(b)#0 and f is a p-block of C;(Q)
such that Br,(b) f'= f; then we denote by N;(Q, f) the stabilizer of f in
Ng(Q) and we set Ng(Q, f)=Ng(Q, f)/Q (and Cs(Q)=0Q Cs(Q)/Q).
Moreover, if Q= <u) we say that (u, f) is a (b, G)-Brauer element. If
(Q. f) and (R, g) are (b, G)-Brauer pairs, we write

(R, g)=(Q. f)

if R< Q and for any idempotent j of (4Gb)? such that Br, (/) f#0 we
have Brg (/) g #0 too (cf. [8, Definition 1.7]). By Theorem 1.8 in [8], g is
uniquely determined by f. Actually, if R is normal in @ we have
g= /92 <" (and the above definition coincides with Definition 3.3 in [2]).
Then, by Theorem 3.10 in [2] or Theorem 1.14 in [8],

22.1. (P,e) is a maximal (b, G)-Brauer pair and, for any (b, G)-
Brauer pair (Q, [), there is an x € G such that (Q, f) < (P, e).

Moreover, when P is abelian, Proposition 4.21 in [2] can be stated as
follows.
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LemMA 23, Assume that P is abelian. If (Q, /) is a (b, G)-Brauer pair
such that (Q, f)c (P, e) and x an element of G such that (Q, ) = (P, e),
there are z€ C;(Q) and ne Ny (P, e) such that x =zn. In particular, if U is
a set of representatives for the orbits of E in P then {(u, e“¢")},_ is a set
of representatives for the conjugacy classes of (b, G)-Brauer elements.

2.4, As we saw in 1.2 above, it is well-known from Brauer that £C(P)é
is a simple k-algebra, where & is the image of e in #C;(P), and, in
particular, we have Z(#C;(P) é) = 4 since # is algebraically closed. Hence,
by the Skolem—Noether theorem, we have an exact sequence

| ——s £* — (AC,(P) &)* —2> Aut(£C(P) &) —> 1

so that (£C,(P)é)* can be seen as a 4£*-central extension. But,
since N (P,e) acts on £C;(P)é, we have a group homomorphism
p:Ng(P,e)— Aut(#C;(P)é) and then N;(P,e) is the f£*-central
extension of N (P, e) induced by (4C,(P)é)*: that is to say, N, (P, e) is
the subgroup of

(a,A)e(AC;(P)é)* x N;(P, e)

such that n(a)=p(n) and we get an evident commutative and exact
diagram

l—— £* —— (4C,(P) &) —"— Aut(£#Cs(P)é) — 1

I id Iﬁ IV (2.4.1)

| — £* —— N (P,e) —— Ny(Pe) ——1

Now, the twisted algebra £, N (P, e) is just the quotient of the full group
algebra by the ideal generated by the elements A(a, i) — (4a, n), where 2
runs over £* and (4, 1) over N (P, ¢) (to define ¢, N (P, e) it suffices to
note that there is a unique section #£* —@* of the canonical
homomorphism ¢* — £*). Moreover, we have an injective group
homomorphism

Ci(P)— N, (P, e) (242)

mapping Ze C,(P) on (Ze,Z)e N,(P,e) and it is quite clear that its
image is a normal subgroup of N (P, ¢) intersecting trivally the image of
£*, so that the corresponding quotient is a £*-central extenston of E. We
denote by E the opposite one; that is to say, denoting by N (P, ¢)° the set
N (P, ¢) endowed with the opposite product, we have the exaxt sequence

1— Cy(P)—> NP, e)' = E— 1, (24.3)
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where Ze C;(P) maps on (zé, )~ '. The following more or less known
lemma explains already the role of £ (see also [12] and Proposition 14.6
in [147]).

LEmMMA 2.5. With the notation above, there is an algebra isomorphism
ANG(P,e)ex£C;(P)é® £ E (2.5.1)

mapping ©ie on p(R)®6(A) ", where ie N;(P, e) and n is an element of
N (P, e) lifting A.

Proof. On one hand, the multiplication induces an algebra
isomorphism (see for instance Proposition 2.1 in [13])

£C;(P)e®,CxANG(P, e)é, (25.2)

where C is the centralizer of £C;(P)é in £N;(P, ) é. On the other hand,
if ne N (P, e) and 7 is the image of 72 in N (P, e), it is quite clear that
fi~'p(i)e C and it is easily checked that the map sending 7 to 7~ 'p(n)
factorizes through ¢ inducing an algebra homomorphism £ *E — C, which
is surjective since its tensor product by £C;(P)é is so. Finally, since
dim (AN;(P, e) &) = |E| dim ,(#C;(P) &), we get £,E=C and we are
done.

2.6. In the next lemma we state a resuit from Brauer (cf. {4], (4B) and
(4C)) which is the key fact in Section 4 below to extend some isometries;
we give a complete proof of it for the convenience of the reader. Note that
E acts naturally in Z(P) and, for any ue Z(P), we denote by E, the
stabilizer of # in E. Moreover, we consider any ordinary character of G as
an (-linear form on ¢G.

LemMa 2.7. With the notation above, if y is any irreducible ordinary
character of G in b, (u, g) a (b, G)-Brauer element such that ({u), g)c
(P, e) and ue Z(P), and g the primitive idempotent of Z(OCg;(u)) lifting g
then

|G : C(;(H))| X(ug)EIEIEu' + J(O) (2.7.1)

(1
and, in particular, y(ug) #0.

Proof. Since ug € (0G)“¢™, it is clear that

2=Tr%,, (ug) € (0G)® = Z(CG)
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and that the left member in 2.7.1 is equal to x(1) 'y(z); but it is
well-known that y(1)~ !y determines an algebra homomorphism ¥ from
Z(0G) onto O; hence x(1)~'x(z)e @ and, denoting by V:Z(4G) £
the #£-algebra homomorphism induced by 4, we have to evaluate
P(TrE ) (ug)). X

On the other hand, the composition & Br, of the Brauer morphism
Br,: (£G)F — £C;(P) with the canonical map £C.(P) — #C;(P)é deter-
mines also a £-algebra homomorphism from Z(£G) onto £ = Z(£C;(P) é);
since Y(b)=1 and é Br,(b)=¢, both central characters coincide and we
have to evaluate & Br,(Tr¢ _,, (ug)).

But it is clear that (cf. [2, 2.1])

e Brp(Trg, ,(ug))=3 éBro(Trl, . («"g")) =3 éBrp(u’g”)

where x runs over a set X of representatives for C;(u)\G/P and y over the
set Y of elements of X such that P < C;(u”) and e Br,(g”)#0 (or, equiv-
alently, e Brp(g”*)=r¢). In particular, since Brp(g”)#0, P is contained in
a defect group P of g in C(u”); hence if e’ is a root of g” in Cc () (P'),
(P',e’') is a maximal (g”, Co(u”))-Brauer pair and therefore contains
(u?, g%) (cf. 2.2.1); in particular, we have Cgz(P')cCgs(w”) and thus
(P', e') is also a (b, G)-Brauer pair, which forces P = P’. In conclusion, for
any yeY, we have u*eP, so that éBrp(u’g”)=¢, and (P, e} is a
maximal (g, C;(u))-Brauer pair, so that we have y=:zn for suitable
zeCq(u) and ne Ng(P, e) (cf. 2.2.1); since P-Cgz(P)c= Cg(u), it is now
easily checked that when y runs over Y the image of n in E runs over a set
of representatives for £,\F and we are done.

2.8. We denote respectively by $£,-(G) nd €%,(G) the sets of X"~ and
O-valued central functions over G, so that €%,(G)c €%, (G), and we
identify €%, (G) with & ® , ¢%,(G) and with the set of central X -linear
forms over X'G (or OG). Following [14], we denote respectively by
&, (G) and Z,(G) the Grothendieck groups of the categories of X G- and
£G-modules (of finite dimension) and we identify &, (G) with its image in
¥Z.(G). Recall that this inclusion induces an isomorphism

H R, Ly (G)xEF,(G) (2.8.1)

and, as usual, we denote by Irr_.(G) the canonical basis of £, (G) (it is
handy to denote by +Irr,(G) the union of Irr . (G) and —Irr (G)).
Moreover, we consider €%, (G) endowed with the usual scalar product
mapping y, x' € %, (G) on

1
()(J(')G=|—G-l X oxx)(x). (28.2)

xeG
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If H is a subgroup of G, we denote respectively by
IndS: 6%, (H)—> €%, (G) and Res$: €7, (G) > %%, (H)

the # -linear maps determined by the induction and the restriction.

2.9. We identify also any element of %,(G) with its Brauer character;
that is to say, denoting respectively by #€.%,.(G) and BE€F,(G) (BEF
for “Brauer central function™) the sets of #"- and ¢-valued G-central func-
tions over the set G, of elements of G of order prime to p, we identify also
Z,(G) with its image in #€%,(G) and #E€F,(G) with X ®, BEF,(G).
Although it is also possible to identify the Brauer characters with the
O-linear forms over a suitable ¢-subalgebra of G (see Definition 2.5 and
Theorem 4.3 in [13]), we do not do so here. Recall that the inclusion
ZL(G)c #€F,(G) induces an isomorphism

0®y %,(G)= BEF,(G) (29.1)

and, as usual, we denote by Irr,(G) the canonical basis of %£,(G).
Following Brauer, we denote by

Ao CF,(G)—> BEF, (G) (2.9.2)
the restriction map, which fulfills
4 (Ly (G))= L, (G); (29.3)

moreover, we denote by €% °, (G) the kernel of < and, coherently, by
€F9(G) and £S5, (G) the respective intersections with €%, (G) and
L(G). It is clear that & induces a bijection between the orthogonal
subspace in €%, (G) of €#°,(G) and #€Z, (G), and then the inverse
map determines a section of

e BEF ,(G)— €F,(G) (29.4)

and induces a scalar product on #€ %, (G) still denoted by (, );, thus, &
and ¢, become adjoint maps. As above, if H is a subgroup of G, we still
denote respectively by Ind¢, and Res% the induction and the restriction
maps on Brauer central functions.

2.10. More generally, following Broué [6], for any p-element u of G, we
consider the “twisted” restriction

L% CF, (G)— BEF, (Cg(u)) (2.10.1)
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mapping y € $%, (G) on the Cg(u)-central function over Cg(u), which
maps s€ Cg(u), on y(us), and denote by

& BEF, (Colu)) > 6F,(G) (2.10.2)

the adjoint .# -linear map, which is a section of #%. Then, if ¥  contains
the |G| ,th roots of unity, denoting by % the subgroup of the |{u >|th roots
of unity, we have (cf. [6, Appendice])

de( Ly (G Z(U)® 7 £y (Clu))
and (2.10.3)

e ( Ly (Co(u))) = Z(A)®, Ly (G)

1Gl,
(we identify Z(%)®, £, (G) and Z(%)® , £,(Cs(u)) with their images
in ¥%,(G) and in B€%,(Cs(u))). Moreover, if H is a subgroup of G
containing u, we have

Res{o(w) - /% =d Y} -Resy,  and egoIndce) =Ind e ey,  (2.104)

the second equality being just the adjoint version of the first one which is
trivially checked.

2.11. It is well-known that any idempotent of Z(£G) determines a self-
adjoint projector over €% ,-(G) which stabilizes €%, (G) and £, (G) and
commutes with ¢~ /5, so that it determines also a self-adjoint projector
over #€ %, (G) stabilizing #€%#,(G) and Z,(G) (we leave the reader
to convince himself that the approach suggested above which identifies
BE€F,(G) with the set of central ¢-linear forms over a suitable ¢-algebra
is particularly adapted to deal with these projectors). In particular, for any
element y of €%, (G) or BE€F, (G), we denote by b -y the image of y by
the projector determined by » and set

b-€F,(G)=%F,(G,b) and b -BEF,(G)=REF, (G,b),

coherently replacing G by G, b in the above notation. Moreover, for any
p-element u of G, we have (cf. [6, Appendice])

dg(b-y)=Br(b)-L5(x) and  eG(Br,(b)-@)=b-e5(e) (2.111)

for any ye¥%,(G) and any @e#B%€F,(Cs(u)) {where Br,=Br.,,);
consequently, for any y e €%, (G, b) and any (b, G)-Brauer element (v, g),
we consider the central function

1S =ct(g-dE(x) (2.11.2)
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which still belongs to €%, (G, b} and has been already introduced by
Brauer [4]. Note that, with the notation of Lemma 2.7, we have

28 u) = y(ug). (2.11.3)

Finally remark that, sice y=Y, ,, ¥ ®, for any y, y’' € €%, (G, b) we get

6 1e= 2 (X" ") (2.11.4)
(4, 8)
where (u, g) runs over a set of representatives for the conjugagy classes of
(b, G)-Brauer elements.

2.12. Following [8], a central function A over P is called (G, ¢)-stable if,
for any (b, G)-Brauer element (u, g) such that ({u), g)= (P, e) and any
x € G such that ({u*>, g%) = (P, e), we have A(u*)=A(u); in that case, for
any y € 4%, (G, b), we consider the new central function

Axg= 3 Mu)y™?®, (2.12.1)

(4, 8)

where (u, g) runs over a set of representatives such that ({(u, g)< (P, e)
for the conjugacy classes of (b, G)-Brauer elements, which still belongs to
€F, (G, b) and does not depend on the choice of the set of representatives.
Remark that

g (Ax )= Mu)(g- L4(0). (2.12.2)

Then, by the main result in [8], if 4 and y are generalized characters, so
is 1 % x. Note that, by Lemma 2.3, we have

(2.12.3) If P is abelian, a central function over P is (G, e)-stable if and
only if it is E-stable.

In particular, in that case, ¥%, (G, b) becomes a €%, (P)*-module
through (2.12.1) and, moreover, by Lemma 2.7, (2.11.3), and (2.11.4), we
get

(2.12.4) If P is abelian, the subgroup Irr . (P)* of (6%, (P)5)* acts
Jreely on the subset Irt (G, b) of €%, (G, b).

2.13. Finally, let us lift E to a p’-subgroup of Aut(P) and denote by L
the semidirect product of £ and P. Since there are a finite subgroup L’ of
L and a block b’ of L' such that the inclusion L' = L induces an algebra
isomorphism

O,L=0Lb, (2.13.1)
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where 5’ is the primitive idempotent in Z(¢L’) lifting b (see, for instance,
Lemma 5.5 and Proposition 5.15 in [14]), all the above notation and
results apply to the pair L', b'—we leave the reader to check that they do
not depend on the choice of L'—which allows us to replace everywhere the
pair L', b’ by L (once again the point of view of considering central
O-linear forms over suitable (-algebras provides a direct approach).
Note that, for any subgroup Q of P, Br,(b’) is still a block of C,.(Q) and
consequently we identify the (#’, L')-Brauer pairs with the corresponding
p-subgroups of L’ (ie., wth the subgroups of P), omitting to mention
the block.

3. LocAL SYSTEMS FOR BLOCKS WITH ABELIAN DEFECT GROUPS

3.1. From now on, we assume that P is abelian and, in this section, we
expose the “general part” of our method, which does not depend on any
hypothesis on E. Since P is abelian, it is quite clear that E acts on the
families

{BEF,(CL(Q))}o  and  {BEF,(Co(Q), e D)}y,

where Q runs over the set of subgroups of P and, for any @, we denote
respectively by Ng(Q) and C.(Q) the stabilizer of Q in E and the kernel
of the canonical map N z(Q)— Aut(Q).

3.2. Let X be an E-stable non-empty set of subgroups of P and assume
that X contains any subgroup of P containing an element of X. Let us use
the name (G, b)-local system over X (see Definition 4.3 in [7] for a similar
terminology) for any map I, defined over X, sending Q € X to a bijective
isometry

To: BEF, (Cr(Q) = BEF, (Cs(Q), f) (32.1)

where f=¢'?), and fulfilling the following conditions

322. Forany Qe X, any ne B6F,(C,, (Q)) and any s € E, we have
Loy =To(n).

323. For any QeX and any neZ,(Cp(Q)), the sum
2 etaio Lo (dE0)(M))), where u runs over a set of representatives Uy
for the orbits of Cg(Q) in P, is a generalized character of C;(Q).

3.3. Let us be more explicit. For any Q€ X and any ne€ €%, (C:(Q)),
the sum

do(n)= ). etuo o o (digo)(m) (3.3.1)

ue ly
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is certainly an element of €%, (Cs(Q), f) since, for any ue Uy, we have
Co(0-(ud)=Cs(u)n Cx(Q) and, setting g=e“<2 <) (y g) is a
(/f, Cs(Q))-Brauer element (cf. (2.11.1)); moreover, by Lemma 2.3 applied
to the pair (f, C;(Q)), we have

Ao = et 0o s (dép) () (3.3.2)
and therefore, for any #' e €7, (C:(Q)), we get (cf. (2.11.4))

(AQ(n)s AQ(’,/))CG(Q)

=3 (o) @ Croy (1) cpig - u)

ue Uy
=10 (3.3.3)

'(recall that ¢¢, o, and ¢(;,, are isometries!). Hence we get a bijective
isometry

4y= Z E?G<Q’”FQ-<u>”’/z‘mQ):(gyf(CL‘(Q))

uellp

€T, (Ce(Q), f) (3.3.4)

and condition 3.2.2 ensures that A, does not depend on the choice
of U,, whereas condition 3.2.3 demands that £, (Cs(Q), f) contain
Ao(ZL4 (C:(Q))), which actually implies the equality

Ao (ZLy (CLON) =Ly (Cs(Q), ) (3.3.5)

since both members have orthonormal bases of the same cardinal (cf
(28.1) and (3.3.4)). Moreover, note that o oo dg=1g°d ;o (cf
(3.3.1)) and therefore we get (cf. (2.9.3) and (3.3.5))

Io(Z(Cr(Q)=Z(Cs(Q). [) (3.3.6)
which then implies (cf. (2.9.1)) that
I (BEF,(Cr(Q))=BEF,(Cs(Q), f) (3.3.7)

Consequently, since (3.3.7) is true for any Re X and the maps #¢,,, and
e¢ory Send O-valued functions to ¢-valued functions, we have

Ao (€F(C (@) =EF(Cs(Q) f)- (3.3.8)

3.4. An immediate consequence of the definition of 4,,, which does not
depend on conditions 3.2.2 and 3.2.3, is that, for any A€ 6%, (P)“¢'? and
any n€ €%, (C(Q)), we have

Ag(Axn)=7ixd,(n) (34.1)
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Indeed, for any (f, C;(Q))-Brauer element (u, g), it follows from (3.3.2),
(2.12.2), and (2.12.1) that
AQ(Z * ”)(u'g)=/1(u) eZG(Q](rQ<(u>(a/1g'[(Q)(n}))
= (Axdy(n))**.

In particular, this shows already that
3.42. There are exactly two (G, b)-local systems defined over {P}.
Indeed, since C;(P)= £* x P, we have

LAC(PN=ZL =L (Cx(P),e) (34.3)

and the generators in both members have the same norm and are E-stable;
hence, up to a sign, there is just one possibility for the isometry I'p (cf.
(2.9.1) and (3.3.6)); moreover, it is clear that 4,(1) is, up to a sign, the
restriction to Cg;(P) of the unique irreducible ordinary character of C(P)
in ¢ and, by (3.4.1), we have 4 (4)=4+ 4,(1) for any ie &, (P).

3.5. Moreover, for inductive purposes, we are interested in the following
fact, which this time depends on condition (3.2.2). Let R be a subgroup of
Q, set C;(Q)=C;(Q)/R and C5(Q) = C,;(Q)/R, denote by f the image of
fin £C¢;(Q) and identify €%,(C;(Q)) and €%, (C;(Q)), ) with their
respective images in €%, (C;(Q)) and €%, (CG(Q) f); then we have

Ap(6F, (C:(D)) =6F,(Co(0), /). (3.5.1)

Indeed, for any ve R let us consider the “translation” maps

CL(Q) Z ‘ch(Q; CL(Q;
ueUQ

and (3.5.2)

=2 €Co10)° (8u d Ey0)s
ue lg

where g, =e%@ ) for any ue U,; then it is quite clear that
CepoymMwiy=n(2) and  Z¢ 0, (xNvz)=x(2) (3.5.3)

for any ne €%, (C;(Q)), any 2e C(Q), any 1€ €7, (C;(Q), f), and any
ze C;{(Q), and therefore it suffices to prove that

‘e (Q)°AQ =dy< iy (3.54)
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But, for any € £, (C;(Q)), we have

‘oo (4o ) = Z oo o sty (n)

ue Ug
=45 ¢s0,(M)

since vU,, is still a set of representatives for the orbits of Cz(Q) in P and
the definition of 4, does not depend on the choice of U, by condition
3.2.2, which proves (3.54).

3.6. Assume that X does not contain all the subgroups of P and let Q be
a subgroup of P which is maximal, such that Q¢ X. We discuss now a
necessary and sufficient condition to extend I to a (G, b)-local system I’
over the union X’ of X and the E-orbit of Q. Since any subgroup R of P
properly containing Q belongs to X, for any ue P— (Q we still have the
map (as in (3.3.2))

€toi0°To o @0 €F - (Cr(Q) = €F( (Cs(Q), f), (3.6.1)

where f=¢“%?), Let us consider the sum

A(c]z= > ecoor® o w4y (36.2)
uelUg—Q
where, as above, U, is a set of representatives for the orbits of C(Q) in
P; by condition 3.2.2 again, A‘é does not depend on the choice of U,.
Denote by f the image of f in £C;(Q) (which is a p-block of
Co(Q)=Cs(Q)/Q).

ProPOSITION 3.7. With the notation and the hypotheses above, Ag
induces a bijective isometry

A% 6F % (Cr(0)=6F 5% (Co(Q), ) (3.7.1)
such that I5(Z% (C(Q)) = £5(Co(Q), f).

Remark 3.8. Actually the last inclusion is an equality since the same
arguments can beAapplied to (4 o) !, which would be immediately clear
had we replaced L, P by G’, b', P making evident the symmetry in our
situation. Anyway, we do not need this fact here.

Proof of Proposition 3.7. Arguing as in 3.3, it is quite clear that 4, is
an isometry. To prove the inclusion 4(6F 5 (C.(Q)))c€Z, (Cs(Q))
we argue as in 3.5: for any ve Q we have again

[%G(Qlod(é:AchlUC[(Q) (3.7.2)
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since the definition of 4% does not depend on the choice of U, and

(U, —Q)=vU,— Q. Moreover, since

€FH(Cr(Q)= ), et (BEF(CL(Q-Lu))))
ue P-Q
where, for any weP, i denotes the image of u in P=P/Q, and
Erig ) =Zoeg <o) for any 7€ BEF,(Tr(Q-<u))), it is easily
checked that

Ap(EFSNCL(@N)= )Y el (BEF(Cs(Q-<u) §,)

ueP-Q

where, for any ue P, g, is the image of ¢“c'2 >V in £C4(Q - (ud).

Now, it remains to prove that, for any 7€ 25 (C:(Q)), 4%(n) is a
generalized character. By (2.10.3) and (3.3.6), we know already that
|Gi,,A(é(ﬁ) belongs to Z(#)®, Ly (Cu(Q), f), where % is the group of
|P{th roots of unity, and therefore it suffices to prove that |C . (Q) A%(ﬁ)
is a generalized character; but, since Ag(Res¢i(Q)(7)) is a generalized
character for any subgroup R of P properly containing Q (cf. (3.3.5)), this
follows from the following lemma (the inclusion 4% (4% % (C/(Q))) <
€F,(Cs(Q)) follows also from the following lemma and (3.5.1)).

LemMa 3.9. With the notation and the hypotheses above, for any
NE€CF, (C(Q)) vanishing on Q - C(Q), we have

0 R ) C Ci
A5+ 3. o ety IS (AResELR ) =0, (3.1)

where R runs over the set of subgroups of P properly containing Q and u is
the Mobius function on the finite groups.
Proof. By (3.3.4), the left member of (3.9.1) is equal to

0 B(R/Q)
400N+ 2 e Oy Cot)

x Y IndS0(@) (b p) (Ur. ey (02 (ResELR (1)),

ue Ug
where R runs over the elements of X containing @ and, for any R, Uy is
a set of representatives for the orbits of Cx(R) in P; hence, by (3.6.2) and
(2.10.4), this sum is equal to
u(R/Q)
ZR: us.’Z—Q Ce(Q) : Cu(R)

X et of AR (TR, (ResCE BN (A E 0, (M),
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where R runs over the set of all the subgroups of P containing Q and, for
any ueP—Q, R,=R-(u) and Q,= Q- <{u). Now, replacing the pairs R,
u by the triples u, S, R such that S= R {u), this sum becomes

DI —

ucro 5 1Ce(Q): C(S)]
% et o)A & (s (Rest i (o 00, (1)) X, H(R/Q),
R

where S runs over the set of subgroups of P containing Q,=Q -<{u) and,
for any S, R over the set of subgroups of S such that R.-{(u>=S and
Q < R, which implies " , u(R/Q)=0 and we are done.

Remark 3.10. For any 7e$F % (C(Q)), it is possible to relate the
values of A‘é(ﬁ ) and 77 on suitable elements and, together with Lemma 2.7,
this fact will be useful in the next section to eliminate troublesome situa-
tions. Precisely, always with the notation and the hypothesis above, C.(Q)
is faithful on P = P/Q (since E is faithful on P) and we assume that (which
is true for instance when E is abelian).

3.10.1. There is a ue P— Q such that C.(Q-<{u))=1.

Set R=0Q-<(u) and g=¢““®, and denote by g the unique primitive
idempotent in Z(0C,(R)) lifting g. Then we claim that

3.10.2. There is a z€Z such thar A%, (7)ug)=zA(u) for any fe
€ F % (Cr(Q)). In particular, if 1€ €F,(Cs(Q), f) and (e €F, (C:(Q))
Julfill (%, Z%(ﬁ))cu(g)z (, Newa Jor any '76‘59’-2«(6—2(@) then y(ug)=
z{(u).

Indeed, by 3.10.1, we have Z,(C;(R))=Y,(P)=Z and therefore,
identifying #€ %, (P) with X', we get ¢, (7) = #(u); hence, by (3.3.6),
we also have L (Cs(R), g)=xZ and I'p(d {0, (1)) =1(1) @ where ¢ is a
generator of £, (Cs(R), g); finally, we get (cf. (2.11.3) and (3.62))
A‘é(ﬁ)(ug‘)zFR(a"(‘,L.‘Q,(ﬁ))(l):ﬁ(u)q)(l) and it suffices to take z = ¢(1).
The last statement follows from the fact that the orthogonal projection of
z over €F% (Ci;(0Q), f) and of { over 6%, (Cz(Q)) correspond one
another through 47,.

PrOPOSITION 3.11.  With the notation and the hypotheses above, the
(G, b)-local system I" over X can be extended to a (G, b)-local system I"" over
X' if and only if the bijective isometry A, can be extended to an N (Q)-
stable bijective isometry

Ay €F (Cr(Q)2CF 4 (Co(Q). f) (3.11.1)
such that 4,(L,(Ci(Q)) =L, (Cu(Q), 1)
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Proof. If I can be extended to a (G, b)-local system I’ over X', it
suffices to apply (3.3.4), (3.3.5), and (3.5.1) to I'' to get (3.11.1) and the
last equality; moreover, the N (Q)-stability follows from condition 3.2.2
applied to 7.

Conversely, if 4}, can be extended to an N (Q)-stable bijective isometry
A, as in (3.11.1), then this isometry determines a N (Q)-stable bijective
isometry {cf. (2.9.3))

Fo: BEF, (CL(Q)=BECF, (Co(Q): /) (3.11.2)

since the restriction induces isometries from %¢%, (C;(Q)) onto
BEF, (C;(Q)) and from B6F,(Cy(Q),f) onto BEF,(Cs(Q), f).
Hence I can be clearly extended to a map I'* defined over X’ and fulfilling
condition 3.2.2. We claim that this map fulfills condition 3.2.3, too; indeed,
setting as in (3.3.4)

do= Y “coorrTo w4 (3.11.3)
ue lg

it is easily checked from (3.6.2) that, for any 7€ 4%, (C;(Q)), we have
A,(7)=4dy(7) (recall that €F,(C:(Q)) is the orthogonal sum of
€F 5 (Cr(Q)) and e, o (BEF, (C(Q))). Now, if 45(L, (C(Q))=
L,(Cs(Q), 1), condition 3.2.3 follows from (3.4.1) applied to the map 4,
defined in (3.11.3), from the main result of [8] and from the following
lemma.

LEmMa 3.12.  With the notation and the hypotheses above, identifying
Z 4 (Cr(Q)) with its canonical image in £, (C;(Q)), we have

L Ax L (CL(@) =2 (CL(Q)),

where 2 runs over the set of fixed elements of C(Q) in &L, (P).

Proof. Tt is quite clear that we have C;(Q)=P -L’, where the sub-
groups P’ and L’ centralize one another, P’ contains Q, and P'nL'=1;
hence, with evident identifications, we have

L (Cr(Q)=Zy (P)®7 Ly (L),
L(L)c L (Cr(Q))  and  Z, (P)C Ly (P)HD
(since L' and P’ are respectively quotients of C;(Q) and P) and it is easily
checked from the definition (2.12.1) that, for any e £, (P') = &y (P)+'?

and any ne %, (L')c 2,(C(Q)c £, (CL(Q)), we have Z+n=i®n,
which proves the lemma.
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3.13. A last remark. Note that N,.(Q)# C.(Q) implies Q#1 and, in
particular, |Ng(@Q, f)| <|GJ; that is, the stability condition can be always
discussed in a group of smaller order than G, allowing inductive arguments.
Indeed, although f is not necessarily a p-block of Ng4i(Q, f), but only of
C;(Q), the next proposition shows that the p-blocks of N;(Q, f) covering
f correspond bijectively with the p-blocks of N;(Q) and that this bijection
preserves the defect groups and the inertial quotients. Set P= P/Q and
denote by C(P) the subgroup of £ which stabilizes Q and acts trivially on
P, and by Cz(P) its converse image in E.

ProprosITION 3.14.  With the notation and the hypotheses above, the
Brauer morphism Brp: (4N4Q, ) — ;(C,;,G(Q’f)(l_’) induces a bijection
between the set of p-blocks of N;(Q, f) covering [ and the set of orbits of
N¢(Q) in the set of primitive idempotents of Z(£, C z(P)). Moreover, for any
p-block of N;(Q, f) covering [, P is a defect group and the image in Aut(P)
of the stabilizer of a primitive idempotent of Z(£,Cz(Q)) in the correspond-
ing Nz(Q)-orbit is an inertial quotient.

Proof. Set N=N_(Q, /) and N= N/Q. We know from Brauer that fis
a p-block of C;(Q) and P is a defect group of f in C;(Q); hence any
p-block of N covering f has a defect group having the intersection with
Ci;(0Q) equal to P (cf. [11, 4.27); but, by Lemma 2.3, the quotient
N/Cs(Q) is a p’-group (actually, it is isomorphic to N (Q)/C(Q)). In
conclusion, P is a defect group of any p-block of N covering f; these blocks
are exactly the primitive idempotents of (§Nf)y and none of them is
annihilated by the Brauer morphism Br: (kN)” — #C5(P). On the other
hand, it is not difficult to check that (cf. [2, 2.7])

Brp((4Nf)F) = (£C,(P) Brp(f)) 3" (3.14.1)

Hence Br; induces a bijection between the sets of primitive idempotents of
(NF)¥ and (£Cg(P)Brps(f))¥*'P (this statement is essentially Brauer’s
First Main Theorem!) and it is quite clear that, denoting by Brp(f) the
image of Bry(f) in £Cx(P) (ie., by Brp the corresponding map), the
canonical map Cg(P)— Cz{(P) induces a bijection between the sets of
primitive idempotents of (£Cg(P) Brs(7))¥*® and (4Cg(P) Brp(f))F* P
(as in 2.2, Ny (P)= Ny(P)/P).

Now, since fis a p-block of N too, it follows from 2.2.1 applied to N, f
that Br,(f)=Try"{&, (e) (since, for any primitive idempotent e’ of
Z(£C;(P)), € Brp(f)=¢" is equivalent to (Q, f)< (P, ¢')). Then, identi-
fying respectively Cs(P) and Ny (P, e) with the corresponding subgroups
of Cx(P) and Ny(P), we get

Brp(f)=Tr{0), (&), (3.14.2)
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where, as usual, ¢ is the image of e in #C¢(P) and, since ée” =0 for any

ne Ng(P)— Ny(P, e), it is not difficult to see that the map
TrRd, ) (A(Cg(P)) )Y — (4T (P) Brp(F)T7P, (3.14.3)

where Cg(P), = Cx(P)n Ny(P, e), induces a bijection between the sets of
primitive idempotents of both ideals.

Finally, consider the converse image H of Cr(P), in Ny(P, ¢); since
Co(P)< H, e is a p-block of H too, (P, ¢) is also a maximal (e, H)-Brauer
pair, and it is quite clear that H/C;(P)= C.(P). Hence, it follows from
Lemma 2.5 that there is an algebra isomorphism

A(Cx(P);)é=£C;(P)é® £, Cs(P) (3.144)
in such a way that we get
(£(Cg(P);) &)+ ") = (£, Cx(P))V=@ (3.14.5)

(note that, since & is a p-block of C;(P) of defect zero, and C.(P) acts
trivially on £, C¢(P), in a first step we get (£(Cg(P),) €)5¢ P = £, C(P)).
It is now clear that (3.14.1), (3.14.3), and (3.14.5) provide the announced
bijection.

Moreover, since we have the isomorphism (cf. (3.14.4))

(#(Cg(P);) )7 P Z(£, C(P)) (3.14.6)
and the algebra homomorphism
Tr&p) : (A(Cx(P).) P - (4Cx(P) TrEEE (2))57P,  (3.14.7)

any primitive idempotent i of Z(£, Cz(P)) determines a primitive idem-
potent of (4Cx(P)Tr&i,(€){"". But (£Cx(P)Brp(f))5"" maps
onto the ideal (4Cg(P)Brp(f))c*® of 4£Cgx(P) which contains
(£Cx(P) TrE5). () 7P (cf. (3.142)). Hence, i determines then a
primitive idempotent of Z(£Cg(P) Brp(f)) which is clearly a root of the
corresponding p-block of N, and the image in Aut(P) of the stabilizer in
Ng(Q) of i coincides with the image of the stabilizer in Ng(P) of this
idempotent, which is the inertial quotient of the root, proving the last

statement.

4. EXTENDING ISOMETRIES

4.1. As in Section 3, we assume that P is abelian and, from now on, that
E is a Klein four group. In this section we prove our main result arguing

481:160/1-15
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by induction on |G|; actually, we prove the following (slightly) stronger
result.

TurorReM 4.2. With the notation and the hypothesis above, there is a
(G, b)-local system over the set of all the subgroups of P.

4.3. By the equalities (3.3.8), (3.4.1), and (3.3.5) applied to the trivial
subgroup of P, this theorem indeed implies Theorem 1.5 (setting 4= A4,).
Of course, if Theorem 4.2 is true then we obtain by restriction a (G, b)-local
system I” over any E-stable non-empty set X of subgroups of P which con-
tains any subgroup of P containing an element of X. Conversely, by 3.4.2,
to prove Theorem 4.2 it suffices to show that if X and I' are as above, X
does not contain all the subgroups of P and Q is subgroup of P maximal
such that Q ¢ X then there is a (G, b)-local system I’ over the union X’ of
X and the E-orbit of (. Moreover, notice that, in that case, for any Re X
we have necessarily (cf. (3.2.1))

Fr=1Tgel%, (4.3.1)

where [ is a self-isometry of BEF, (CL(R)) and it is easy to check that
the map I, defined over X, sending Re X to I, is an L-local system. Con-
sequently, we have to show that, up to modification of our starting (G, b)-
local system I" with a suitable I:-local system over X, I can be extended to
a (G, b)-local system /"’ over X', But we claim that, by Proposition 3.11, it
suffices to prove that, denoting by f the image of f = ¢ @) in Z(£C;(Q)),
the isometry determined in Proposition 3.7 by the modified (G, #)-local
system [~

AY: L5 (C(@) = L5 (C6(Q), f) (43.2)
can be extended to an N (Q)-stable isometry
Ao: Le(Cr(Q)) > Ly (Cs(Q), 1) (4.3.3)

Indeed, since any jelrr, (Cg(Q), f) is not projective and therefore not
orthogonal to #%, (Cs(Q), f), it follows from (2.8.1) and (3.7.1) that  is
not orthogonal to 4,(%Z,, (C:(Q))), which implies that 4, is a bijective
isometry and Proposition 3.11 applies. From now on, we prove the
existence of 4.

44. Set P=P/Q. If |C,(Q) =1 then C;(Q)=£* x P and we have

L% (C@)= [l ZE-p) (4.4.1)

Lelrry (P)
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where p denotes the trivial character of P. Since p>3 and Q#P,
Irr , (C;(Q))=1Irr . (P) contains at least two characters { and {’ different
from p, and we have clearly

Ay¢—-p)y=C{—p and AL —p)=0—5, (44.2)
where £, &, pe +1Irr,, (Ci(Q), f) are pairwise orthogonal and uniquely
determined by (4.4.2). Now, we claim that

443. For any C”‘elrr‘f(F)—{C,C’,p} there is a unique fre
+1rr, (Co(Q), /)= {£0 £, 15} such that AY({"—p)={"

Indeed, the possibility that 49 ({"—p)={+{ implies that 0={(1)+
{'(1)=2p4(1), a contradiction. Moreover, it is clear that
444 If{, el (P)—{{, U, p} and (" # (" then (", {") ey =0.

Consequently, if |Cz(Q)] =1 then 47, in (4.3.1) can be extended to a unique
isometry 4, as in (4.3.3), the uniqueness guaranteeing the N, (Q)-stability.

4.5. Assume now that [C (@)} =2. Once again, C;(Q) splits; in
particular, [Irr . (Cg(Q))| =2 and it is not difficult to get

£5(C; Zz;*g ¢+ch p) (45.1)

where p=3,¢, & runs over Irr, (Cxz(Q)) (identified with its canonical
image in Irr , (C;(Q))), 4 over Irr . (P)“5'?, and { over the set of charac-
ters in Irr , (C;(Q)) of degree 2 (note that 4 * & is just the tensor product
of linear characters and that A= { is still an irreducible character of
degree 2). If | P| =3, we have simply

L% (CL(@)=Z(~p), (4.5.2)

where [elrr, (Cz(Q)) and {(1)=2, and, since 4% is N (Q)-stable, it is
quite clear that

453. Thereare (, & &€ +Irrf(CG(Q) f) pairwise orthogonal such
that N (Q) fixes p=E+ & and {, and we have AQ(C py=C—p.

So we may assume that Irr , (C;(Q)) contains at least two characters {
and {' of degree 2; then we may choose the notation in such a way that

A% —p)={-p={-((+&) and AL —p)={—p  (454)

where C, gf R E’e iIrr_,(C'G(Q),f) are pairwise orthogonal and f, f’ and
the set {£, &'} are uniquely determined by (4.5.4).
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4.6. Now, we claim that

4.6.1. Forany ["elrr,( L(Q)) {C ('} such that {"(1)=2 there is a
unique ("€ +1rr , (Co(Q). f)—{ £+ 8 + & + &Y such that 45" —p)=
{r—p.

Indeed, if {"elrr (C:(Q))—{{, ¢}, £"(1)=2, and there is no (" as
above, we may always choose the notatlon in such a way that

Ao =p)={+{-¢ (4.62)

Then, for any (" elrr . (Cz(Q))~ {{, (', {"} such that {”(1)=2, we have
45" —p)=C+{ — & which, together with (4.5.4) and (4.6.2), implies
that pe €F % (Cs(Q), f) and therefore that %, (C;(Q), f) contains
£ & and &, a contradiction. Consequently, &, &', and &” are the unique
characters in Irr , (C;(Q)) of degree 2, which implies that either |P| =7 or
|P|=9 and Irr , (P)“5@ = {1, 4, 1'}. In the first case, we have

Irr%’(C_‘G(Q)s f): {fy El’ é’ E’}

(cf. (3.7.1), (4.5.1}, (4.5.4), and (4.6.2)) which contradicts Brauer’s resuit on
blocks of defect one [3]. In the second case, we have (cf. (4.5.4) and
(4.6.2))

3y(Gse—8)=E—E and SN sE—8)=E,—& (463)

where &;, £,.eTrr,, (C5(Q), f) are orthogonal to one another and to ¢, £,
£, and &; then it follows from (4.54), (4.6.2), and the first equality in
(4.6.3) that Z?z()“ x & — &)= — €, — £ which does not agree with the second
equality in (4.6.3), and (4.6.1) is proved. Moreover, it is quite clear that

464. If 0", (" el (Co(@)— {0} ("()=2={"(1) and {" #{”
then (£, {") e =0-

4.7. On the other hand, if |Irr , (P)“5@| # 1 then |Irr, (P)“'?)| > 3 and
Irr . (Cz(Q)) contains at least three characters of degree 2 (cf. 2.12.4); thus,
it is not difficult to check that, if 4, A’eIrr, (P)“*?'— {1} and A#4', we
may choose the notation in such a way that, for any &elrr . (Cs(Q)), we
have

Ayixi—8)=6-¢8  and Y E-8)=& ¢ @11

where £, &, elrr,, (Cs(Q), f) and all them are pairwise orthogonal and
orthogonal to {£”},-u {"},., where ¢” runs over Irr, (Cg(@)) and ("
over the set of characters in Irr , (C;(Q)) of degree 2. Now, it follows that
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4.7.2. For any Eelrr . (Cz(Q)) and any A" e lrr , (P)“E@ — {1, 1, 1}
there is a unique €,.¢€ iIrrf(C_’G(Q),f)—{j_-f, +€:, +f,1 Jeu {+f”}c R
where ¢ runs over Irr . (Cz(Q)) and [ over the set of characters in
Irr,, (C;(Q)) of degree 2, such that 4%(A" x ¢ —E)=E,. — E. Moreover, if
f, ére Irrf(CE(Q)), )‘,”, A///e Irrf(F)CE ) {1’ A‘., l’}, and(;\,”, é) ;,__ (;'m, él)’
we have (€., f;:")c,;(g) =0.

Thus, setting £, =& and &, =¢ and putting together 4.5.3, (4.5.4), 4.6.1,
464, (4.7.1) and 4.7.2, it is quite clear that
_AT3. If |Ce(Q) =2 then 4} can be extended to an isometry
Ao Ly (Cr(Q)) ~ L (Cs(Q), f) defined by

A_Q(l*é)=£}. and ZQ(C):
Jor any Aelrr ,(P)E'D, any Eelrr, (Ce(Q)), and any {elrr,, (C(Q))
such that {(1)=
Actually, it can already be proved that &, = 1 = £, but we do not need this

fact in our proof.

4.8. Finally, we claim that the isometry defined in 4.7.3 (actually, any
1sometry extending A" to #, (C;(Q)) when |P| >3) is N.(Q)-stable. We
may assume that NE(Q);éCE(Q) so that N.(Q)= E. Since A% is already
E-stable (cf. 3.2.2 and (3.6.2)), it suffices to prove that the isometry induced
by 4, from Z,(C:(Q)) to Z(Cs(Q), [) (cf. (2.9.3)) is also E-stable. But,
since E fixes p and stabilizes the set of { e Irr,, (C;(Q)) such that {(1)=2,
E fixes p (cf. 4.5.3, (4.54), and 4.6.1) and therefore the action of E on
Z,(Cz(Q)) and on £, (C(Q), f) solely depends on the action of E on the
E-stable sets

{H’/CL‘(QJ(é)}felﬂ'x(CE(Q)l and {dCG(Q)(E)}{eIrrx(CE(QJ)‘ (481)
On the other hand, the bijective isometries
Ly (CL(0)= Ly (Cr(Q))
and (4.8.2)
t: L (Co(Q), )= Ly (Cs(Q), /)
defined by (cf. (4.5.1), 4.5.3, (4.5.4), 4.6.1, 4.64, (4.7.1), and 4.7.2)
tAx & =& )= and #)=E&,#={ (483)

where Zelrr,, (P)EQ, (& &1 =Trr, (Ce(Q)), and {elrr, (Cz(Q)) is
such that {(1)=2, stabilize LS (C;(Q)) and £ (Cs(Q), f), act non-
trivially on the sets (4.8.1), and fulfll (cf. 4.7.3)

Ayet=10d,. (4.8.4)
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In particular, since these sets have just two elements, for any s € E the bijec-
tive isometry of £, (C;(Q)) (resp. of Z,(Cs(Q), f)) determined by s is
either the identity or the bijective isometry determined by 7 (resp. by 7).
Consequently, it suffices to prove that

4;8.5. E acts trivially on lrr ,(C,(Q)) if and only if it acts trivially on
Irr (Co(Q), ).

49. On the other hand, by 3.13 and Proposition 3.14, it follows from
[15] and the induction hypothesis on |G| that

49.1. The numbers of isomorphism classes of simple £N;(Q)- and
AN (O, f) f-modules coincide.

But since N (Q, f)/Cu(0)= E/C(Q) (cf. Lemma 2.3), if E does not act
trivially on Irr,(Cq(Q), f) then IndZ5(%/(¢) is an irreducible Brauer
character for any ¢ elrr,(Cg(Q), f) and there is just one isomorphism
class of simple £N;(Q, f) f-modules (which implies that f is a block
of Ng(Q.f)) whereas, if E acts trivially on Irr (Cs(Q), f), any
pelrr (Cs(Q), f) can be extended to an irreducible Brauer character of
Ns(Q, f) (since N(Q, f)/Cs(Q) is cyclic), so that the induced character
is the sum of two irreducible Brauer characters, and therefore there are
exactly four isomorphism classes of simple £N;(Q, f) f-modules. Similarly,
the number of isomorphism classes of simple #N(Q)-modules is four or
one according to whether or not E acts trivially on Irr,(C;(Q)). Hence,
4.8.5 and therefore the N (Q)-stability of 4, follow from 4.9.1.

4.10. Assume finally that C(Q) = E. First of all, assume that £ does not
split. In that case ¢, £ is isomorphic to a full matrix algebra over @ (of
degree 2) and we denote by p the corresponding irreducible character in
Zo(C:(Q)) (determined by the restriction from the exact sequence
1 - P—C;(Q)— E—1); then it is quite clear that

L5 (Ce(@)=2 Z(E—p) + 3 Z(L - 2p), (4.10.1)
4 ¢

where ¢ and { run respectively over the set of characters in Irr , (C;(Q))
of degrees 2 and 4. Since E acts faithfully on 2, Irr, (C;(Q)) contains at
least two characters ¢ and &’ different from p such that ¢(1)=2=¢'(1) and
we may choose the notation in such a way that we have

AYe—p)=€—p and  AY'-p)=E&-p,  (4102)

where & &, pe +Irr »(Cs(Q), f) are pairwise orthogonal and uniquely
determined by (4.10.2). Now, it is not difficult to see that
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4.103. For any &"elrr,(C; (Q)) {& &, p) such thar £"(1)=2,
there is a unique £" € +1Irr (C(Q), f)—{ +& +¢&, + 4} such that

2‘5(:"—p)=5"—ﬁ.

Moreover, if ", " el (Co(Q))— (¢, & p}, &7 #L”, and {'(1)=2=
(1), then (£, €")cp0)=0.

On the other hand, Irr,.(C;(Q)) contains some character of degree 4 and
we claim that

4.104. For any {elrr,(C C(Q)) such that {(1)=4 there is a unique
le +Irrf(CG(Q) f)—{+¢ ”} «» where {" runs over the set of characters in
Irr (C(Q)) of degree 2, such that A° oll{—2p)= £~ 25.

Indeed, if {elrr, (CA(Q)), {(1)=4, and there is no { as above, for any
& eTrr ,(C(Q)) such that £”(1) =2, we have (4%5({ — 2p), & Yooy = 15 80,
in that case, there are in Irr ,(C,(Q)) at most four characters of degree 2
differents from p. This is only possible if |P| =9 and then

A9 —2p)=Y, & 5, (4.10.5)
'z

where £” runs over the set of characters in Irr ,.(C(Q))— {p} of degree 2,
which implies that 3pe £ (Cs(Q), f), a contradiction. Moreover, it is
quite clear that

4.106. 1f<: Ueltr (Cp(Q)), {#¢ and {(1)=4={"(1) then we have
& C)CG(Q)

It follows easily that, if C(Q)= E and E does not split, the isometry ZOQ
in (4.3.2) can be extended to an isometry 4, as in (4.3.3) (a fortiori N z(Q)-
stable since N (Q)= CgQ)).

4.11. Assume now that E splits (as above, C,(Q)=E) and choose a
splitting £ = #* x E. Denote respectively by &, p, and p, the restriction to
C;(Q) of the trivial character of E, the regular character of E, and the
regular character of E/F for any nontrivial proper subgroup F of E, and set
op=p—prand Eg=pr— & It is easily checked that

LUCHQN =T L E=8)+ T Zh* Ep—C5)

+ 2 Zlpr—pr)+ 2 Lve—op)+ ), Z({—p), (41L1)
¢

F.ur F.ve

where A runs over Irr,(P)%, F runs over the set of nontrivial proper
subgroups of E and up, v and { run respectively over the sets of
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characters in Irr,(Cz(Q)) such that, setting 2 eygy=4 (cf. (29.2)), we
have

dup)=4d(pr),  d(ve)=d(op), and  [(1)=4

Since E acts faithfully on P and C.(Q)= E, E acts faithfully on P too and
therefore there at least two nontrivial proper subgroups F and F' of E and
two irreducible ordinary characters y, and up of C;(Q) such that «(uz) =
Z(pr) and &(ug)=d(pp); then we may choose the notation in such a
way that we have

Z%(uF—pF)=ﬁF_€_£F and Z%(NF"PF')=ﬁF"E‘EF',
(4.11.2)

where €, &,, &, fip, fip€ +1Irr ,(C4(Q), f) are pairwise orthogonal, and
we set

pr=E+&; and  pp=E¢+&.. (4.11.3)

Indeed, if AY(ur—pr)=3+7 +1" and A% (up — pr)=j+i —%", where
50 1" e £l (Co(Q), 1), then we get 27" € L% (Cs(Q), /), a contra-
diction.

4.12. On the other hand, since E acts faithfully on P, there is at least one
irreducible ordinary character { of C;(Q) such that {(1) =4. First of all, we
claim that (£, ZOQ(C —P) g #0- Indeed, arguing by contradiction we
have necessarily

AW—p)=C+fip+ip—Er—Ep, (4.12.1)

where (e +Irr (Ci(Q), f) is orthogonal to p, pr, fir, and fip.. Now, if
vy and v, are charaters in Irr,(C;(Q)) such that (v,;)=(c;) and
d(vp )= d (o) (note that the existence of u, and u. forces the existence
of v and v,), it is not difficult to check that

4.122. We have [Pl=9 and there are unique Vg, Vg€
+Irr , (Cs(Q), f) orthogonal to pr, pr, fir, fi, and { such that

Z%(”ﬁ'_ap)=ﬁr+f—gp' and Z%(VF’_O-F‘)={)F’+5_£F'

In particular, since 49 is completely determined by (4.11.2), (4.12.1), and
4.12.2 (cf. (4.11.1)), for any ne LS (C(Q)) we get

(Ar> Ap(M) g0y = €+ brs My (4.12.3)

then, it follows from 3.10.2 that, for any ue P — (Cp(F)w Cp(F’)), denoting
by g the unique primitive idempotent in Z(OC{Q - {u))) lifting e o2 <*>),
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there is zeZ such that fi.(ug)=2z({(u)+ pu))=0, which contradicts
Lemma 2.7 (note that (4.11.2), (4.12.1), and 4.12.2 contradict also Kiyota’s
main result in [10]).

4.13. More precisely, we prove now that
4.13.1. We have (&, A%L —p))eyo) = —1.

Indeed, arguing by contradiction, by (4.11.2) and 4.12 we have necessarily
Ay -p)={-2¢ (4.132)

where (e +Irr (C5(Q), ) is orthogonal to & &, &, fip, and jip. In
that case, for any 4elIrr.(P)%, it suffices to consider the images by A9 of
the characters A« & — &, Ax Ep— &g, and 2 * & — Ep to conclude that 4 is
the trivial character of P and therefore that

4.13.3. We have Co(E)= Q.

Moreover, if vy, and v, are characters in Irr(C;(Q)) such that
dvp)=d(og) and £{vy)= (6 ), Wwe may choose the notation (4.11.2)
in such a way that

AYve—op)=Vp—6F and  AY(vp—0p)=Vp—Gp, (4134)

where ., ¥, € tIir (Cs(Q), f) are orthogonal t0 pp, pp, fig, fig, and
f, and we set &F=§‘—é‘,~ and &F,=f—¢fp. On the other hand, let F” be
the third nontrivial proper subgroup of E; if Irr (C;(Q)) contains a pair
of characters p,. and v, such that &{up)=(pg-) and L (v )= d{(0),
by 4.11.2, 4.13.2, and 4.134 it can be easily checked that, up to a suitable
choice of the notation, we get

A pr—pr)=fip-—pp  and  AYvp—0p)=Fp =6, (413.5)

where pp=C+ ¢, Gpo=C—ECp, and Cp,y fip, Vpr€ 2l (Col(Q), f)
are pairwise orthogonal and orthogonal to gz, gr, fip, fAr, Vp, ¥, and
At this point, it is not difficult to check from (4.11.2), (4.11.3), (4.13.2),
(4.13.4), and (4.13.5) that

4.13.6. For any {'elrr ,(C(Q))— {{} such that {'(1)=4, any non-
trivial proper subgroup D of E, and any pair of characters uyp and vy, in
It (CHQ)) — {1p, vp} such that d(up)=d(pp) and d(v))= o(0,), we
have  A%(1p— pp)=fip = fpr AY(Vp—0p)=Vp—Gp, and AYL —p)=
g’—2f, where fiy, V5, ('€ i—Irrf(CGA(Q),f) are orthogonal to &, &g, &,
Epvy Opy Vg, gy Ve, flpe, Vpo, and (. Moreover, all these characters are
pairwise orthogonal.
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In particular, since 47 is completely determined by (4.11.2), (4.11.3),
(4.132), (4.134), (4.13.5), and 4.13.6 (cf. (411.1) and 4.13.3), for any
ne L5 (C:(Q)) we get

(e, 290D o) = <Z Vi— Zﬂu ) ) (4.13.7)

CL@)

where ur and v run respectively over the sets M and N of characters in
Irr,, (C (Q)) such that Z(uy)=(p,) and <£(vy)= &(a); then it follows
from 3.10.2 that, for any ue P — (Cp(F)u Cp(F')u Cp(F")), denoting by g
the unique primitive idempotent in Z(OC4i(Q -<u))) lifting e <>},
there is ze Z such that

fr(“§)=2< Y Vi) — Y u;(u)>=

vee N Hnpe M
which contradicts Lemma 2.7. This contradiction proves 4.13.1.

4.14. As above, let F” be the third nontrivial proper subgroup of E.
Now, it is quite clear that we may choose the notation in (4.11.2) in such
a way that we have

A% —p)=f—p and  p=E+E& i +E,  (4140)

where £, ;. +Ir +(Cs(Q), f) are orthogonal to one another and to g,
Prs fp, and fip.. As above, let vp and v, be characters in Irr, (C;(Q))
such that &(ve)=&(0s) and &(vy)= (o). The next step is to show
that, up to modification of the notation in (4.14.1), we have

G A0 r =0 ey =0=C A0 — 01 Do (4142)

Indeed, arguing by contradiction and modifying the notation if necessary,
we reduce to the three possible decompositions

ZZ(VF-GF)z ~I2F—é-él-‘" and Z%(VF'_O'F‘)= ‘ljr"‘g+f

(4.14.3)
Bovs—apmi—brmbp and Aoy — o) miip Ert ]

(4.144)
ZOQ(VF—GF)ziF—EF'_EF” and Z%("F'—Ur):i"gf'f‘f

(4.14.5)

where je +Irr (Cy(Q), f) is orthogonal to g, fi,, fis, and (. With
decomposition (4.14.3) we get

Agltrt i+ vptvp—C—p)= =3¢
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a contradiction. Decompositions (4.14.4) and (4.14.5) force { to be the
unique irreducible ordinary character of C,(Q) of degree 4; consequently,
we have |P|=9 and therefore Z‘é is completely determined by (4.11.2),
(4.14.1), and either (4.144) or (4.14.5). In particular, for any

ne £5(C:(Q)) we get
(& Ay egar=E+ Vs Meygy (4.14.6)

as above, it follows then from 3.10.2 that, for any ue P — (Cp(F)u Cp(F")),
there is zeZ such that {(ug)=z({(u)+ vp(u))=0, which contradicts
Lemma 2.7 (since |P|=9 we could again apply Kiyota’s main result in

[10]).
4.15. Assuming that the notation in (4.14.1) has been chosen according
to (4.14.2) and setting

éF:EF’+éF" and 6F'=EF'+EF" (4151)
We now prove that
4.152. There are Vp, Vpe tlr (Co(Q), f) orthogonal to one

another and to p, fig, fip and { such that

AYvp—6p)=Vp—6p and  AY(vp—0p)=Vp —6p.
We argue by contradiction; checking all the cases when 4.15.2 fails and
interchanging F and F’ if necessary, we find the two possible decomposi-

tions

Avp—0)=f—6, and  AYvp—op)= —fip—E—Ep (4153)
AYvp—0p)=7—6, and  AY(vp—0p)= —fip—Er—En  (4154)
where je +Irr (Cy(Q), /) is orthogonal to , fir, fis, and . It is quite
clear that both decompositions force p, to be the unique irreducible
ordinary character of C;(Q) such that &(ur)=(pr) and impede the

existence of nelrr(C(Q)) such that &(n)=d(pg-); then, it is not
difficult to check that

4.15.5._ We have |Cp(F')|=3 and |Cp(F")| =1, and for any up,
Vi I (C(Q)) = (g ve} such that d(uy)=d(ps) and d(vy)=d(ay),
and any " e lrr (CH(Q))— {{} such that {'(1)=4, we have

Ap(Ur—pr)=fr—pr,
AYVp—0p)=Fp =65, and Al —p)={ -4,

where {', Ly Ve +Irr  (C(Q), f) are orthogonal to p, fig, fip, Vg, ¥y,
and {. Moreover, all these characters are pairwise orthogonal.
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Now, Z‘Z? is completely determined by (4.11.2), (4.14.1), 4.15.5, and either
(4.15.3) or (4.15.4) and therefore, for any ne £ (C(Q)), we have in both
cases

(/jl”a Z?g(n))c‘g(g) = (ﬂl-" — Ve n)CL*(Q)' (4156)

Hence, in both cases, it follows from 3.10.2 that, for any ue P— (Cp(F)u
Cp(F'")), there is a zeZ such that [ {(ug)=z(u(u) - ve(u))=0, which
contradicts Lemma 2.7. This contradiction proves 4.15.2.

4.16. Now, it is not difficult to check from (4.11.2), (4.14.1), and 4.15.2
that

4.16.1. For any (' elrr J(C Q) —{{} such that {'(1)=4, any
De{F, F'} and any pair yp, and vy in It ,(C(Q))— {pp, vp} such that
dup}=d(pp) and £(vip) = d(o,), we have

Z%(#b‘ﬂn)=ﬁb“ﬁpa

Z%(v,D—O-D)=“’,D—&D, and A%(C'—p)=f’_ﬁ’

where i, ¥y, ('€ £1rr (C4(Q), f) are orthogonal 10 B, fir, Ar, Vp, Vr,
and {. Moreover, all these characters are pairwise orthogonal.

If Co(F")=Cp(E)=Q then A4, is completely determined by (4.11.2),
(4.14.1), 4.15.2, and 4.16.1; in that case, it is now easy to construct an
isometry 4, extending 47, to £, (C(Q)), which is a fortiori N,.(Q)-stable
(since N(Q)=CL(Q)).

4.17. Assume now that Cp(E)# Q. In that case Irr (P)* contains at
least one nontrivial character and, setting ¢,, =¢ and ¢,,; =¢, it is quite
easy to check from (4.11.2), (4.14.1), 4.15.2, and 4.16.1 that

4.17.1. For any ielrr ,(P)*— {1} and any proper subgroup D of E,
we  have Z%(A xEp—Cp)=Cpa—Cp, where & elir (Co(Q), f) s
orthogonal to p and to all the characters 7 when y runs over the set of

irreducible ordinary characters of C(Q) such that d(y)e {d(py), 4(ps),
d(O'[:), d(GF’)s 0/(/))}

Then, setting &, =&, and f,)‘ =&, for any proper subgroup D of E
and, coherently with (4.11.3) and (4.15.1), setting

pro=E+&p  and  Gp=Ep+ép, (4.17.2)

it is still not difficult to check from (4.11.2), (4.14.1), 4.15.2, 4.16.1, and
4.17.1 that
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4.17.3.  For any pair sg- and vp. in Irt (C(Q)) such that o(pg.)=
d(pp) and d(vp )= d(0 ), we have

By~ pr)=fipe—pr  and  AYvp—0p) =g~ b,

where fi,., $p.€ It (C5(Q), f) are orthogonal to all the characters é D.i
and § when A runs over Irr . (P)%, D over the set of proper subgroups of E,
and x over the set of irreducible ordinary characters of C(Q) such that
d(y)e{d(ps), d(ps), d(0f), d(og), d(p)}. Moreover, all these characters
are pairwise orthogonal.

Once again, since 47, is completely determined by (4.11.2), (4.11.1),
4.15.2, 4.16.1, 4.17.1, and 4.17.3, it is easy to construct an isometry ZQ as
in {4.3.3), which is a fortiori N (Q)-stable.

4.18. Finally, assume that Cp(E)=Q # Cp(F") (note that the existence
of u, and u, forces Q to be also different from Cp(F) and Cp(F')). In that
case, let us point out first that there is an Z-local system I~ over X which
cannot be extended to X'. Indeed, it is clear that C.(F")e X and that, for
any Re X such that Rc C,(F"), we have

[Irr (C£(R)) =2, (4.18.1)

so that there is a unique self-isometry /s of #€.%,(C ;(R)) permuting non-
trivially the set Irr (C(R)) (since the two characters in Irr (C/(E)) have
the same norm); then let /" be the map, defined over X, sending Re X to
[z if Rc Cp(F") and to the identity otherwise; it is clear that [~ fulfills
condition 3.2.2 and, for any Re X, denoting by 4, the self-isometry of
€F,(C:(R)) obtained from I in (3.3.4), it is not difficult to check that 4,
permutes Irr (C;(R)) (precisely, if Rc Cp(F"), ielrr(P)F, and
{n,n'} =Tt (F")< Irr . (Cz(R)), we have

dp(Axmy=axny and Ag(Asxn)y=Aixn

and A, fixes any xelrr  (C L(R)) such that y(1)=2); hencc I is indeed an
L-local system. Moreover, it is clear that, denoting by A° the self-isometry
of €#°%.(C/(Q)) obtained from I in the Proposition 3. 7 for any pair p..
and vp. in Irr . (C;(Q)) such that (up)=d(pp.) and &(vp.)=d(0),
we have

Z(é(#r” —pp)=Cpllp— O p and Z%("F“ —0p)=€pvpe—ppe
(4.18.2)

@Ote that {ppp=Cp e, éFvF”=éF'vF"a and {ppp-=Cppp-=0p) and
4 fixes all the generators of Z°%(C(Q)) appearing in (4.11.1) which are
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different fromTthose appearing in (4.18.2). We leave the reader to convince
himself that 4% cannot be extended to a self-isometry of £,(C/(Q)).

4.19. Always assuming that Cp(E)=Q # Cp(F"), there is at least one
irreducible ordinary character u- of C;(Q) such that &(u..)=(pg-) and
we set vp. =& up-. Then, it is not difficult to check from (4.11.2), (4.14.1),
4.15.2, and 4.16.1 that, setting as in (4.17.2)

/31-‘"25'*‘51-‘" and 6;"':C:F+C;F"
we have the possible decompositions

(p—pr)=fip-—pp  and A= 0p)=Vp—Gp  (419.1)
(e —pr)=Vp—Gp and  AYvp—0p) =g P, (4192)

where fizr, Vg€ £Irr,(Ci(Q), f) are orthogonal to one another, to 4,
and to all the characters § when y runs over the set of irreducible ordinary
characters of C(Q) such that &(x)e {L(ps), L(ps), d(0p), (o),
Z(p)}. Thus, it follows from (4.18.2) that, up to modification of I" with r
(cf. (43.1)), we may always assume that decomposition (4.19.1) holds; in
that case, the situation is completely symmetric on F, F’, and F” and,
arguing as in 4.16, statements (4.11.2), (4.14.1), 4.15.2, and (4.19.1) imply
that

4.19.3. For any {'elrr ,(C(Q))— {{} such that {'(1)=4, any non-
trivial proper subgroup D of E and any pair u', and v, in Irr ,(C;(Q)) —
{up,vp} such that 4(pp)=d(pp) and &(vp) = d(0,), we have

AY(Wp—pp)=Hhp— P,
AYvp—0p)=vp—6p,  and Ay —p)={—p,
where jiy,, ﬁ’D,ﬁCA’e +Irr  (C Q). f) are orthogonal to p, fip, fip, fip- Vg,
Vg, Vpo, and {. Moreover, all these characters are pairwise orthogonal.
This time 47, is completely determined by (4.11.2), (4.14.1), 4.15.2,

(4.19.1), and 4.19.3 and, once again, the construction and N .(Q)-stability
of 4, are clear. We are done.
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