
Information and Computation 204 (2006) 524–560

www.elsevier.com/locate/ic

Comparing operational models
of name-passing process calculi�

Marcelo Fiore 1, Sam Staton∗

Computer Laboratory, University of Cambridge, UK

Received 25 August 2004; revised 10 May 2005

Abstract

We study three operational models of name-passing process calculi: coalgebras on (pre)sheaves, indexed
labelled transition systems, and history dependent automata.
The coalgebraic model is considered both for presheaves over the category of finite sets and injections,

and for its subcategory of atomic sheaves known as the Schanuel topos. Each coalgebra induces an indexed
labelled transition system. Such transition systems are characterised, relating the coalgebraic approach to an
existing model of name-passing. Further, we consider internal labelled transition systems within the sheaf
topos, and axiomatise a class that is in precise correspondence with the coalgebraic and the indexed labelled
transition systemmodels. By establishing and exploiting the equivalence of the Schanuel topos with a catego-
ry of named-sets, these internal labelled transition systems are also related to the theory of history dependent
automata.
© 2006 Elsevier Inc. All rights reserved.

� This paper supersedes the extended abstract with the same title that appeared in the Proceedings of CMCS’04 [5].
∗ Corresponding author.

E-mail address: samuel.staton@cl.cam.ac.uk (S. Staton).
1 Research supported by an EPSRC Advanced Research Fellowship.

0890-5401/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.08.004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82441445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 525

1. Introduction

Operational models of concurrent computation typically describe processes in terms of a state
space together with its possible evolution by performing atomic actions. Transition systems have
proved useful in modelling the kinds of processes involved in static networks, like those described
by CCS and related calculi. In these situations, processes evolve by communicating along named
channels. Modern systems, though, often contain an element of mobility and reconfiguration. In
languages such as the �-calculus, this dynamic structure is described in terms of the communication
of the channel names themselves: name-passing. This allows, for instance, one process to advise
another process to begin communicating on a particular channel. Not surprisingly, techniques and
models relevant to static networks are inadequate in the name-passing context. Thus, operational
models of name-passing process calculi have been investigated.
Cattani and Sewell [1] have observed that labelled transition systems are too generous a model

for name-passing systems. They have thus constrained the labelled transition systems that they
consider in two ways. The first is that the state space must be indexed, meaning that the names
available to each state are explicit and a notion of renaming of states is built-in. Second, the labelled
transition systems under consideration are required to satisfy certain axioms that are theorems of
the transition systems induced by �-calculus processes. For instance, input actions must occur in a
particular uniform way and transitions must be invariant under injective renamings.
The theory of coalgebras has arisen as a general abstract theory of systems. Coalgebras provide

a general way of describing the stepwise evolution of a system, together with an abstract notion of
bisimulation. Thus, for instance, it is possible to reformulate and generalise familiar notions such
as rule formats and modal logics. Fiore and Turi [6] have developed coalgebraic models for name-
passing, modelling the early and late kinds of bisimulation that arise. Coalgebras are considered in
a presheaf category; thus a renaming structure is imposed on states and the naturality of morphisms
ensures that evolution is invariant under these renamings.
Neither the transition system model nor the coalgebraic model is immediately suitable for im-

plementation because of the cardinality of the state spaces involved once all the renamings are
considered. Montanari and Pistore [8] have introduced several notions of named-sets which often
provide finite descriptions of state spaces by recording certain features of canonical states. By re-
formulating the theory of automata in this setting they have been able to implement tools for the
verification of name-passing processes.
The theme of this paper is to compare and relate the above developments.
In Section 2, we recall the coalgebraicmodel of Fiore andTuri for early bisimulation. The carriers

of the coalgebras are presheaves over I, the category of finite sets of names and injections between
them, reflecting the idea that bisimilarity is invariant under injective renaming. We recall how a
labelled transition system arises from such a coalgebra and axiomatise the transition systems that
arise in this way. Subsequently, in Section 3, we relate these axiomatised transition systems with
those suggested byCattani and Sewell. Amajor difference is that Cattani and Sewell were concerned
with a form of open bisimilarity, which is invariant under arbitrary renaming. Thus, it is necessary
to consider presheaves over F, the category of finite sets of names and all functions between them.
In Section 4, we revisit the presheaves of Section 2 to consider the implications of a sheaf condi-
tion. This leads us to the Schanuel topos, and we explain how this topos is the Kleisli category of
a monad on the category of presheaves on B, the category of finite sets of names and bijections

526 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

between them. Recasting Section 2 in this light we are able to simplify our axioms on transition
systems. Lastly, in Section 5, we introduce a new notion of internal labelled transition system; that
is, a labelled transition system internal to the Schanuel topos satisfying certain conditions phrased
in its internal language. By exhibiting the Schanuel topos as equivalent to a category of named-sets
we connect these internal transition systems with the history dependent automata of Montanari
and Pistore.

2. Coalgebraic models over presheaves

2.1. Presheaves for name-passing process calculi

A key component of the fully abstract models of the �-calculus of Fiore et al. [4], and of
Stark [10] is the use of presheaves to index the domains of processes/states by the names that
they may use.
Fixing an infinite universe of namesN , a suitable indexing category I is the category of all finite

subsets of N and injections between them. Indeed, I is equivalent to the free symmetric monoidal
category with an initial unit on one generator, and as such has the appropriate structure for model-
ling name generation. Accordingly, thus, we will consider I in this vein, denoting the generator
(a singleton) as 1, the initial unit (the empty set) as ∅, and the tensor product (a chosen dis-
joint union) by ⊕. Importantly, it follows that every finite name-set C ⊆f N comes equipped with
canonical maps

oldC : C → (C ⊕ 1)← 1 : newC

given by oldC = (
C∼= (C ⊕ ∅)→ (C ⊕ 1)) and newC = (

1∼= (∅ ⊕ 1)→ (C ⊕ 1)). These maps in-
duce a notion of injective renaming as follows: for an injection ı : C → D and for d ∈ D \ im(ı), we
let (d/	C)ı : (C ⊕ 1)→ D be the unique injective function making the following diagram

C ⊕ 1

(d/	C)ı

��

C

oldC
����������

ı
���

��
��

��
��

1

d����
��

��
��

�

newC
�����������

D

commute. Further, whenever (d/	C)ı is a bijection we write (C/d)ı for its inverse. Finally, as a
notational convention, we drop the subindex whenever ı is an inclusion.
A presheaf (i.e., a set-valued functor) P : I → Set can be thought of as mapping each name-set

C ⊆f N to a set of processes PC that use (some of) the names in C , and mapping each injective
renaming function ı : C → D to a renaming function Pı : PC → PD on processes. We write [ı]p for
Pı(p) when it is clear which presheaf we are referring to.

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 527

2.2. Coalgebras for early bisimulation

The work of Fiore and Turi [6] provides a model of name-passing using coalgebras in SetI , the
category of presheaves over I and natural transformations. Early and late bisimulation are captured
in terms of coalgebraic bisimulation for particular behaviour functors.
We recall the relevant type constructors on presheaves.

• A type of names N—the inclusion functor I → Set .
• A dynamic allocation operator P , given by (P)C = P(C ⊕ 1). An injection ı : C → D maps
p ∈ (P)C to P(ı⊕ 1)(p).

• Non-empty covariant powerset ℘+, acting pointwise as the non-empty covariant powerset func-
tor in Set .

• The unit type 1—the constantly 1 presheaf (terminal in SetI).
• Product and sum, defined pointwise in the standard fashion.
• The exponential PQ with PQC given (via theYoneda lemma) by the set of natural transformations

I(C ,−)× Q
.→ P .

When Q = N , a finitary description is permitted, namely

PNC = (PC)C × P(C ⊕ 1)
since a natural transformation � : I(C ,−)× N

.→ P is completely determined by the components

�C(idC ,−) : C → PC and �(C⊕1)
(
oldC ,newC()

) ∈ P(C ⊕ 1)
that is, by its action on ‘known’ names and its action on a generic new name. An injection
ı : C → D acts on a pair (f , p) ∈ PNC to produce the pair (f ′, p ′) ∈ PND given by
f ′ c′ =

{ [ı](f c), if c′ = ıc

[(c′/	C)ı] p , otherwise p ′ = [ı⊕ 1]p. (1)

• Pointwise partial exponentials N⇀⇀P and 1⇀⇀P given as follows.
(N⇀⇀P)C is the set C⇀⇀PC of partial functions from C to PC . For any injection ı : C → D and
partial function f : C ⇀ PC , the partial function (N⇀⇀P)ıf : D ⇀ PD is defined as the composite

D
ıR

⇀ C
f
⇀ PC

Pı→ PD

where ıR denotes the partial function defined at d ∈ D iff d = ıc for some (necessarily unique)
c ∈ C , in which case ıR(d) = c.
Analogously, (1⇀⇀P)C = (1⇀⇀PC)with (1⇀⇀P)ıf = (Pı) ◦ f : 1⇀ PD for all ı : C −→ D in I and
f : 1⇀ PC .

A suitable behaviour endofunctor Be on SetI for early bisimulation is given by

BeP = N⇀⇀((℘+P)N) input

× N⇀⇀(℘+(N × P)) output

× N⇀⇀(℘+P) bound output

× 1⇀⇀(℘+P) silent action.

528 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

A Be-coalgebra is given by a presheaf P ∈ SetI together with a natural transformation h : P .→ BeP

in SetI . A component hC (C ∈ I) of such a natural transformation maps a process in PC to a
behaviour in BeP(C); that is, a tuple in

C⇀⇀
(
(℘+PC)C × ℘+P(C ⊕ 1))
× C⇀⇀

(
℘+(C × PC)

)
× C⇀⇀

(
℘+P(C ⊕ 1))

× 1⇀⇀(℘+PC)

indicating the capabilities of the process. For example, for p ∈ PC , if hC(p) = (i, o, b, t), then i is a
partial function to be interpreted as follows. For some channel name c ∈ C , i is defined at c if p is
able to input on the channel c, in which case i(c) is a pair (�,) ∈ (℘+PC)C × (

℘+P(C ⊕ 1)). Now
suppose a known name d ∈ C was to be input, then p would continue as one of the processes in
the non-empty set �(d). For a fresh name d �∈ C , we use as a set of templates for the resultant
process, continuing as [d/	C]p ′ ∈ P(C ∪ {d}) for some p ′ ∈ .
Just as a coalgebra X → ℘(Lab × X) in Set induces a transition relation over the state space

given by X , a coalgebra P
.→ BeP in SetI induces a transition relation with state space given by the

elements of P , i.e., the set
∫
P = ∑

C∈I PC . We write C � p for an element (C , p) ∈ ∫
P .

The labels on the transitions are taken from the set

Lab = (N × N)+ (N × N)+ 1,
with input (written c?d), output (written c!d), and silent (written �) actions respectively. Each label
has associated with it some channels ch() and data dat(), which for convenience we will consider
as sets; here they will have at most one element, as follows.

 c?d c!d �

ch() {c} {c} ∅
dat() {d} {d} ∅

For a label and a function f between subsets of N we write [f] for the obvious renaming.
Given a coalgebra h : P .→ BeP , a transition relation −→h ⊆ ∫

P × Lab × ∫
P is induced as

follows:

C � p c?d−→h C � p ′ ⇐⇒ p ′ ∈ �1(�1(hCp)c)d
C � p c?z−→h C ∪ {z} � [z/	C]q ⇐⇒ q ∈ �2(�1(hCp)c)

C � p c!d−→h C � p ′ ⇐⇒ (d , p ′) ∈ �2(hCp)c
C � p c!z−→h C ∪ {z} � [z/	C]q ⇐⇒ q ∈ �3(hCp)c

C � p �−→h C � p ′ ⇐⇒ p ′ ∈ �4(hCp)()

(2)

where c, d ∈ C and z �∈ C .
We define early bisimulation for transition relations such as these.

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 529

Definition 1.Consider two transition relations,−→1⊆
∫
P1 × Lab ×∫

P1 and−→2⊆
∫
P2 × Lab ×∫

P2,
for presheaves P1, P2 ∈ SetI .
A relation R ⊆ ∫

P1 ×
∫
P2 is an early bisimulation between −→1 and −→2 if whenever

(C1 � p1) R (C2 � p2) then the following conditions hold:
(1) ∀ ∈ Lab, (C ′

1 � p ′1) ∈
∫
P1.(

C1 � p1 −→1 C ′
1 � p ′1

�⇒ ∃(C ′
2 � p ′2) ∈

∫
P2. C2 � p2 −→2 C ′

2 � p ′2
and (C ′

1 � p ′1) R (C ′
2 � p ′2)

)
(2) ∀ ∈ Lab, (C ′

2 � p ′2) ∈
∫
P2.(

C2 � p2 −→2 C ′
2 � p ′2

�⇒ ∃(C ′
1 � p ′1) ∈

∫
P1. C1 � p1 −→1 C ′

1 � p ′1
and (C ′

1 � p ′1) R (C ′
2 � p ′2)

)
.

An early bisimulation R that further satisfies

(3) (C1 � p1) R (C2 � p2) �⇒ C1 = C2
(4) (C � p1) R (C � p2) �⇒ ∀ı : C → C ′ in I. (C ′ � [ı]p1) R (C ′ � [ı]p2)

is called an I-indexed early bisimulation.

Fiore and Turi [6] show that Be-coalgebraic bisimulations between coalgebras (P1, h1), (P2, h2)
correspond to I-indexed early bisimulations for the induced transition relations (

∫
P1,−→h1),

(
∫
P2,−→h2). We remark that for the �-calculus, early bisimilarity and I-indexed early
bisimilarity coincide.

2.2.1. I-indexed labelled transition systems
It is certainly not the case that every transition relation is induced by a Be-coalgebra. In order to

understand this coalgebraic model we characterise the transition relations that are induced.

Definition 2. An I-indexed labelled transition system (I-LTS) is a presheaf P ∈ SetI together with a
transition relation −→ ⊆ ∫

P × Lab × ∫
P satisfying Conditions I1–I6 of Fig. 1.

Notation. For a function f : C → D and C ′ ⊆ C the notation f |C ′ stands for the surjection
C ′ � f(C ′) given by restricting the domain to C ′ and the codomain to the corresponding image
f(C ′) ⊆ D.
Conditions I5 and I6 together capture a dichotomy in the induced transition systems: a transition

is either allowed or disallowed. Transitions cannot depend upon extraneous names.
The introduced notion of I-LTS is justified by the following result.

Theorem 3. The mapping (2) associating a transition relation to a Be-coalgebra yields a bijective
correspondence between Be-coalgebras in SetI and I-LTSs over presheaves in SetI.

530 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

Fig. 1. Requirements on an I-indexed labelled transition system.

An I-LTS (P ,−→) induces a Be-coalgebra h : P → BeP whose components are given according
to the following definition: for C ∈ I, p ∈ PC and c ∈ C:

�1(hCp)c ↓ ⇐⇒ ∃ d ∈ N ,D ∈ I, p ′ ∈ PD. C � p c?d−→D � p ′
�2(hCp)c ↓ ⇐⇒ ∃ d ∈ C ,D ∈ I, p ′ ∈ PD. C � p c!d−→D � p ′
�3(hCp)c ↓ ⇐⇒ ∃ z ∈ N \ C ,D ∈ I, p ′ ∈ PD. C � p c!z−→D � p ′
�4(hCp)() ↓ ⇐⇒ ∃D ∈ I, p ′ ∈ PD. C � p �−→D � p ′

(3)

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 531

with

�1(hCp)c =
(
d ∈ C.

{
p ′ ∈ PC | C � p c?d−→ C � p ′

}
,{

p ′ ∈ P(C ⊕ 1) | C � p c?z−→ C ∪ {z} � [z/	C]p ′ for z �∈ C
})

�2(hCp)c =
{
(d , p ′) ∈ C × PC | C � p c!d−→ C � p ′

}

�3(hCp)c =
{
p ′ ∈ P(C ⊕ 1) | C � p c!z−→ C ∪ {z} � [z/	C]p ′ for z �∈ C

}

�4(hCp)() =
{
p ′ ∈ PC | C � p �−→ C � p ′

}
.

(4)

In Appendix A we show that the transition relation (P ,−→h) of (2) induced by a coalgebra
h : P → BeP is an I-LTS and, conversely, that the definition of (3) and (4) yields a natural family
of maps hC : PC → BePC (C ∈ I). Theorem 3 follows because these transformations are inverses of
each other.
In brief, Conditions Condition I1 and I2 correspond to the well-formedness of the induced fam-

ily of maps h. Conditions I3–I6 correspond to the naturality of the induced family of maps, with
Condition I4a accounting for the action of the exponential that is used to model input, and
Condition I4b enforcing the separation between output and bound output. (This axiom system
corrects an oversight in that of [5].)

3. F-indexed labelled transition systems

The model considered above is concerned with describing early bisimulation. We now turn to a
finer notion. To formulate this, we require a different indexing category: let F be the category of fi-
nite subsets ofN and all functions between them. Precomposition with the inclusion functor I → F
gives a forgetful functor |− | : SetF → SetI . Since the sets

∫
X = ∑

C∈F X(C) and
∫ |X| are equal, a

transition relation –" ⊆ ∫
X × Lab × ∫

X is also a transition relation –" ⊆ ∫|X| × Lab × ∫ |X|, and
vice versa.

Definition 4. A relation R ⊆ ∫
X1 ×

∫
X2 is an F-indexed early bisimulation between transition rela-

tions (
∫
X1, –"1) and (

∫
X2, –"2) if it is an early bisimulation in the sense of Definition 1 and satisfies

the following additional conditions:

(3′) (C1 � p1) R (C2 � p2) �⇒ C1 = C2
(4′) (C � p1) R (C � p2) �⇒ ∀f : C → C ′ in F. (C ′ � [f]p1) R (C ′ � [f]p2).

Note that this definition slightly differs from Sangiorgi’s notion of open bisimulation [9], in which
distinctions are used to exempt names introduced by bound output transitions from being joined
by the renamings that are considered. However, we think that the above definition is still of interest
as it arises from the general theory of Fiore and Turi [6] and because, for the �-calculus, F-indexed
early bisimilarity is the greatest congruence that is an early bisimulation.

532 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

Cattani and Sewell have developed a model of name-passing that is based on the above notion of
F-indexed early bisimulation. They consider a class of indexed labelled transition systems that are
required to satisfy certain axioms. These axioms are suggested according to experience and intui-
tion, but are not induced frommathematical structure as in the case of Conditions I1–I6 for I-LTSs
(Fig. 1). However, our axioms essentially match up with theirs. The main difference highlights the
relationship between I-indexed and F-indexed early bisimulation.

Definition 5 (Cattani and Sewell). An F-indexed labelled transition system F-LTS is a presheaf
X ∈ SetF together with a transition relation –" ⊆ ∫

X × Lab× ∫
X satisfying Conditions F1–F4 of

Fig. 2.

Conditions F1–F4 are Conditions 1–4 of Cattani and Sewell rewritten in our notation. Further-
more, in Condition F4 we have only considered inclusion maps, while Cattani and Sewell consider
all injections in their Condition 4; in the presence of the other conditions these two conditions are
equivalent.

Notation. For A ⊆ N and a, z ∈ N , we let [z/a] : A ∪ {a} → A ∪ {z} be the function given by
[z/a](x) = x for all x �= a, and [z/a](a) = z. Further, for functions fi : Ai → Bi (i = 1, 2) with A1 and
A2 disjoint and also B1 and B2 disjoint, we let f1 + f2 : A1 ∪ A2 → B1 ∪ B2 be the function given by
(f1 + f2)(x) = fi(x) for all x ∈ Ai (i = 1, 2).
ConditionsF2a andF2b are not entirely relevant in the context of early bisimilarity. For instance,

consider the processes

pi = a(x). if x = a then ā〈a〉 else ā〈d1〉
+ a(x). if x = a then ā〈b〉 else ā〈d2〉
+ a(x). if x = a then ā〈c〉 else ā〈di〉

(i = 1, 2),

where we write ‘ a(x).p ’ for ‘input a name on channel a, binding it to x in p ’; ‘ ā〈x〉’ for ‘output the
name x on channel a’; and ‘+’ for nondeterministic sum. The state graphs of the pi (i = 1, 2), with
the transition a?x representing all transitions for which x /= a, are given by

•
a?a

���������

����������� a?x
�����

������� a?a
��

a?x
��

�

���
�� a?a

���������

		���������a?x
												

												

•
a!a
��

•
a!d1
��

•
a!b
��

•
a!d2
��

•
a!c
��

•
a!di
��• • • • • •

which, up to early bisimilarity, minimise to the following one

p

a?a

��

 a?a
��

�

����
� a?a

��
a?x
��

�

�
�� a?x

��

pa

a!a������

��������

pb

a!b
��

�

���
��

pc

a!c
��

pd1

a!d1�
��

�����

pd2

a!d2�
�����

��������

nil

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 533

Fig. 2. Requirements on an F-indexed labelled transition system.

yielding an I-LTS (according to Definition 2) but not an F-LTS (according to Definition 5) as
it does not satisfy Condition F2b. If it did satisfy the condition then, for C = {a, b, c, d1, d2} and
z �∈ C , wemust have some p ′a = [z/a]pa, p ′b = [z/a]pb, and p ′c = [z/a]pc, withC � p a?z−→ C ∪ {z} � p ′a,

534 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

C � p a?z−→ C ∪ {z} � p ′b, and C � p a?z−→ C ∪ {z} � p ′c. The only possibilities are (p ′a = pdi , p
′
b = pdj ,

p ′c = pdk) for i, j, k ∈ {1, 2}. Recall that F-LTSs admit renaming of states by all functions. In partic-
ular, we can then consider the retraction [a/z] : C ∪ {z}�C . Now, we have that

[a/z]pdi = pa [a/z]pdj = pb [a/z]pdk = pc.

Since i, j, k ∈ {1, 2} it follows that two of the states in {pa, pb, pc} are equal, which is not the case.
In summary, p1 is early bisimilar to p2, but, considering the context a(d1).[−], we have that a(d1).p1

is not early bisimilar to a(d1).p2, so p1 and p2 are not related by any early bisimulation congruence.
Similar considerations apply to Condition F2a.
Conditions F2a and F2b serve to strengthen Condition I2. They not only require that ‘if one

name can be input then so can any other’, but also ensure that the input behaviour is parametric
in the input data. In addition, Conditions F1, F3, and F4 do not mention non-injective renamings,
and moreover are together equivalent to Conditions Condition I1 and I3–I6. Thus, we have the
following results.

Proposition 6.

(1) An F-LTS over X ∈ SetF is an I-LTS over |X| ∈ SetI.

(2) For X ∈ SetF, an I-LTS over |X| ∈ SetI that satisfies Conditions F2a and F2b is an F-LTS over
X ∈ SetF.

In the journal version of their paper, Cattani and Sewell have introduced a class Ninj-LTS of
indexed labelled transition systems for presheaves over I. Conditions F1, F3, and F4 can be re-
considered as conditions on such systems, and indeed an Ninj-LTS is a system that satisfies these
axioms.

Proposition 7. An indexed labelled transition system on a presheaf in SetI is an Ninj-LTS if and only
if it satisfies Conditions I1, I3–I6.

4. From presheaves to sheaves: refining the model

We now return to the model of Section 2 based on injective renamings.We describe how the state
space can be refined by imposing a sheaf condition.

4.1. The Schanuel topos

Consider a presheaf P ∈ SetI . For p ∈ P(D) and an inclusionD ⊆ D′, we have [D↪→D′]p ∈ P(D′).
We have assumed that it does no harm to suppose that a process uses more names than it actually
does. Furthermore, it may be that D itself contains more names than p actually uses, that is to say,
perhaps there exists C ⊆ D and p ′ ∈ P(C) with [C ↪→D]p ′ = p .

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 535

We can also identify the names that p ∈ P(D) uses by observing how the injections act on it.
For instance, if every automorphism of D that fixes (i.e., does not move) all of C ⊆ D also fixes p ,
then we expect that p only uses the names in C . More generally, we have the following notion of
support.

Definition 8. For a presheaf P in SetI we say that a name-set C ⊆ D supports an element p ∈ PD if
and only if, for all ı, : D → E in I, whenever ı|C = |C then [ı]p = []p .
Given the intuitions discussed earlier, one would expect that if C supports p ∈ PD, then p would

exist uniquely in PC . This is precisely the sheaf condition for the atomic topology:

(Sheaf condition) Whenever C ⊆ D supports p ∈ PD, there exists a unique q ∈ PC with
[C ↪→D]q = p .

That is, the statement “C supports p” defines a compatible family and the sheaf condition re-
quires that it has a unique gluing at C . For our purposes, this is a sensible condition to impose.
The full subcategory Sh(Iop) of presheaves satisfying this condition is known as the Schanuel
topos.
We briefly recall the analysis of the Schanuel topos given by Fiore [3]. Let B be the category of

all finite name-sets and bijections; i.e., the groupoid underlying I. For P ∈ SetI , define a presheaf
〈P 〉 ∈ SetB with

〈P 〉C =
{
p ∈ PC ∀ C0 ⊆ C. ∀ p0 ∈ P(C0).

[C0 ↪→C]p0 = p �⇒ C0 = C

}

and, conversely, from Q ∈ SetB generate a presheaf Q! ∈ SetI by freely acting on the canonical
inclusion maps as follows:

Q!C =
∑
C ′⊆C

Q(C ′), Q!ı(C ′, q) = (ı(C ′),Q(ı|C ′)q).

For every Q ∈ SetB, we have that Q! is actually a sheaf in Sh(Iop) and there is a canonical natural
isomorphism

Q ∼= 〈Q!〉 in SetB

mapping q ∈ Q(C0) to (C0, q) ∈ 〈Q!〉C0. Also, for every P ∈ SetI , we have a canonical natural epi-
morphism

ϕP : 〈P 〉! � P in SetI

given by
(
C0 ⊆ C , p ∈ 〈P 〉C0

) ∈ 〈P 〉!C &→ P(C0 ↪→C)p ∈ PC.

536 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

Moreover, a presheaf P in SetI is a sheaf in Sh(Iop) if and only if ϕP is a monomorphism, and
hence an isomorphism.
For a sheaf P in Sh(Iop) and p ∈ PC , we let supp(p) ⊆ C (the support of p) and

seed(p)∈ 〈P 〉(supp p) (the seed of p) determine the unique (supp p , seed p) ∈ 〈P 〉!C such that
(ϕP)C(supp p , seed p) = p . We note that supp(p) is the least support of p , and that

supp([ı]p) = ı(supp p)

for all p ∈ PC and ı : C −→ D in I.
The construction (−)! extends to a functor SetB → SetI , left adjoint to the forgetful functor

| − | : SetI → SetB; the Schanuel topos is (equivalent to) the Kleisli category arising from this
adjunction. Thus, the sheaves in Sh(Iop) can be equivalently considered as presheaves in SetB.
Further, the maps P → P ′ in Sh(Iop) are in bijective correspondence with the maps 〈P 〉 → |〈P ′〉!|
in SetB; hence, in addition to acting naturally on bijections, they are permitted to reduce the
support.

4.2. B-indexed labelled transition systems

The early behaviour endofunctor Be on SetI restricts to an endofunctor on Sh(Iop) and it thus
makes sense to discuss Be-coalgebras in this full subcategory. In particular, we now ask which
transition systems over presheaves in SetB should be considered.

Definition 9. A B-indexed labelled transition system (B-LTS) is a presheaf Q ∈ SetB together with a
transition relation ⊆ ∫

Q × Lab × ∫
Q, where

∫
Q = ∑

C∈BQC , satisfying Conditions B1–B3 of
Fig. 3.

We have the following result relating the notions of indexed labelled transition systems intro-
duced.

Fig. 3. Requirements on a B-indexed labelled transition system.

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 537

Theorem 10. For sheaves P ∈ Sh(Iop), B-LTSs over 〈P 〉 and I-LTSs over P are in bijective correspon-
dence.

Details of the proof of Theorem 10 are given in Appendix B where we show that ! and 〈−→〉
as defined below are, respectively, an I-LTS and a B-LTS, and that 〈 !〉 = and 〈−→〉! = −→.

The I-LTS induced by a B-LTS:
Let ⊆ ∫〈P 〉 × Lab × ∫〈P 〉 be a B-LTS with P ∈ Sh(Iop). We define

! ⊆
∫
P × Lab ×

∫
P

to be the least indexed transition relation satisfying the following.

If C0 � p c?d
C ′
0 � p ′ and C0 ⊆ C and C ′

0 ⊆ C ∪ {d},
then C � [C0 ↪→C]p c?d

! C ∪ {d} � [C ′
0 ↪→C ∪ {d}]p ′.

If C0 � p c!d
C ′
0 � p ′, and d ∈ C0 ⊆ C and C ′

0 ⊆ C ,

then C � [C0 ↪→C]p c!d
! C � [C ′

0 ↪→C]p ′.
If C0 � p c!d

C ′
0 � p ′, C0 ⊆ C and C ′

0 ⊆ C ∪ {d}, and d �∈ C
then C � [C0 ↪→C]p c!d

! C ∪ {d} � [C ′
0 ↪→C ∪ {d}]p ′.

If C0 � p �
C ′
0 � p ′, and C0 ⊆ C and C ′

0 ⊆ C ,

then C � [C0 ↪→C]p �
! C � [C ′

0 ↪→C]p ′.

The B-LTS induced by an I-LTS:
Let −→ ⊆ ∫

P × Lab × ∫
P be an I-LTS with P ∈ Sh(Iop). We define

〈−→〉 ⊆ ∫〈P 〉 × Lab × ∫〈P 〉
to be the least indexed transition relation such that:

If C � p −→ C ′ � p ′
then supp(p) � seed(p) 〈 −→〉 supp(p ′) � seed(p ′).

5. Internal transition systems

So far, we have been concerned with relating coalgebras on variable sets (in SetI and Sh(Iop))
with indexed transition systems (I-LTSs, F-LTSs, and B-LTSs). Our motivation for studying such
transition systems was to understand the nature of the Be-coalgebras from a traditional point of
view. Having done this, then, it is possible to consider the classes of I-, F-, B-LTSs themselves as
models of name-passing. This is the direction pursued by Cattani and Sewell [1]. Another approach
is to work with internal transition systems — that is to say, transition relations taken as subobjects
of P × L× P , for an object of states P and a distinguished object of labels L. This is very much the
approach taken by Montanari and Pistore in their History Dependent Automata (HDA) [8].

538 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

We now introduce a notion of internal labelled transition system, relating it to the other models
that we have studied, and to HDA. We fix a sheaf of labels L = (N × N)+ (N × N)+ 1 in Sh(Iop),
respectively considering the components (and naming the injections) as input (in), output (out),
and silent action (tau). Since we will be using the internal language of Sh(Iop) we need structure
particular to this topos, namely, the map upP : P → P given by (upP)C(p) = P(oldC)p .

Definition 11. An internal labelled transition system (i-LTS) is a sheaf P together with a relation
⊆ P × L× P in Sh(Iop) satisfying Conditions i1–i3 of Fig. 4.

Proposition 12. Collectively, the conditions of Fig. 4 can be equivalently presented in elementary terms

as follows, where we write C � p
p ′ in place of (p , , p ′) ∈ (C).

i1. The channel is known:

C ∪ D � [C ↪→C ∪ D]p
p ′ �⇒ ch() ⊆ C

i2. Inclusion maps reflect transition derivatives:

C ∪ D � [C ↪→C ∪ D]p [C↪→C∪D]
p ′ �⇒ ∃p ′′ ∈ PC. [C ↪→C ∪ D]p ′′ = p ′

i3. If one name can be input, then so can any other:

C � p in(c,d)
p ′ �⇒ ∀e ∈ N . ∃p ′′ ∈ P(C ∪ {e}).

C ∪ {e} � [C ↪→C ∪ {e}]p in(c,e)
p ′′

Separately, each of Conditions i1 and i2 of Fig. 4 and Proposition 12 are equivalent;
Conditions i2 and i3 of Fig. 4 imply Condition i3 of Proposition 12, which in turn implies
Condition i3 of Fig. 4.

Fig. 4. Requirements on an i-indexed labelled transition system, expressed in the internal logic of Sh(Iop).

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 539

We can now relate the internal structures of this section with those already studied.

Theorem 13. i-LTSs and I-LTSs over sheaves in Sh(Iop) are in bijective correspondence.

Let P be a sheaf. Given an i-LTS on P , let

I ⊆ ∫
P × Lab × ∫

P

be the least indexed transition relation satisfying the following.

If C ∪ {d} � [C ↪→C ∪ {d}]p in(c,d)
p ′,

then C � p c?d
I C ∪ {d} � p ′.

If C � p out(c,d)
p ′ and d ∈ supp(p),

then C � p c!d
I C � p ′.

If C � p out(c,d)
p ′ and d �∈ supp(p),

then C \ {d} � p0 c!d
I C � p ′,

where p0 ∈ P(C \ {d}) is the unique element such with [C \ {d} ↪→C]p0 = p ,
existing since P is a sheaf and (C \ {d}) supports p .

If C � p tau
p ′,

then C � p �

I C � p ′.
Conversely, given an I-LTS −→ on P , let

C � − −−→i − ⊆ PC × LC × PC (C ∈ I)

be the least family of transition relations such that:

If C � p −→ C ′ � p ′
then C ∪ C ′ � [C ↪→C ∪ C ′]p −→i [C ′ ↪→C ∪ C ′]p ′.

eliding the obvious translation of labels (which makes sense as a result of Condition I1).
The verification that this correspondence is bijective and actually yields i-LTSs and I-LTSs is

deferred to Appendix C.

5.1. Named-sets with symmetries

The idea of interpreting the notion of transition system inside the Schanuel topos is similar in
spirit to the idea of interpreting the notion of automaton inside a category of named-sets — that
is, the idea of History Dependent Automata due to Montanari and Pistore. In fact, the two notions
are essentially the same, since as we show below the category of finitely supported named-sets with
symmetries is equivalent to the Schanuel topos.
A variety of categories of named-sets have been proposed; see, e.g., [2,8]. Here, we consider

named-sets with symmetries as introduced by Pistore in his thesis [8, Chapter 7].

540 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

Definition 14 (Pistore).A named-set with symmetries (X ,H = {Hx}x∈X) is given by a set X , with each
element x ∈ X equipped with a subgroup Hx ⊆ Sym(N) of the symmetric group Sym(N) on the
infinite set of names N .
For each x ∈ X , Hx is to be thought of as the group of permutations that fix x. This

can be made more precise, as follows. Recall that a left action of Sym(N) on a set A is a
function � : Sym(N)× A→ A that respects the group structure (i.e., satisfies �(id, a) = a and
�(�0, a) = �(�,�(0, a))).The stabiliserofa ∈ A is the subgroupStab(a)={0 ∈ Sym(N) | �(0, a)=a}
of all the permutations that fix a, and the orbit-stabiliser theorem exhibits a bijection between the
orbit of each a,Orb(a) = {a′ | ∃0 ∈ Sym(N). �(0, a) = a′}, and the set of left cosets of the stabiliser
Stab(a). Thus, for a section of the quotient map A�

{
Orb(a) | a ∈ A}

with image O ⊆ A, we have a
bijection A ∼= ∑

o∈O{0 Stab(o) | 0 ∈ Sym(N)}. In this vein, a named-set (X ,H) can be thought of
as a representation of an action: X provides canonical members of the orbits and Hx describes the
stabiliser of each x ∈ X . This intuition will guide us in what follows.
From a named-set (X ,H) one can recover a notion of support. Following Definition 8, we say

that a finite set C ⊆ N supports x ∈ X if whenever two permutations 0, 0′ ∈ Sym(N) agree on C
then they induce the same left cosets of Hx . That is, C supports x in (X ,H) if

∀ 0, 0′ ∈ Sym(N). 0|C = 0′|C �⇒ 0Hx = 0′Hx, (5)

where, as above, we write 0|C for the bijection given by restricting the domain of 0 to C .
Note that 0Hx = 0′Hx if and only if 0−10′ ∈ Hx . Thus, an equivalent formulation of (5) is

∀ 0 ∈ Sym(N). 0|C = idC �⇒ 0 ∈ Hx.
We restrict attention to those named-sets in which each element is supported by a finite set. In this
case, every element x ∈ X admits a (necessarily finite) set

suppH(x) =
⋂
C ′⊆C

{
C ′ | C ′ supports x in (X ,H)

}
,

where C is a finite set supporting x

which is least among all finite sets supporting x in (X ,H). (To see this show that the finite supporting
sets of an element are closed under intersection.)

Definition 15. The category fsNSet has as objects finitely supported named-sets with symmetries,
and morphisms

(m,K = {Kx}x∈X) : (X ,H)→ (X ′,H ′)

given by a function m : X → X ′ together with, for each x ∈ X , a left coset Kx = 0xH
′
mx such that

Hx ⊆ 0xH
′
mx0x

−1. (Note that thismakes sense, for if0H ′
mx = 0′H ′

mx then also0H
′
mx0

−1=0′H ′
mx0

′−1.)
The identity morphism on (X ,H) is (idX ,H = {Hx}x∈X), and the composition of

(X ,H)
(m,{0xH ′

mx}x∈X) �� (X ′,H ′)

(
m′,{0′

x′H
′′
m′ x′ }x′∈X ′

)
�� (X ′′,H ′′)

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 541

is (m′ ◦ m, {0x0′mxH ′′
m′(m x)}x∈X). (Note that the definition is independent of the descriptions

of cosets used, in the sense that if 0xH ′
mx = �xH

′
mx and 0

′
mxH

′′
m′(m x) = �′mxH ′′

m′(m x), then also
0x0

′
mxH

′′
m′(m x) = �x�

′
mxH

′′
m′(m x).)

It is important to note that, for a morphism (m, {0xH ′
mx}x∈X) : (X ,H)→ (X ′,H ′) in fsNSet , if

C supports x in (X ,H) then 0x−1(C) supports mx in (X ′,H ′). Indeed, if �|0x−1(C) = id0x−1(C) then
�0x

−1|C = 0x
−1|C and, assuming that C supports x, we have 0x�0x−1 ∈ Hx from which it follows

that � ∈ H ′
mx as required.

The morphisms that we use are based on the informal discussion in Pistore’s thesis (although the
formal definition here is slightly different). The second component K of each morphism describes,
for each x ∈ X , how the permutations inHx correspond to the permutations inH ′

mx . Every permuta-
tion 0x ∈ Sym(N) defines a homomorphism by conjugationHx → Sym(N) given by � &→ 0x

−1�0x .
The condition Hx ⊆ 0xH

′
mx0x

−1 ensures that the image of this homomorphism lies within H ′
mx .

Pistore remarks that some of these homomorphisms should be equated; we have used cosets to
achieve this.
Thesemorphisms also have an interpretation in terms of the intuition of named-sets as represent-

ing group actions. Let (X ,H) and (X ′,H ′) be named-sets regarded asSym(N)-actions in themanner
outlined after Definition 14. Recall that a homomorphism of Sym(N)-actions (A,�)→ (A′,�′) is
a function f : A→ A′ that respects the actions (i.e., satisfying f(�(0, a)) = �′(0, fa)). Consider a
morphism of named-sets (m,K) : (X ,H)→ (X ′,H ′). From the viewpoint of actions, the first compo-
nent m is to be thought of as providing a mapping between canonical members of orbits. However,
since homomorphisms of group actions need not preserve canonical representatives of orbits, the
second component K of a morphism of named-sets provides a permutation to rectify this. That is,
if Kx = 0xH

′
mx then the named-set morphism is to be thought of as mapping x ∈ X to the result of

the action of 0x on mx.
The following result is the main step towards relating i-LTSs and HDA.

Theorem 16. The category fsNSet of finitely supported named-sets with symmetries is equivalent to
the Schanuel topos Sh(Iop).

For a named-set (X ,H) ∈ fsNSet we define the presheaf 4(X ,H) ∈ SetB as follows:

• For C ∈ B,

4(X ,H)C =
{
(x, 0Hx)

suppH(x) = 0−1(C)
with x ∈ X and 0 ∈ Sym(N)

}

It is interesting to note that if 0−1(C) supports x then 0Hx = �Hx implies that �−1(C) also
supports x.

• For 5 : C ∼→ D in B and (x, J) ∈ 4(X ,H)C ,

4(X ,H)5(x, J) = (x, 0J) ∈ 4(X ,H)D,

where 0 ∈ Sym(N) is an extension of 5 (i.e., 0|C = 5).

542 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

Observe that if 0, 0′ ∈ Sym(N) are extensions of 5 then 0J = 0′J . Indeed, since
0�|�−1(C) = 0′�|�−1(C), then for J = �Hx we have, as �−1(C) supports x, that 0�Hx = 0′�Hx as
required.
Note also that for any extension 0 ∈ Sym(N) of 5 and any permutation � ∈ Sym(N) for which
J = �Hx, we have that (0�)−1(D) = �−1

(
0−1(D)

) = �−1(C) is least among the finite supports of x
in (X ,H). Thus, the image of 4(X ,H)5 is within the codomain.

The above construction induces a functor 4! : fsNSet → Sh(Iop) given on objects (X ,H) as

4!(X ,H)C =
{
(x, 0Hx)

0−1(C) supports x ∈ X
with x ∈ X and 0 ∈ Sym(N)

}

for C ∈ I, and

4!(X ,H)ı(x, 0Hx) = (x, �0Hx), where � is an extension of ı|0(suppH x)

for ı : C → D in I. That is, recalling the functor (−)! : SetB → Sh(Iop) from Section 4,

4!(X ,H) ∼=
(
4(X ,H)

)
! .

To each morphism

(m,K) : (X ,H)→ (X ′,H ′) in fsNSet

we associate a natural family of functions

{4!(m,K)C : 4!(X ,H)C → 4!(X ′,H ′)C }
C∈I

defined by 4!(m,K)C(x, 0Hx) = (m x, 0Kx).
We must now show (i) that this definition is independent of the choice of 0; (ii) that the image

falls within the codomain; (iii) that the family is natural. To proceed, for each x ∈ X we suppose
that Kx = 0xH

′
mx, in accordance with the definition of morphism in fsNSet .

(i) The definition is independent of the choice of 0. If 0′Hx = 0′′Hx, then 0′−10′′ ∈ Hx . Since
(m,K) is a morphism in fsNSet , we know that 0−1x 0′

−1
0′′0x ∈ H ′

mx . That is, 0
′Kx = 0′0xH ′

mx =
0′′0xH ′

mx = 0′′Kx .
(ii) The image of each function 4!(m,K)C is within the codomain 4!(X ′,H ′)C . Because if 0−1(C)
supports x in (X ,H), then (00x)−1(C) = 0x

−1(0−1(C)) supports m(x) in (X ′,H ′), as observed
after Definition 15.

(iii) The family is natural. Let ı : C → D in I. On the one hand, we have that

4!(m,K)
([ı](x, 0Hx)) = 4!(m,K)(x, �0Hx)

= (m x, �0Kx)

= (m x, �00xH ′
mx),

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 543

where � is an extension of ı|0(suppH x). On the other hand,

[ı](4!(m,K)(x, 0Hx)
) = [ı](m x, 0Kx)
= [ı](m x, 00xH ′

mx)

= (m x, 700xH ′
mx),

where 7 is an extension of ı|(00x)(suppH ′ (m x)).
By the observation after Definition 15 we have that 0x

(
suppH ′(m x)

) ⊆ suppH(x), and so every
extension � of ı|0(suppH x) is also an extension of ı|0(0x(suppH ′ (m x))) = ı|(00x)(suppH ′ (m x)). Hence

[ı](4!(m,K)(x, 0Hx)
) = (m x, �00xH ′

mx) = 4!(m,K)
([ı](x, 0Hx)).

Thus, the family 4!(m,K) is natural.

Finally, we must verify that the construction 4! is functorial. The identity morphism
(idX ,H = {Hx}x∈X) is mapped to 4!(idX ,H) and, for each x ∈ X and 0 ∈ Sym(N), we have that
4!(idX ,H)(x, 0Hx) = (x, 0Hx). Thus, the identity of named-sets is mapped to the identity of sheaves.
Consider the composite (m′ ◦ m, (K ′ ◦ K) = {0x0′mxH ′′

m′(m x)}x∈X) of named-set morphisms
(m,K = {0xH ′

mx}x∈X) and (m′,K ′ = {0x′H ′′
m′ x′ }x′∈X ′). In Sh(Iop), for some x ∈ X and 0 ∈ Sym(N),

we have

4!(m,K)C(x, 0Hx) = (m x, 00xH ′
mx)

so that 4!(m′,K ′)C(4!(m,K)C(x, 0Hx)) = (m′(m x), 00x0′mxH ′′
m′(m x)). This is precisely the value of

4!(m′ ◦ m,K ′ ◦ K)C(x, 0Hx). Thus, composition is preserved and we have a functor
4! : fsNSet → Sh(Iop).
We show in Appendix D that this functor is essentially surjective (i.e., that for every P ∈ Sh(Iop)

there exists (X ,H) ∈ fsNSet such that 4!(X ,H)∼= P) and full and faithful. Thus, Theorem 16 is
proved.

5.2. History dependent automata

Weremarked inSection4 that theoperatorsonSetI introduced inSection2 restrict toSh(Iop); it is
now routine to translate them into operators on fsNSet . It is also straightforward to
interpret the Conditions i1–i3 in fsNSet , and, in this way, obtain a class of HDA that correspond
to Be-coalgebras. An example of such an interpretation was provided in the Proceedings of
CMCS’04 [5].

6. Concluding remarks

6.1. Rule formats

Throughout the present work we have not considered how the coalgebra, transition system, or
automaton is initially defined. In practice, transition relations are often defined over terms using

544 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

structural induction over rules. There are various rule formats for calculi such as CCS that guar-
antee bisimilarity to be a congruence for the induced transition system. It is well-known (and was
recalled in Section 3) that early bisimilarity is typically not a congruence for name-passing calculi.
In this context, though, we have developed a format for rules inducing F-LTSs. Within this format,
F-indexed early bisimilarity is seen to be a congruence.

6.2. Minimisation

An application of final coalgebra semantics is the use of minimisation techniques to determine,
for instance, whether processes are bisimilar. We have a framework for understanding partition
refinement techniques in a coalgebraic setting. It can be shown that the partition refinement proce-
dure will terminate if performed on a coalgebra whose state space is a finitely presentable sheaf in
Sh(Iop). This latter condition on the state space translates to the requirement that the first compo-
nent of the named-set representing the sheaf is finite. The second component of such a named-set is
thus a finite family of infinite permutation groups. The finite support requirement, however, ensures
that each of these groups has a finite description. Thus, the framework of named-sets is convenient
from a practical point of view. Indeed, problems of minimisation for name-passing systems have
already been investigated as related to history dependent automata [2].

6.3. Further related work

Gadducci et al. [7] have obtained a result analogous to ourTheorem 16 for a variant of named-sets
similar to that considered by Ferrari et al. [2]. One important difference in this variant of named-
sets is that finite descriptions of support and groups, as mentioned in the previous paragraph, are
explicitly given.

Acknowledgements

We thank Peter Sewell for useful discussions, especially about Section 3.

Appendix

A. Proof of Theorem 3

A.1. The I-LTS induced by a Be-coalgebra

We explain how the transition relation−→h induced by a Be-coalgebra h satisfies the conditions
in Fig. 1.

Condition I1 is guaranteed by definition. For example, if C � p c?d−→h C
′ � p ′ is induced by

p ′ ∈ �1(�1(hCp)c)d then C ′ = C . Since �1(hCp) is a partial function C ⇀ ((℘+PC)C × ℘+P(C ⊕ 1)),
we have c ∈ C — the channel is known. We have d ∈ C since �1(�1(hCp)c) is a function
(C → ℘+PC). So certainlyC ′ = C ∪ {d}—the data is learnt. Again, ifC � p c?z−→h C

′ � p ′ is induced

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 545

by q ∈ �2(�1(hCp)c) then we know z �∈ C , and we haveC ′ = C ∪ {z} and p ′ = [d/]q. We have c ∈ C
since �1(hCp) is a partial function C ⇀ ((℘+PC)C × ℘+P(C ⊕ 1)).
Condition I2 is guaranteed by the careful use of partial exponentials and non-empty powersets, as

follows. Suppose we are concerned with the behaviour of p ∈ PC . Recall that the input component
is of typeN⇀⇀(℘+P)N , so, at stageC ∈ I, we have an element i of typeC ⇀ (℘+PC)C × ℘+P(C ⊕ 1).
That is, on each channel c ∈ C there must be either no input communication (the partial function i
is undefined at c) or input of every name: on inputting a known name d ∈ C we proceed as a state
in the non-empty set �1(ic)d ∈ ℘+PC , and on inputting a fresh name z �∈ C we proceed as a state in
the non-empty set (℘+P)[z/](�2(ic)) ∈ ℘+P(C ∪ {z}).
Condition I3 captures the naturality of h with respect to bijective renamings. Indeed, sup-

pose that C � p c!d−→h C
′ � p ′ is induced by (d , p ′) ∈ �2(hC p)c (so C = C ′). Consider a bijection

5 : C ∼→ D. Since h is natural, we have hD([5]p) = [5](hC p). In particular, from the definitions of the
various type constructors, �2

(
hD([5]p)

)
(5c) = [5](�2(hC p)c). So (5d , [5]p ′) ∈ �2

(
hD([5]p)

)
(5c),

inducing D � [5]p 5c!5d−→h D � [5]p ′. The other kinds of transition behave in a similar manner. Thus,
Condition I3 is satisfied by the induced transition system.
Condition I4a is essentially a result of the structure of the exponential. Recall (1) that for

(�,) ∈ (℘+P)NC and z ∈ N \ C we have that

�1
(
(℘+P)N (C ↪→C ∪ {z})(�,))z

= (℘+P)[z/]()
= {

P [z/]q ∈ P(C ∪ {z}) | q ∈ }
.

(A.1)

Wewill prove the left to right direction of Condition I4a; the opposite direction is proved by follow-
ing the same steps in reverse. Suppose that C � p c?z−→h C ∪ {z} � p ′ is induced, for z �∈ C (otherwise
the result is trivial). This must have been induced by P [/z]p ′ ∈ �2(�1(hCp)c). By (A.1) above, we
thus have that

p ′ = [z/][/z]p ′ ∈ �1
(
(℘+P)N (C ↪→C ∪ {z})(�1(hCp)c)

)
z .

Further, since h is natural, we also have that

(℘+P)N (C ↪→C ∪ {z})(�1(hCp)c) = �1
(
hC∪{z}(P(C ↪→C ∪ {z})p))c .

Hence

p ′ ∈ �1
(
�1

(
hC∪{z}(P(C ↪→C ∪ {z})p))c)z

and Condition I4a is satisfied by the induced transition.
Condition I4b is a result of the naturality of h. For if

C ∪ {d} � [C ↪→C ∪ {d}]p c!d−→h C ∪ {d} � p ′

546 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

is induced, we must have (d , p ′) ∈ �2(hC∪{d}([C ↪→C ∪ {d}]p))c. Since h is natural,

(d , p ′) ∈ �2
(
hC∪{d}(P(C ↪→C ∪ {d})p))c
= (

℘+(N × P)
)
(C ↪→C ∪ {d})(�2(hCp)c)

= {
(e, P(C ↪→C ∪ {d})q) ∈ C × P(C ∪ {d}) | (e, q) ∈ �2(hCp)c

}
.

So d ∈ C , as required by Condition I4b.
Just as Condition I3 captures the naturality of hwith respect to bijective renamings, Condition I5

captures the naturality with respect to inclusionmaps. For instance, ifC � p �−→h C � p ′ is induced,
it must be by p ′ ∈ �4(hC p)(). Since h is natural, we have that

P(C ↪→C ∪ D)p ′ ∈ (℘+P)(C ↪→C ∪ D)(�4(hC p)())
= �4

(
hC∪D(P(C ↪→C ∪ D)p))()

and thus C ∪ D � [C ↪→C ∪ D]p �−→h C ∪ D � [C ↪→C ∪ D]p ′ is induced. The other kinds of tran-
sition are similar; thus Condition I5 is satisfied by the induced transition system.
Condition I6 also results from the naturality of h.

(1) Suppose for instance that

C ∪ D � [C ↪→C ∪ D]p c!z−→h C
′ ∪ D � p ′

is induced, with z �∈ C ∪ D. Then C ′ ∪ D = C ∪ D ∪ {z} and

[C∪D/z]p ′ ∈ �3
(
hC∪D([C ↪→C ∪ D]p))c.

Since h is natural, we have that

�3
(
hC∪D(P(C ↪→C ∪ D)p))
= (N⇀⇀℘+P)(C ↪→C ∪ D)(�3(hC p))
= (℘+P)

(
(C ↪→C ∪ D)⊕ 1) ◦ �3(hCp) ◦ (C ↪→C ∪ D)R

and, since this partial function is defined at c, it follows that c ∈ C . Moreover,

[C∪D/z]p ′ ∈ �3
(
hC∪D(P(C ↪→C ∪ D)p))c
= (℘+P)

(
(C ↪→C ∪ D)⊕ 1)(�3(hCp)c)

= { [(C ↪→C ∪ D)⊕ 1]q | q ∈ �3(hCp)c
}
.

So there exists q ∈ �3(hCp)c ∈ ℘+P(C ⊕ 1) with

[(C ↪→C ∪ D)⊕ 1]q = [C∪D/z]p ′.

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 547

Finally, considering the diagram

C ⊕ 1
(C↪→C∪D)⊕1

��

[z/	C]
∼ �� C ∪ {z}� �

��
(C ∪ D)⊕ 1 ∼

[z/	C∪D]
�� C ∪ D ∪ {z}

in I, it follows that p ′′ = [z/	C]q ∈ P(C ∪ {z}) satisfies

[C ∪ {z} ↪→C ∪ {z} ∪ D]p ′′ = p ′ and C � p c!z−→h C ∪ {z} � p ′′.
(2)Now, suppose that

C ∪ D � [C ↪→C ∪ D]p c!d−→h C ∪ D � p ′

this time with d ∈ C \ D. Then (d , p ′) ∈ �2
(
hC∪D([C ↪→C ∪ D]p))c. Since h is natural, we have

that

(d , p ′) ∈ �2
(
hC∪D(P(C ↪→C ∪ D)p))c
= (

℘+(N × P)
)
(C ↪→C ∪ D)(�2(hCp)c)

= {
(e, P(C ↪→C ∪ D)q) ∈ C × P(C ∪ D) | (e, q) ∈ �2(hCp)c

}
.

Thus,wehavep ′′ ∈ PCwith [C ↪→C ∪ D]p ′′ =p ′ and (d , p ′′) ∈ �2(hCp)c. SoC � p c!d−→h C � p ′′
is induced by the coalgebra.

Condition I6 is proved similarly for the other kinds of transition.

A.2. The Be-coalgebra induced by an I-LTS

We show that the definition (3–4) inducing a Be-coalgebra h from an I-LTS −→ makes sense
and yields a natural transformation.
Of principle concern for well-definedness is the input component, where the function space

and non-empty powersets are used in a particularly intricate manner. For C ∈ I, p ∈ PC , and
c ∈ C , suppose that �1(hCp)c is defined. Then, by definition and using Condition I1, there is some
d ∈ N and p ′ ∈ P(C ∪ {d}) with C � p c?d−→ C ∪ {d} � p ′. So, by Condition I2, for any d ′ ∈ C , we
have p ′′ ∈ PC with C � p c?d ′−→ C � p ′′. So �1(�1(hC p)c) as described is indeed a total function
C → ℘+PC . On the other hand, also by Condition I2, for any z �∈ C we have p ′′ ∈ P(C ∪ {z})
with C � p c?z−→ C ∪ {z} � p ′′. So [/z]p ′′ ∈ �2(�1(hC p)c) and thus the induced �2(�1(hC p)c) is in-
deed a non-empty subset of P(C ⊕ 1). So �1(hCp) is a partial function of type C ⇀ ((℘+PC)C×
℘+P(C ⊕ 1)). Analogously, one establishes that �2(hCp), �3(hCp), and �4(hCp) are respectively
partial functions of type C ⇀ ℘+(C × PC), C ⇀ ℘+P(C ⊕ 1), and 1⇀ ℘+PC . Thus, each map
 hC : PC → BePC (C ∈ I) is well-defined.

548 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

We now proceed to establish the naturality condition for the family of maps hC : PC → BePC

(C ∈ I). For all ı : C → D in I and p ∈ PC , we need to establish the following identities:

�1
(hD(Pıp)) = (℘+P)N ı ◦ �1(hCp) ◦ ıR (A.2)

�2
(hD(Pıp)) = (

℘+(N × P)
)
ı ◦ �2(hCp) ◦ ıR (A.3)

�3
(hD(Pıp)) = (℘+P)ı ◦ �3(hCp) ◦ ıR (A.4)

�4
(hD(Pıp)) = (℘+P)ı ◦ �4(hCp) (A.5)

Let us first consider (A.4) for ı a bijection C
∼→D. We need to establish that

�3
(hD(Pıp))(ıc) = (℘+P)ı(�3(hCp)c)

=
{
P(ı⊕ 1)p ′ | p ′ ∈ �3(hCp)c

}

for all c ∈ C . We show each inclusion in turn:

(⊇) Let p ′ ∈ �3(hC p)c ∈ ℘+P(C ⊕ 1). Then, there is a transition

C � p c!z−→ C ∪ {z} � [z/	C]p ′

for some z �∈ C . Applying Condition I3 to this transition with respect to the bijection
(z′/	D) ◦ (D/z)ı−1 : C ∪ {z} ∼→D ∪ {

z′
}
for some z′ �∈ D, we obtain the transition

D � [ı]p (ıc)!z
′

−→ D ∪ {
z′

} � [z′/	D][(D/z)ı−1][z/	C]p ′.

Since (D/z)ı−1 ◦ (z/	C) = ı⊕ 1 the above transition amounts to the following one

D � [ı]p (ıc)!z
′

−→ D ∪ {
z′

} � [z′/	D][ı⊕ 1]p ′

showing that [ı⊕ 1]p ′ ∈ �3
(hD([ı]p))(ıc) as required.

Note that if (℘+P)ı(�3(hCp)c) is defined then so is �3(hCp)c and, consequently, also
�3

(hD(Pıp))(ıc) is defined.
(⊆) Let q ∈ �3

(hD([ı]p))(ıc) ∈ ℘+P(D⊕ 1). Then, there is a transition

D � [ı]p (ıc)!z−→D ∪ {z} � [z/	D]q

for some z �∈ D. Applying Condition I3 to this transition with respect to the bijection
(z′/	C) ◦ (C/z)ı : D ∪ {z} ∼→C ∪ {

z′
}
for some z′ �∈ C , we obtain the transition

C � [ı−1][ı]p (ı
−1ı c)!z′−→ C ∪ {z′} � [z′/	C][(C/z)ı][z/	D]q

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 549

Since ı−1 ◦ ı = idC and (C/z)ı ◦ (z/	D) = ı−1 ⊕ 1 the above transition amounts to the
following one:

C � p c!z′−→ C ∪ {
z′

} � [z′/	C][ı−1 ⊕ 1]q

showing that [ı−1 ⊕ 1]q ∈ �3(hCp)c. As q = [ı⊕ 1][ı−1 ⊕ 1]q, we are done.
Note that if �3

(hD(Pıp))(ıc) is defined then so is �3(hCp)c and, consequently, also
(℘+P)ı(�3(hCp)c) is defined.

One establishes (A.2), (A.3), and (A.5) with respect to bijections in a similar manner:
Condition I3 is the key to naturality with respect to bijections.
Finally, we consider naturality with respect to inclusions. The case of input (A.2) is themost com-

plex. Recall the action of the exponential (1): (f ′, q′) = QN(C ↪→C ∪ D)(f , q) ∈ (
Q(C ∪ D))C∪D ×

Q
(
(C ∪ D)⊕ 1) where

f ′(d) =
{
Q(C ↪→C ∪ D)(f(d)), if d ∈ C
Q

(
(C ∪ {d} ↪→C ∪ D) ◦ (d/	C)

)
q, otherwise

and

q′ = Q
(
(C ↪→C ∪ D)⊕ 1)q.

For disjoint C ,D ∈ I and p ∈ PC , we must show that:

1. For c ∈ C ∪ D, �1
(hC∪D([C ↪→C ∪ D]p))c is defined iff c is in C and �1(hCp)c is defined.

2. For c, d ∈ C we have p ′ ∈ �1(�1
(hC∪D([C ↪→C ∪ D]p))c)d iff there exists p ′′ ∈ �1(�1(hC p)c)d ∈

℘+PC such that [C ↪→C ∪ D]p ′′ = p ′.
3. For c ∈ C and d ∈ D we have

p ′ ∈ �1(�1
(hC∪D([C ↪→C ∪ D]p))c)d ∈ ℘+P(C ∪ D)

iff there exists p ′′ ∈ �2(�1(hC p)c) ∈ ℘+P(C ⊕ 1) such that

[C ∪ {d} ↪→C ∪ D][d/	C]p ′′ = p ′.

4. For c ∈ C , we have

p ′ ∈ �2(�1
(hC∪D([C ↪→C ∪ D]p))c) ∈ ℘+P

(
(C ∪ D)⊕ 1)

iff there exists p ′′ ∈ �2(�1(hCp)c) ∈ ℘+P(C ⊕ 1) such that

[(C ↪→C ∪ D)⊕ 1]p ′′ = p ′.

550 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

First, we show (1). Suppose that �1
(hC∪D([C ↪→C ∪ D]p))c is defined for c ∈ C ∪ D. Then, by

definition and Condition I1, there is a transition of the form

C ∪ D � [C ↪→C ∪ D]p c?d−→ C ∪ D ∪ {d} � p ′.

Since C ∪ D = C ∪ (D ∩ {d}) ∪ (D \ {d}), Condition I6 ensures that there exists p ′′ ∈ P(C ∪ {d})
such that [C ∪ {d} ↪→C ∪ {d} ∪ D]p ′′ = p ′ and

C ∪ (D ∩ {d}) � [C ↪→C ∪ (D ∩ {d})]p c?d−→ C ∪ {d} � p ′′.

If d �∈ D, or otherwise by Condition I4a, C � p c?d−→ C ∪ {d} � p ′′. Thus, by Condition I1, we have
c ∈ C and, by definition, �1(hCp)c is defined. Conversely, suppose that �1(hCp)c is defined for c ∈ C .
Then, by definition and Condition I1, there is a transition of the form

C � p c?d−→ C ∪ {d} � p ′

where, because of Condition I2, we can assume that d = c without loss of generality. Thus, by
Condition I5, the above transition induces the following one:

C ∪ D � [C ↪→C ∪ D]p c?c−→ C ∪ D � [C ↪→C ∪ D]p ′

from which it follows by definition that �1
(hC∪D([C ↪→C ∪ D]p))c is defined.

We now show (2). Suppose we have p ′ ∈ �1(�1
(hC∪D([C ↪→C ∪ D]p))c)d for c, d ∈ C . As above,

there is a transition C ∪ D � [C ↪→C ∪ D]p c?d−→ C ∪ D � p ′ and, by Condition I6, we have
p ′′ ∈ PC such that [C ↪→C ∪ D]p ′′ = p ′ andC � p c?d−→ C � p ′′. Thus,weobtainp ′′ ∈ �1(�1(hC p) c) d
as required. Conversely, suppose we have p ′′ ∈ �1(�1(hCp)c)d for c, d ∈ C . Again as
above, there is a transition C � p c?d−→ C � p ′′ and, by Condition I5, we have the
transition C ∪ D � [C ↪→C ∪ D]p c?d−→ C ∪ D � [C ↪→C ∪ D]p ′′ showing that

[C ↪→C ∪ D]p ′′ ∈ �1
(
�1

(hC∪D([C ↪→C ∪ D]p))c)d
as required.
Case (4) can be shown in a similar manner.
Case (3) is particularly specific to the input behaviour. Suppose we have

p ′ ∈ �1
(
�1

(hC∪D([C ↪→C ∪ D]p))c)d
for c ∈ C and d ∈ D. This must have been induced by a transition

C ∪ D � [C ↪→C ∪ D]p c?d−→ C ∪ D � p ′.

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 551

Now,D=(D \ {d}) ∪ {d}, sobyCondition I6,wehavep ′′ ∈P(C ∪ {d})with [C ∪ {d} ↪→C ∪ D]p ′′ =p ′
andC∪{d} � [C ↪→C ∪ {d}]p c?d−→ C ∪ {d} � p ′′. ByCondition I4a,wehaveC � p c?d−→ C∪ {d} � p ′′.
This yields [C/d]p ′′ ∈ �2(�1(hCp)c) with

[C ∪ {d} ↪→C ∪ D][d/	C][C/d]p ′′ = [C ∪ {d} ↪→C ∪ D]p ′′ = p ′

as required.Conversely, let p ′′ ∈ �2(�1(hCp)c) for c ∈ C . Thismust have been inducedby a transition

C � p c?z−→ C ∪ {z} � [z/	C]p ′′
with z �∈ C . For any d ∈ D, applying Condition I3 with respect to the bijection (d/	C) ◦ (C/z) :
C ∪ {z} ∼→C ∪ {d}, we haveC � p c?d−→ C ∪ {d} � [d/	C]p ′′. By Condition I4a, we can know the fresh
name d and the transitionwill still occur.That is,C ∪ {d} � [C ↪→C ∪ {d}]p c?d−→ C ∪ {d} � [d/	C]p ′′.
Finally, by Condition I5, we have

C ∪ D � [C ↪→C ∪ D]p c?d−→ C ∪ D � [C ∪ {d} ↪→C ∪ D][d/	C]p ′′.
This yields

[C ∪ {d} ↪→C ∪ D][d/	C]p ′′ ∈ �1
(
�1

(hC∪D([C ↪→C ∪ D]p))c)d
as required.
Turning now to output transitions, we will prove (A.3) for inclusions (C ↪→C ∪ D), where C and

D are disjoint. For c ∈ C , suppose that(
℘+(N × P)

)
(C ↪→C ∪ D)(�2(hCp)c)

is defined and let (d , p ′) be in it. Then, also �2(hCp)c is defined, and p ′ = [C ↪→C ∪ D]p ′′ for
(d , p ′′) ∈ �2(hCp)c. It follows thatC � p c!d−→ C � p ′′. By Condition I1, d ∈ C , so that d �∈ D. Further
Condition I5 gives

C ∪ D � [C ↪→C ∪ D]p c!d−→ C ∪ D � [C ↪→C ∪ D]p ′′.
Hence �2(hC∪D([C ↪→C ∪ D]p))c is defined and (d , p ′) = (d , [C ↪→C ∪ D]p ′′) is in it as
required by (A.3). Conversely, for c ∈ C ∪ D, suppose that

�2(hC∪D([C ↪→C ∪ D]p))c
is defined with (d , p ′) in it. This must be because

C ∪ D � [C ↪→C ∪ D]p c!d−→ C ∪ D � p ′.
By Condition I6 we have p ′′ ∈ P(C ∪ {d}) with [C ∪ {d} ↪→C ∪ D]p ′′ = p ′ and, in addition,

C ∪ {d} � [C ↪→C ∪ {d}]p c!d−→C ∪ {d} � p ′′. By Condition I4b, then, d ∈ C . So �2(hCp)c is defined
with (d , p ′′) in it. Thus, also(

℘+(N × P)
)
(C ↪→C ∪ D)(�2(hCp)c)

is defined with (d , p ′) = (N × P)(C ↪→C ∪ D)(d , p ′′) in it as required by (A.3).
One establishes (A.4) and (A.5) with respect to inclusions in a similar manner.
Thus, our definition yields a Be-coalgebra h : P .→ BeP in SetI .

552 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

B. Proof of Theorem 10

B.1. The I-LTS induced by a B-LTS

For a B-LTS over a sheaf P ∈ Sh(Iop), we note that ! ⊆ ∫
P × Lab × ∫

P satisfies Condi-
tions Condition I1–I6 of Fig. 1.
Condition B1 ensures that the channel is known beforehand, and the definition ensures that ex-

actly the data is learnt. Thus, Condition I1 is satisfied. Condition B2 guarantees that a resumption
exists for every input if it exists for one, and Condition B1 ensures that the resumption is at the
correct stage. Thus, Condition I2 is satisfied. Condition B3 implies Condition I3.
Conditions I4–I6 are guaranteed by the use of minimal supports in the definition in conjunction

with Condition B1, as we now illustrate.

Suppose that C ∪ {d} � [C ↪→C ∪ {d}]p c!d
! C ∪ {d} � p ′, as in the premise of Condition I4b.

This must have been because C0 � p0 c!d
C ′
0 � p0′ for some C0, C ′

0 and p0 ∈ 〈P 〉(C0), p0′ ∈ 〈P 〉(C ′
0)

with d ∈ C0 ⊆ C ∪ {d} ⊇ C ′
0 and [C0 ↪→C ∪ {d}]p0 = [C ↪→C ∪ {d}]p , [C ′

0 ↪→C ∪ {d}]p0′ = p ′. By
definition of 〈P 〉, C0 = supp(p0). Also, supp(p0) = supp([C0 ↪→C ∪ {d}]p0). Now C supports
[C0 ↪→C ∪ {d}]p0, but C0 is the minimal such and so C0 ⊆ C . Thus, d ∈ C , and Condition I4b
is satisfied.
Suppose that C ∪ D � [C ↪→C ∪ D]p

! C ′ ∪ D � p ′, as in the premise of Condition I6. Sup-
pose that = c!d and that d �∈ C ∪ D. Then we must have C ′ ∪ D = C ∪ D ∪ {d}, and there must
exist C0, C ′

0 and p0 ∈ 〈P 〉(C0), p0′ ∈ 〈P 〉(C ′
0) with C0 ⊆ C ∪ D, and C ′

0 ⊆ C ∪ D ∪ {d}, and
[C0 ↪→C ∪ D]p0 = [C ↪→C ∪ D]p , [C ′

0 ↪→C ∪ D ∪ {d}]p0′ = p ′

and such that C0 � p0 c!d
C ′
0 � p0′. By definition of 〈P 〉, C0 = supp(p0) = supp([C0 ↪→C ∪ D]p0).

We know C supports [C0 ↪→C ∪ D]p0; but C0 is the minimal such and so C0 ⊆ C . So, by
Condition B1, C ′

0 ⊆ C ∪ {d}. Since d �∈ C , we have, by definition and the fact that [C0 ↪→C]p0 = p ,
that

C � p c!d
! C ∪ {d} � [C ′

0 ↪→C ∪ {d}]p ′0.
Thus, Condition I6 is satisfied in this case.

B.2. The B-LTS induced by an I-LTS

For an I-LTS −→ over a sheaf P ∈ Sh(Iop), we note that 〈−→〉 ⊆ ∫〈P 〉 × Lab × ∫〈P 〉 satisfies
Conditions B1–B3 of Fig. 3.
Suppose that C0 � p0 〈 −→〉 C ′

0 � p ′0. Then there must exist C , C ′ and p ∈ P(C), p ′ ∈ P(C ′) with
C0 = supp(p), C ′

0 = supp(p ′), p0 = seed(p), p ′0 = seed(p ′), and such that C � p −→ C ′ � p ′. Let
C ′′ = C0 ∪ (C ∩ dat()) and D = C \ C ′′. So D ∩ dat() = ∅ and C = C ′′ ∪ D. By Condition I1,
C ′ = C ∪ dat() = C ′′ ∪ D ∪ dat(). By Condition I6, we have p ′′ ∈ P(C ′′ ∪ dat()) with

C ′′ � [C0 ↪→C ′′]p0 −→ C ′′ ∪ dat() � p ′′

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 553

and [C ′′ ∪ dat() ↪→C ′]p ′′ = [C ′
0 ↪→C ′]p ′0. So C ′′ ∪ dat() supports p ′, but C ′

0 is the least support,
so C ′

0 ⊆ C ′′ ∪ dat(). Since P is a sheaf we have p ′′ = [C ′
0 ↪→C ′′ ∪ dat()]p ′0. In summary, we have

C ′′ � [C0 ↪→C ′′]p0 −→ C ′′ ∪ dat() � [C ′
0 ↪→C ′′ ∪ dat()]p ′0.

Clearly C ′
0 ⊆ C ′′ ∪ dat() = C0 ∪ (C ∩ dat()) ∪ dat() = C0 ∪ dat(). So it remains for us to show

that ch() ⊆ C0. ByCondition I1, ch() ⊆ C ′′, i.e., ch() ⊆ C0 ∪ (C ∩ dat()). If ch() /= dat(), then
ch() ⊆ C0 as required. Suppose that ch() = dat(); our reasoning will depend on the
form of . If = �, then the result is trivial. If = d?d , then, by Condition I4a,
C0 � p0 −→ C0 ∪ dat() � [C ′

0 ↪→C0 ∪ dat()]p ′; so by Condition I1, ch() ⊆ C0. If = d !d , then,
by Condition I4b, d ∈ C0; so ch() = {d} ⊆ C0. Thus, Condition B1 holds.
Condition B2 follows from Condition I2. Condition B3 follows from Condition I3.

B.3. The bijective correspondence between B-LTSs and I-LTSs

First, we show that−→= 〈−→〉!. To see that−→⊆ 〈−→〉!, suppose that C � p −→ C ′ � p ′. We
will concentrateon the case =c!d . Then, bydefinition,supp(p)�seed(p) 〈 c!d−→〉 supp(p ′)�seed(p ′).
If d ∈ supp(p), then, since supp(p) ⊆ C , we have d ∈ C and, by Condition I1, C ′ = C; so

C � p 〈 c!d−→〉! C � p ′. Otherwise, if d �∈ supp(p), in order to check that C � p 〈 c!d−→〉! C ′ � p ′ is in-
duced we must show that d �∈ C . Suppose that d ∈ C; then by Condition I1,

C � [C \ {d} ↪→C][supp(p) ↪→C \ {d}](seed(p))
c!d−→ C ∪ {d} � p ′

so by Condition I4b, d ∈ C \ {d}, which is absurd; so d �∈ C . The cases for input and silent actions
are proved in a similar manner; thus −→⊆ 〈−→〉!.
Conversely, to see that −→⊇ 〈−→〉!, suppose that C � p 〈 −→〉! C ′ � p ′. By definition of 〈−→〉!

and of 〈P 〉, no matter what form takes, we must have C ′ = C ∪ dat() and

supp(p) � seed(p) 〈 −→〉 supp(p ′) � seed(p ′).

This, in turn, must have been induced by some D, D′, q ∈ P(D), q′ ∈ P(D′) with D � q −→D′ � q′
and

supp(p) = supp(q), seed(p) = seed(q)
supp(p ′) = supp(q′), seed(p ′) = seed(q′).

We consider the case = c!d for d �∈ C , so that d �∈ supp(p) ⊆ C . By Condition I4b, d �∈ D. So, by
Condition I6, and since P is a sheaf,

supp(p) � seed(p)
c!d−→ supp(p) ∪ {d} � [supp(p ′) ↪→supp(p) ∪ {d}]seed(p ′).

By Condition I5, considering d �∈ C , we have C � p c!d−→ C ∪ {d} � p ′. The cases for = � and
 = c!d with d ∈ C are proved in a similar way. The case for = c?d requires separate attention,
however. In this case, since d �∈ (D \ (D ∩ {d})) and P is a sheaf, Condition I6 gives

554 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

supp(p) ∪ (D ∩ {d}) � [supp(p) ↪→supp(p) ∪ (D ∩ {d})]seed(p)
c?d→ supp(p) ∪ {d} � [supp(p ′) ↪→supp(p) ∪ {d}]seed(p ′).

Now, either d ∈ D or Condition I4a applies; either way,

supp(p) ∪ (D ∩ {d}) � [supp(p) ↪→supp(p) ∪ {d}]seed(p)
c?d→ supp(p) ∪ {d} � [supp(p ′) ↪→supp(p) ∪ {d}]seed(p ′).

Whether d ∈ C or d �∈ C , Condition I5 gives, by considering C \ {d},

C ∪ {d} � [C ↪→C ∪ {d}][supp(p) ↪→C]seed(p)
c?d−→C ∪ {d} � p ′.

Hence, by Condition I4a, C � p c?d−→ C ∪ {d} � p ′ C � p c?d−→C ∪ {d} � p ′ as required.
Finally, we note that = 〈 !〉. Indeed, suppose that C0 � p

C ′
0 � p ′. Then, by definition,

no matter what form takes,

C0 � p
! C0 ∪ dat() � [C ′

0 ↪→C0 ∪ dat()]p ′.

Thus, we have C0 � p 〈
!〉C ′
0 � p ′. The converse is equally simple to prove.

C. Proof of Theorem 13

Throughout this appendix we use the formulation of Conditions i1–I3 presented in
Proposition 12.

C.1. The I-LTS induced by an i-LTS

First, we show Condition I1. We will focus on output transitions; Condition I1 is shown for

other modes of communication in a very similar manner. Suppose that C � p c!d
I C

′ � p ′. If d ∈ C ,
then we have C ′ = C and C � p out(c,d)

p ′. Thus, as out(c, d) ∈ L(C), we have that c, d ∈ C , as re-
quired. On the other hand, if d �∈ C , then we have C = C ′ \ {d} and C ′ � [C ↪→C ′]p out(c,d)

p ′. Thus,
as out(c, d) ∈ L(C), we have c, d ∈ C ′ and so C ′ = C ∪ {d}. Moreover, by Condition i1, c ∈ C as
required.
Condition I2 follows from Condition i3 in a straightforward manner. Conditions I3 and I5 are

satisfied because is a subfunctor.

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 555

Suppose C � p c?z
I C ∪ {z} � p ′, as in the left hand side of Condition I4a. This must have been

induced by C ∪ {z} � [C ↪→C ∪ {z}]p in(c,z)
p ′ Let C ′ = C ∪ {z}. Then we have

C ′ ∪ {z} � [C ′ ↪→C ′ ∪ {z}][C ↪→C ′]p in(c,z)
p ′.

So C ∪ {z} � [C ↪→C ∪ {z}]p c?z
I C ∪ {z} � p ′ is induced. The other direction of Condition I4a is

also a result of the definition; thus Condition I4a is satisfied. Similarly, suppose that

C ∪ {d} � [C ↪→C ∪ {d}]p c!d
I C ∪ {d} � p ′

as in the premise of Condition I4b. This must be because

C ∪ {d} � [C ↪→C ∪ {d}]p out(c,d)
p ′

and d ∈ supp([C ↪→C ∪ {d}]p); sinceC supports [C ↪→C ∪ {d}]p we have d ∈ C andCondition I4b
is satisfied.
We will show that Condition I6 is satisfied for input transitions; other modes of communication

are handled in a similar way. Suppose that

C ∪ D � [C ↪→C ∪ D]p c?d
I C

′ ∪ D � p ′

is induced, and d �∈ D. It follows that we have C ′ ∪ D = C ∪ {d} ∪ D and that

C ∪ {d} ∪ D � [C ↪→C ∪ {d} ∪ D]p in(c,d)
p ′.

By Condition i1 we have c ∈ C , and so in(c, d) ∈ L(C ∪ {d}). By Condition i2, then, we have
p ′′ ∈ P(C ∪ {d}) with [C ∪ {d} ↪→C ∪ {d} ∪ D]p ′′ = p ′ and, as is a subsheaf, it follows that we

have C ∪ {d} � [C ↪→C ∪ {d}]p in(c,d)
p ′′. So C � p c?d

I C ∪ {d} � p ′′ by definition.
Thus, Condition I6 is satisfied.

C.2. The i-LTS induced by an I-LTS

We now show that the induced i-LTS −→i is indeed a subsheaf satisfying Conditions i1–i3.

To see that −→i is a subfunctor of P × L× P , suppose that C � p −→i p
′. This transition must

be induced by the I-LTS, and by Condition I1 we have C = C ′ ∪ dat() with q ∈ P(C ′) such that
p = [C ′ ↪→C]q and that

C ′ � q −→ C � p ′.

556 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

Consider ı : C → D in I, and observe that ı = (C
ı|C �� ı(C) � � �� D). By Condition I3,

ı(C ′) � [ı|C ′]q [ı|C] −→ ı(C ′) ∪ ı(dat()) � [ı|C]p ′.

Let D′ = D \ ı(C); so ı(dat()) ∩ D′ = ∅. Note that dat([ı]) = ı(dat()), and that [ı|C] = [ı] . By
Condition I5,

ı(C ′) ∪ D′ � [ı(C ′) ↪→ ı(C ′) ∪ D′][ı|C ′]q
[ı] −→ ı(C ′) ∪ D′ ∪ ı(dat()) � [ı(C ′) ∪ ı(dat()) ↪→ ı(C ′) ∪ D′ ∪ ı(dat())][ı|C]p ′

and so

ı(C ′) ∪ D′ ∪ ı(dat()) � [ı(C ′) ↪→ ı(C ′) ∪ D′ ∪ ı(dat())][ı|C ′]q
[ı] −→i [ı(C ′) ∪ ı(dat()) ↪→ ı(C ′) ∪ D′ ∪ ı(dat())][ı|C ′]p ′

is induced. But ı(C ′) ∪ D′ ∪ ı(dat()) = D, so

D � [ı][C ′ ↪→C]q [ı] −→i [ı]p ′.

Since [C ′ ↪→C]q = p , we have D � [ı]p [ı] −→i [ı]p ′, and so −→i is a subfunctor of P × L× P .
Now we show that −→i is in fact a subsheaf of P × L× P . Suppose that D ⊆ C supports

C � p −→i p
′. So we have q, q′ ∈ P(D) with p = [D↪→C]q, p ′ = [D↪→C]q′, and we know that

ch() ∪ dat() ⊆ D. We must show that D � q −→i q
′. By Condition I1, we must have C ′ with

C = C ′ ∪ dat() such that this transition is induced byC ′ � p ′′ −→ C � p ′ for some p ′′ ∈ P(C ′)with
[C ′ ↪→C]p ′′ = p . Since both C ′ and D support p , we have r ∈ P(C ′ ∩ D) with [C ′ ∩ D↪→C]r = p ,
and [C ′ ∩ D↪→D]r = q and [C ′ ∩ D↪→C ′]r = p ′′. So we have

C ′ � [C ′ ∩ D↪→C ′]r −→ C � p ′.

Since dat()⊆ D⊆ C=C ′∪dat(), we have D=(C ′ ∩ D)∪dat(). Since

(C ′ \ (C ′ ∩ D)) ∩ dat()= ∅,

Condition I6 gives r′ ∈ P(D) with [D↪→C]r′ = p ′ and

C ′ ∩ D � r −→D � r′.

Now r′, q′ present two gluings of p ′ at D; the sheaf condition requires a unique such and so r′ = q′.
So D � q −→i q

′ is induced, and it follows that −→i is a subsheaf.
We now show that Conditions i1–i3 are satisfied.

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 557

Suppose that C ∪ D � [C ↪→C ∪ D]p −→i p
′ is induced, as in the premise of Condition i1, and

suppose that = in(c, d). By definition, and by Condition I1, we have C ′′ and q ∈ P(C ′′) with
C ∪ D = C ′′ ∪ {d}, and

[C ↪→C ∪ D]p = [C ′′ ↪→C ∪ D]q and C ′′ � q c?d−→ C ′′ ∪ {d} � p ′.
By Condition I4a,

C ′′ ∪ {d} � [C ′′ ↪→C ′′ ∪ {d}]q c?d−→ C ′′ ∪ {d} � p ′.
Now, both C and C ′′ support [C ↪→C ∪ D]p ; since P is a sheaf we have p ′′ ∈ P(C ∩ C ′′) with
[C ∩ C ′′ ↪→C ′′ ∪ {d}]p ′′ = [C ′′ ↪→C ′′ ∪ {d}]q. Condition I6givesusq′′ ∈ P((C ∩ C ′′) ∪ {d}) forwhich

(C ∩ C ′′) ∪ {d} � [C ∩ C ′′ ↪→(C ∩ C ′′) ∪ {d}]p ′′ c?d−→ (C ∩ C ′′) ∪ {d} � q′′.
Applying Condition I4a again gives C ∩ C ′′ � p ′′ c?d−→ (C ∩ C ′′) ∪ {d} � q′′, and by Condition I1,
c ∈ C ∩ C ′′, so c ∈ C as required.
Condition i1 is proved for the other modes of communication in a similar way; for output, Con-

dition I4b is required.

Turning now to Condition i2; suppose that C ∪ D � [C ↪→C ∪ D]p [C↪→C∪D] −→i p ′. For clarity, we
suppose that = out(c, d), but the other cases are handled in a very similar manner. By assumption
we must have d ∈ C , and by definition (using Condition I1) there must exist C ′′ and q ∈ P(C ′′) with
C ∪ D = C ′′ ∪ {d}, [C ↪→C ∪ D]p = [C ′′ ↪→C ∪ D]q, and C ′′ � q c!d−→ C ′′ ∪ {d} � p ′. Now, both C
andC ′′ support [C ↪→C ∪ D]p ; since P is a sheaf, we have p ′′ ∈ P(C ∩ C ′′)with [C ∩ C ′′ ↪→C]p ′′ = p

and [C ∩ C ′′ ↪→C ′′]p ′′ = q. Since d ∈ C , we know that d �∈ C ′′ \ (C ∩ C ′′); thus Condition I6 gives
us q′ ∈ P((C ∩ C ′′) ∪ {d}) such that [(C ∩ C ′′) ∪ {d} ↪→C ∪ D]q′ = p ′. For

q′′ = [(C ∩ C ′′) ∪ {d} ↪→C]q′ ∈ P(C)
we have [C ↪→C ∪ D]q′′ = p ′, and so Condition i2 holds.
Condition i3 results from Condition I2, as follows. Suppose that

C � p in(c,d)−→i p
′

is induced. By definition, and by Condition I1, we have C ′ and q ∈ P(C ′) with C = C ′ ∪ {d},
p = [C ′ ↪→C]q, and C ′ � q c?d−→ C � p ′. By Condition I2, for every e ∈ N we have p ′′ ∈ P(C ′ ∪ {e})
such that C ′ � q c?e−→ C ′ ∪ {e} � p ′′. If d ∈ C ′, or otherwise by Condition I5,

C � p c?e−→ C ∪ {e} � [C ′ ∪ {e} ↪→C ∪ {e}]p ′′

and hence

C ∪ {e} � [C ↪→C ∪ {e}]p in(c,e)−→i [C ′ ∪ {e} ↪→C ∪ {e}]p ′′

is induced, as required.

558 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

C.3. The bijective correspondence between i-LTSs and I-LTSs

The equality = (I)i follows straightforwardly from the definitions and Condition I1.

To prove −→ = (−→i)I , Conditions I4a and I4b are also needed. For instance, suppose that

C � p c!d−→ C ∪ {d} � p ′ with d �∈ supp(p). In this case, then, C \ {d} supports p , so, since P is a
sheaf, we have p ′′ ∈ P(C \ {d})with [C \ {d} ↪→C]p ′′ = p . If d ∈ C , Condition I4b gives d ∈ C \ {d},
which is absurd; so d �∈ C . Now, by definition, we have C ∪ {d} � [C ↪→C ∪ {d}]p out(c,d)−→i p

′. So, by
definition, C � p c!d−→iI C ∪ {d} � p ′, as required.

D. Proof of Theorem 16

We start by showing that 4! : fsNSet → Sh(Iop) is essentially surjective. Recalling that every
P ∈ Sh(Iop) decomposes up to isomorphism as 〈P 〉! with 〈P 〉 ∈ SetB, we need only show that for
every Q ∈ SetB there exists

∮
Q ∈ fsNSet such that 4

∮
Q∼=Q.

Define |∮ Q | to be the quotient set (∫Q)/≈ where≈ is the equivalence relationwith (C , p) ≈ (D, q)
if and only if there exists 5 : C ∼→ D in B such that [5]p = q.
To each (D, q) ∈ ∫

Q associate the subgroupS(D,q) of Sym(N) consisting of all the permutations
that restrict to automorphisms on D and fix q ∈ QD. That is,

S(D,q) =
{
0 ∈ Sym(N)

0|D is an automorphism
such that [0|D]q = q

}
.

For a section s : |∮ Q |→∫
Q of the quotientmap

∫
Q� |∮ Q |, define a named-setwith symmetries∮

s Q by∮
s Q = (|∮ Q | , Ss = {Ssx}x∈|∮ Q|

)
.

This named-set is finitely supported. Indeed,

for s[C , p] = (D, q), we have that D is least among the finite supports of [C , p] in ∮
s Q

as we now show:

(1) D supports [C , p] because every 0 ∈ Sym(N) such that 0|D = idD is clearly in S(D,q).
(2)Assume that E ⊆ N is a finite set supporting [C , p] in ∮

s Q, and suppose that there is a
d ∈ N which is in D but not in E. Then, there is 0 ∈ Sym(N) such that (i) 0|E = idE and
(ii) 0(d) �∈ D. By assumption and (i), it follows that 0 ∈ S(D,q). Hence, 0|D is an automorphism,
contradicting (ii).

We now exhibit an isomorphism between Q and 4
∮
s Q in SetB.

Define a mapping QC → 4(
∮
s Q)C as follows

p &→ ([C , p] , 0S(D,q)
)

(D.1)

M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560 559

where (D, q) = s[C , p] and 0 ∈ Sym(N) is such that 0(D) = C and [0|D]q = p . (Note that, as
(D, q) ≈ (C , p), such a 0 always exists. Note also that, for � ∈ Sym(N) such that �(D) = C and
[�|D]q = p , we have that (0−1�)|D = 0−1|C �|D is an automorphism on D that fixes q, so that
0S(D,q) = �S(D,q). Further recall from above that 0−1(C) = D is least among the finite supports
of [C , p] in ∮

s Q.)
We show that (D.1) is injective. To this end, let p , p ′ ∈ QC be such that

([C , p] , 0S(D,q)
) = ([C , p ′] , 0′S(D,q)

)
,

where (D, q) = s[C , p] = s[C , p ′], and 0(D) = 0′(D) = C and [0|D]q = p , [0′|D]q = p ′. Then,
0−10′ ∈ S(D,q) and so 0−1|C 0′|D = (0−10′)|D is an automorphism such that [0−1|C][0′|D]q = q.
Hence,

p = [0|D]q = [0′|D]q = p ′

as required.
We show that (D.1) is surjective. Let

([D, q] , 0Ss[D,q]
) ∈ 4(∮s Q)C , so that 0−1(C) is least among

the finite supports of [D, q] in ∮
s Q. If (D

′, q′) = s[D, q] then, as D′ is the least support of [D, q] in∮
s Q, it follows that D

′ = 0−1(C). Thus, we have 0|D′ : D′ ∼→ C in B, and [0|D′]q′ ∈ QC maps to([
C , [0|D′]q′] , 0S(D′,q′)

) = ([D′, q′] , 0S(D′,q′)
) = ([D, q] , 0Ss[D,q]

)
.

We show that (D.1) is natural. For (C , p) ∈ ∫
Q, (D, q) = s[C , p], and 5 : C ∼→ C ′ in Bwe need to

show that
([
C ′, [5]p]

, 0′S(D,q)
) = ([C , p] , �0S(D,q)

)

where 0′(D) = C ′ and [0′|D]q = [5]p , 0(D) = C and [0|D]q = p , and �|C = 5. Clearly,[
C ′, [5]p] = [C , p]. As for the identity 0′S(D,q) = �0S(D,q), note that the automorphism

(0−1�−10′)|D = (
D

0′|D
∼ �� C ′ �−1|C′ =5−1

∼ �� C
0−1|C
∼ �� D

)

is such that

[(0−1�−10′)|D]q = [0−1|C][�−1|C ′][0′|D]q
= [0−1|C][5−1][5]p
= [0−1|C]p
= q

Thus, 0−1�−10′ ∈ S(D,q) and we are done.
We have thus established that the functor 4! : fsNSet → Sh(Iop) is essentially surjective. It re-

mains to be shown that it is also full and faithful.
To see that 4! is full, consider some � : 4!(X ,H)→ 4!(X ′,H ′) in Sh(Iop), and let (x′, Jx) =

�suppH (x)(x,Hx) for each x ∈ X ; definem(x) = x′ and letKx = Jx .Wemust show that the pair (m,K) is
a validmorphism of named-sets. SupposeKx = 0xH

′
mx; we will show thatHx ⊆ 0xH

′
mx0

−1
x . Consider

some 0 ∈ Hx . Then �0(suppH (x))(x, 0Hx) = �suppH (x)(x,Hx). The action of 4!(X ,H)

560 M. Fiore, S. Staton / Information and Computation 204 (2006) 524–560

and naturality of � gives �suppH (x)(x,Hx) = [0|suppH (x)](�suppH (x)(x,Hx)). That is to say,[0|suppH (x)](m x,Kx) = (m x,Kx). We know that 0 extends 0|suppH (x), and so (m x, 0xH ′
mx) =

(m x, 00xH ′
mx). So 0xH

′
mx = 00xH

′
mx . Thus, 0

−1
x 00x ∈ H ′

mx, and we have shown thatHx ⊆ 0xH
′
mx0

−1
x .

Thus, the pair (m,K) is a valid morphism of named-sets.
We still have to showthat4!(m,K)=�. Consider (x, 0Hx) ∈ 4!(X ,H)C .Wehave4!(m,K)C(x, 0Hx)

= (m x, 0Kx). Since0 extends0|0−1(C),wehave4!(m,K)C(x, 0Hx) = [0|0−1(C)](m x,Kx). Since4!(X ,H)
maps inclusions to inclusions, and suppHx ⊆ C , and � is natural with respect to the inclusion maps,
we have 4!(m,K)C(x, 0Hx) = [0|0−1(C)](�0−1(C)(x,Hx)). Since � is natural with respect to the bijec-
tion 0|0−1(C), we have 4!(m,K)C(x, 0Hx) = �C([0|0−1(C)](x,Hx)). The action of 4!(X ,H) gives us
4!(m,K)C(x, 0Hx) = �C(x, 0Hx). So 4!(m,K) = �, and 4! is full.
To see that 4! is faithful, consider two maps of named-sets (m,K), (m′,K ′) : (X ,H)→ (X ′,H ′)

and suppose that 4!(m,K) = 4!(m′,K ′). That is, for all C ∈ I and (x, 0Hx) ∈ 4!(X ,H)C , we have
(m x, 0Kx) = (m′ x, 0K ′

x). In particular, by taking0 = idN , we have (m x,Kx) = (m′ x,K ′
x) for all x ∈ X .

So m = m′ and K = K ′, and 4! is faithful.
Thus, the category fsNSet of finitely supported named-sets with symmetries is equivalent to the

Schanuel topos Sh(Iop), and Theorem 16 is proved.

References

[1] G.L. Cattani, P. Sewell, Models for name-passing processes: interleaving and causal, Information and Computation,
190 (2004) 136–178. (Extended abstract in Proc. LICS’00.).

[2] G. Ferrari, U. Montanari, M. Pistore, Minimising transition systems for name passing calculi: A co-algebraic for-
mulation, in: Proceedings of FOSSACS’02, Lecture Notes in Computer Science, vol. 2302, 2002, pp. 129–158.

[3] M.P. Fiore, Notes on combinatorial functors, Draft available on-line (January 2001).
[4] M.P. Fiore, E. Moggi, D. Sangiorgi, A fully abstract model for the �-calculus, Information and Computation, 179
(2002) 76–117. (Extended abstract in Proc. LICS’96.).

[5] M.P. Fiore, S. Staton, Comparing operational models of name-passing process calculi, in: Proceedings of CMCS’04,
ENTCS, vol. 106, 2004, pp. 91–104.

[6] M.P. Fiore, D. Turi, Semantics of name and value passing, in: Proceedings of LICS’01, 2001, pp. 93–104.
[7] F. Gadducci, M.Miculan, U.Montanari, About permutation algebras, (pre)sheaves and named sets, Private commu-
nication (July 2005). (Preliminary version as “Some characterization results for permutation algebras,” inProceedings
of COMETA, 2004.).

[8] M. Pistore, History Dependent Automata, Ph.D. thesis, University of Pisa, 1999.
[9] D. Sangiorgi, A theory of bisimulation for the �-calculus, Acta Informatica, 33 (1996) 69–97. (Extended abstract in
Proc. CONCUR’93.).

[10] I. Stark, A fully abstract domain model for the �-calculus, in: Proceedings of LICS’96, 1996, pp. 36–42.

