A combinatorial proof of the Lebesgue identity

Amy M. Fu
Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China
Received 22 November 2006; received in revised form 17 May 2007; accepted 6 June 2007
Available online 16 June 2007

Abstract

We present a combinatorial proof of the Lebesgue identity based on the insertion algorithm of Zeilberger. © 2007 Elsevier B.V. All rights reserved.

Keywords: The Lebesgue identity; Algorithm Z

Assume that $|q| < 1$, and let $(a; q)_\infty = (1 - a)(1 - aq) \cdots$. We define the q-shifted factorial $(a; q)_n$ by

$$(a; q)_n = \frac{(a; q)_\infty}{(aq^n; q)_\infty}.$$

The following relation is referred to as the Lebesgue identity

$$\sum_{n=0}^{\infty} \frac{(-aq; q)_n}{(q; q)_n} q^{\frac{n+1}{2}} = (-aq^2; q^2)_\infty (-q; q)_\infty. \quad (1)$$

A partition λ of a nonnegative integer into at most r parts is denoted by $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, where $\lambda_1, \lambda_2, \ldots, \lambda_r$ are nonincreasing sequence of nonnegative integers. Let λ, μ be partitions. We define $\lambda \cup \mu$ to be the partition whose parts are those of λ and μ, arranged in nonincreasing order.

Based on 2-modular diagrams [2,3] or MacMahon diagrams, two combinatorial proofs of (1) have been given, respectively. In this paper, we shall give a new combinatorial proof of a generalization of the Lebesgue identity in which Algorithm Z due to Zeilberger (see also [1]) plays a crucial role.

Theorem 1. For any $0 \leq k \leq n$, there is a bijection between the set of pairs of partitions (α, β) where α has k distinct parts with the largest part not exceeding n, β has n distinct parts and the set of pairs of partitions (μ, ν) where μ has k even distinct parts, ν has distinct parts with $n - k$ parts exceeding k.

E-mail address: fu@nankai.edu.cn.

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.06.003
We may translate Theorem 1 into the following q-identity:

\[
\sum_{n=0}^{\infty} \frac{(-aq^n q^n) b^n q^{(n+1)}}{(q; q)_n} = \sum_{k=0}^{\infty} \frac{(-q^n q_k) (ab)^k q^{k(k+1)} (-bq^{k+1}; q)_\infty}{(q^2; q^2)_k} = (-bq^n q) \sum_{k=0}^{\infty} \frac{(ab)^k q^{k(k+1)}}{(q; q)_k (-bq^n q)_k}.
\]

(2)

In view of Euler’s identity

\[
\sum_{n=0}^{\infty} a^n q^{n^2} = (a; q)_\infty,
\]

the Lebesgue identity can be recovered by setting \(b = 1 \) in (2).

Lemma 1 (Algorithm Z). There is a bijection between the set of pairs of partitions \((\alpha, \beta)\) where \(\alpha \) has at most \(i \) parts and \(\beta \) has at most \(j \) parts, and the set of pairs of partitions \((\mu, \nu)\), where \(\mu \) has at most \(i + j \) parts and \(\nu \) has at most \(j \) parts with each part not exceeding \(i \).

Proof. Given a partition \(\alpha \) with at most \(i \) parts, denoted by \((\alpha_1, \alpha_2, \ldots, \alpha_i)\), and a partition \(\beta \) with at most \(j \) parts, denoted by \((\beta_1, \beta_2, \ldots, \beta_j)\), we may insert \(\beta \) into \(\alpha \) to form a new partition \(\mu \) with at most \(i + j \) parts and create a new partition \(\nu \) which has at most \(j \) parts with each part not exceeding \(i \).

The insertion algorithm can be described as the following recursive procedure:

1. If \(\beta_1 \leq \alpha_i \), we add \(\beta_1 \) to \(\alpha \) so that we get a new partition \((\alpha_1, \alpha_2, \ldots, \alpha_{i+1})\), where \(\alpha_{i+1} = \beta_1 \). Moreover, we put an empty part as a record.

2. If \(\beta_1 > \alpha_i \), we recursively insert \(\beta_1 - 1 \) to the partition \((\alpha_1, \alpha_2, \ldots, \alpha_{i-1})\). Suppose that the recursive procedure ends with \(\beta_1 - v_1 \) being inserted, we use a part \(v_1 \) to record the position of \(\beta_1 - v_1 \). Obviously, we have \(0 \leq v_1 \leq i \).

Conversely, given a partition \((\alpha_1, \alpha_2, \ldots, \alpha_{i+1})\) and a number \(v_1, 0 \leq v_1 \leq i \), we may extract the part \(\beta_1 \) from the given partition. It is easy to see that the above procedure is reversible.

As an example, taking \(\alpha = (6, 5, 3, 3, 1) \), \(\beta = (5, 4, 4, 0) \), where \(i = 5, j = 4 \), we have

\[
\mu = (6, 5, 3, 3, 3, 3, 1, 0), \quad \nu = (2, 1, 1, 0).
\]

Lemma 2. There is a bijection between the set of pairs of partitions \((\alpha, \beta)\) where \(\alpha \) has distinct parts with the largest part not exceeding \(i \), \(\beta \) has at most \(i \) even parts, and the set of partitions \(\lambda \) where \(\lambda \) has at most \(i \) parts.

Proof. Given a partition \(\lambda \) into at most \(i \) parts, we denote its conjugate by \(\lambda' \). We decompose \(\lambda' \) into a pair of partitions \(\alpha \) and \(\beta' \) obeying the following rule. For part \(j \ (1 \leq j \leq i) \), if the number of part \(j \) denoted by \(m_j \) is odd, then \(\alpha \) has a part \(j \), \(\beta' \) has \(m_j - 1 \) equal parts \(j \); otherwise, \(\beta' \) has \(m_j \) equal parts \(j \). Clearly, both \(\alpha \) and \(\beta' \) have the largest parts not exceeding \(i \). Conjugating \(\beta' \), we get a partition \(\beta \) that has at most \(i \) even parts. The reverse procedure is straightforward. \(\square \)
The following is an example of Lemma 2. Taking \(i = 8, \lambda = (20, 19, 19, 18, 11, 8, 8, 7) \), we have

\[
\begin{align*}
\lambda &\iff \lambda' = (8, 8, 8, 8, 8, 7, 5, 5, 4, 4, 4, 4, 4, 4, 3, 1) \\
\iff \alpha = (8, 7, 5, 4, 3, 1), \quad \beta' = (8, 8, 8, 8, 8, 5, 5, 4, 4, 4, 4, 4) \\
\iff \alpha = (8, 7, 5, 4, 3, 1), \quad \beta = (14, 14, 14, 14, 8, 6, 6, 6).
\end{align*}
\]

Using Lemmas 1 and 2, we present a combinatorial proof of Theorem 1.

Proof of Theorem 1. We shall prove the theorem through the following steps.

Step 1: Removing the staircase partitions \(T_1 = (k, k − 1, \ldots, 1) \) and \(T_2 = (n, n − 1, \ldots, 1) \) from \(\alpha \) and \(\beta \), respectively, we obtain a partition \(\check{\alpha} \) containing at most \(k \) parts with the largest part not exceeding \(n − k \) and a partition \(\check{\beta} \) into at most \(n \) parts.

Step 2: Applying Algorithm Z to \(\check{\alpha} \) and \(\check{\beta} \), we get a pair of partitions \((\check{\alpha}, \check{\beta}) \) where \(\check{\alpha} \) has at most \(k \) parts and \(\check{\beta} \) has at most \(n − k \) parts.

Step 3: By Lemma 2, we can decompose \(\check{\alpha} \) into two partitions \(\check{\alpha} \) with at most \(k \) even parts and \(\tilde{\nu} \) into distinct parts with the largest part not exceeding \(k \).

Step 4: Divide \(T_2 \) into three parts, two staircase partitions \(T_{21} = (k, k − 1, \ldots, 1) \), \(T_{23} = (n − k, n − k − 1, \ldots, 1) \) and a rectangle partition \(T_{22} = (k, \ldots, k) \). Adding \(T_1 \) and \(T_{21} \) to \(\tilde{\mu} \), we get a partition \(\mu \) into \(k \) distinct even parts. Adding \(T_{23} \) to \(\check{\beta} \), then putting the new partition to the left of \(T_{22} \) and \(\check{\nu} \) below \(T_{22} \), we get a partition \(\nu \) which has distinct parts with \(n − k \) parts exceeding \(k \).

The reverse bijection can be easily constructed. Given \(\mu \) and \(\nu \), we get a partition \(\check{\nu} \) from \(\nu \) by choosing the parts not exceeding \(k \), and a partition \(\check{\beta} \) from the remaining parts of \(\nu \) by removing a rectangle partition \((k, \ldots, k) \) and a staircase partition \((n − k, n − k − 1, \ldots, 1) \), and a partition \(\check{\mu} \) by removing two staircase partitions \((k, k − 1, \ldots, 1) \) from \(\mu \).

By Lemma 1 and Lemma 2, we can get a pair of partitions \((\check{\alpha}, \check{\beta}) \) from \(\check{\mu} \), \(\check{\nu} \) and \(\check{\beta} \) where \(\check{\alpha} \) has at most \(k \) parts with the largest part not exceeding \(n − k \) and \(\check{\beta} \) has at most \(n \) parts. Finally, adding the staircase partitions \((k, k − 1, \ldots, 1) \) and \((n, n − 1, \ldots, 1) \) to \(\check{\alpha} \) and \(\check{\beta} \) respectively, we get the desired pair of partitions \((\alpha, \beta) \).

For example, let

\[
k = 5, \quad n = 8, \quad \alpha = (8, 7, 5, 4, 2), \quad \beta = (20, 17, 16, 14, 12, 7, 6, 3).
\]

We have

\[
(\alpha, \beta) \iff \check{\alpha} = (3, 3, 2, 2, 1), \check{\beta} = (12, 10, 10, 9, 8, 4, 4, 2)
\]

\[
T_1 = (5, 4, 3, 2, 1), \quad T_2 = (8, 7, 6, 5, 4, 3, 2, 1)
\]

Lemma 1 \[\check{\alpha} = (15, 13, 11, 10, 5), \check{\beta} = (10, 4, 2) \]

\[
T_1 = (5, 4, 3, 2, 1), \quad T_2 = (8, 7, 6, 5, 4, 3, 2, 1)
\]

Lemma 2 \[\check{\mu} = (12, 10, 8, 4), \check{\nu} = (5, 4, 3), \check{\beta} = (10, 4, 2) \]

\[
T_1 = (5, 4, 3, 2, 1), \quad T_2 = (8, 7, 6, 5, 4, 3, 2, 1)
\]

\[\iff \mu = (22, 18, 14, 12, 6), \nu = (18, 11, 8, 5, 4, 3). \]

The author would like to thank the referees for their helpful comments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China.

References

