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Introduction

Let A be an associative unital k-algebra where k is a field. The nth Hochschild cohomology group
of A, denoted by HHn(A), refers to

HHn(A) := HHn(A, A) = Extn
Ae (A, A)

where Ae is the enveloping algebra Aop ⊗k A of A. Thus, for example, HH0(A) is the center of A and
the first Hochschild cohomology group HH1(A) is the vector space of the outer derivations. Note that
the first Hochschild cohomology group has a Lie algebra structure given by the commutator bracket.
In [Ger63], Gerstenhaber introduced two operations on the Hochschild cohomology groups: the cup
product and the bracket

[− ,−] : HHn(A) × HHm(A) −→ HHn+m−1(A).
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He proved that the Hochschild cohomology of A,

HH∗(A) :=
∞⊕

n=0

HHn(A),

provided with the cup product is a graded commutative algebra. Furthermore, he demonstrated that
HH∗+1(A) endowed with the Gerstenhaber bracket has a graded Lie algebra structure. Consequently,
HH1(A) is a Lie algebra and HHn(A) is a Lie module over HH1(A). As a matter of fact, the Gersten-
haber bracket restricted to HH1(A) is the commutator Lie bracket of the outer derivations. Moreover,
the cup product and the Gerstenhaber bracket endow HH∗(A) with the so-called Gerstenhaber algebra
structure.

Besides, it was shown that the algebra structure on HH∗(A) is invariant under derived equivalence
[Hap89,Ric91]. In addition, in [Kel04], Keller proved that the Gerstenhaber bracket on HH∗+1(A) is
preserved under derived equivalence. Therefore, the Lie module structure on HHn(A) over HH1(A) is
also an invariant under derived equivalence.

Understanding both the graded commutative algebra and the graded Lie algebra structure, on the
Hochschild cohomology of algebras is a difficult assignment. Different techniques have been used in
order to: (1) describe the Hochschild cohomology algebra (or ring) for some algebras [Hol96,CS97,
Cib98,ES98,EH99,SW00,Alv02,EHS02,GA08,Eu07b,FX06]; (2) study the Hochschild cohomology ring
modulo nilpotence [GSS03,GSS06,GS06] and (3) compute the Gerstenhaber bracket [Bus06,Eu07a].

On the other hand, C. Strametz studied, in [Str06], the Lie algebra structure on the first Hochschild
cohomology group of monomial algebras. She accomplishes to describe such Lie algebra structure in
terms of the combinatorics of the monomial algebras. Moreover, she relates such description to the al-
gebraic groups which appear in Guil-Asensio and Saorín’s study of the outer automorphisms [GAS99].
In [Str06], Strametz also gave criteria for simplicity of the first Hochschild cohomology group.

In this paper we are interested in the Lie module structure on the Hochschild cohomology groups
induced by the Gerstenhaber bracket. This approach was suggested by C. Kassel and motivated by the
work of C. Strametz. The aim of this paper is to describe the Lie module structure on the Hochschild
cohomology groups for monomial algebras of (Jacobson) radical square zero. Recall that a monomial
algebra of radical square zero is the quotient of the path algebra of a quiver Q by the two-sided ideal
generated by the set of paths of length two. We will use the combinatorics of the quiver in order to
describe the Lie module structure. Moreover, for the case of the two loops quiver, we relate such Lie
module structure of HHn(A) to the classification of the (finite dimensional) irreducible Lie modules
over sl2 when the ground field is the complex numbers.

The Hochschild cohomology groups of those algebras have been described in [Cib98] using the
combinatorics of the quiver. Such description enables to prove that the cup product of elements of
positive degree is zero when Q is not an oriented cycle. In this paper, we use Cibils’ description
of HHn(A) in order to study the Lie module structure on the Hochschild cohomology groups. First, we
reformulate the Gerstenhaber bracket for the realization of the Hochschild cohomology groups ob-
tained through the computations in [Cib98]. In the first section we construct two quasi-isomorphisms
between the Hochschild cochain complex and the complex induced by the reduced projective resolu-
tion. Then in the second section, using such quasi-isomorphisms, we introduce a new bracket; which
coincides with the Gerstenhaber bracket. In the third section, we use the combinatorics of the quiver
to describe the Gerstenhaber bracket.

In the last section, we study a particular case: the monomial algebra of radical square zero given
by the two loops quiver. For this algebra, we prove that HH1(A) is isomorphic as a Lie algebra to
gl2C and then we identify a copy of sl2C in HH1(A). In order to describe HHn(A) as a Lie module
over HH1(A), we start studying the Lie module structure of HHn(A) over sl2C. In this article, we de-
termine the decomposition of HHn(A) into direct sum of irreducible modules over sl2C. Moreover, we
show that such decomposition can be obtained by an algorithm. In the following table we illustrate
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the decomposition for the Hochschild cohomology groups of degrees between 2 and 7. We denote
by V (i) the unique irreducible Lie module of dimension i + 1 over sl2C.

n V (0) V (1) V (2) V (3) V (4) V (5) V (6) V (7) V (8)

HH2(A) 1 1

HH3(A) 1 2 1

HH4(A) 3 3 1

HH5(A) 3 6 4 1

HH6(A) 9 10 5 1

HH7(A) 9 19 15 6 1

In the above table, let us remark that the three last diagonal form a component of the Pas-
cal triangle. Note also that the integer sequence given by the first and second column are the
same. We will prove that these two remarks are in general true. This will enable to show the
validity of the algorithm and in consequence obtain the other diagonals of the table. More-
over, we have introduced the sequence of numbers in the Encyclopedia of Integer Sequences
[http://www.research.att.com/~njas/sequences/index.html], it appears to be related with two se-
quences. Among these sequence, there is one that represents the expected saturation of a binary
search tree (or BST) on n nodes times the number of binary search trees on n nodes, or alternatively,
the sum of the saturation of all binary search trees on n nodes. Another sequence gives the number
of standard tableaux of shapes (n + 1,n − 1). The two sequences are given by explicit formulas.

In a future paper, we will apply the same techniques, as those we use in this article, to prove
that the first Hochschild cohomology group of the monomial algebra of radical square zero is the Lie
algebra glnC when the quiver is given by n loops. Moreover, we will determine, as we did for the
two loops case, the decomposition into direct sum of irreducible modules over slnC but only for the
second Hochschild cohomology group. We will also be dealing with the case when the quiver has no
loops and no cycles.

1. A comparison map between the bar projective resolution and the reduced bar projective
resolution

In this section, we deal with finite dimensional k-algebras whose semisimple part (i.e. the quotient
by its radical) is isomorphic to a finite number of copies of the field. Monomial algebras of radical
square are a particular case of these algebras.

Two projective resolutions

The usual Ae-projective resolution of A used to calculate the Hochschild cohomology groups is the
standard bar resolution. The standard bar resolution, that we will denote by S, is given by the following
exact sequence:

S := · · · → A⊗n+1
k

δ−→ A⊗n
k

δ−→ · · · δ−→ A⊗3
k

δ−→ A ⊗
k

A
μ−→ A → 0

where μ is the multiplication and the Ae-morphisms δ are given by

δ(x1 ⊗ · · · ⊗ xn+1) =
n∑

i=1

(−1)i+1x1 ⊗ · · · ⊗ xi xi+1 ⊗ · · · ⊗ xn+1

where xi ∈ A and ⊗ means ⊗.

k

http://www.research.att.com/~njas/sequences/index.html
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Now, the Ae-projective resolution of A used in [Cib98] to compute the Hochschild cohomology
groups of a monomial radical square zero is the reduced bar resolution. It is defined for a finite dimen-
sional k-algebra A whose Wedderburn–Malcev decomposition is given by the direct sum A = E ⊕ r
where r is the Jacobson radical of A and E ∼= A/r ∼= k ×k × · · ·×k. In the sequel A denotes an algebra
verifying those conditions. Let us denote by R the reduced bar resolution. It is given by the following
exact sequence:

R := · · · → A ⊗
E

r⊗n+1
E ⊗

E
A δ−→ A ⊗

E
r⊗n

E ⊗
E

A δ−→ · · · δ−→ A ⊗
E

r ⊗
E

A δ−→ A ⊗
E

A
μ−→ A → 0

where μ is the multiplication and the Ae-morphisms δ are given by

δ(a ⊗ x1 ⊗ · · · ⊗ xn+1 ⊗ b) = ax1 ⊗ x2 ⊗ · · · ⊗ xn+1 ⊗ b

+
n∑

i=1

(−1)ia ⊗ x1 ⊗ · · · ⊗ xi xi+1 ⊗ . . . ⊗ b

+ (−1)n+1a ⊗ x1 ⊗ · · · ⊗ xn ⊗ xn+1b

where a,b ∈ A, xi ∈ r and ⊗ means ⊗
E

. The proof that this sequence is a projective resolution can be

found in [Cib90].

Comparison maps

Theorically, a comparison map exists between these two projective resolutions. The objective of
this section is to give an explicit comparison map between the projective resolutions S and R in
both directions. Such comparison map will induce some quasi-isomorphisms between the Hochschild
cochain complex and the complex induced by the reduced bar resolution. The explicit calculations of
these quasi-isomorphisms, enables to reformulate the Gerstenhaber bracket.

In this paragraph, we are going to give two maps of complexes:

p : S → R and s : R → S.

This means we will define maps (pn) and (sn) such that the next diagram

· · · A ⊗
k

A⊗n+1
k ⊗

k
A

pn+1

δ A ⊗
k

A⊗n
k ⊗

k
A · · ·

pn

A ⊗
k

A

p0

μ

A

id

0

· · · A ⊗
E

r⊗n+1
E ⊗

E
A

δ

sn+1

A ⊗
E

r⊗n
E ⊗

E
A · · ·

sn

A ⊗
E

A

s0

μ

A

id

0

· · · A ⊗
k

A⊗n+1
k ⊗

k
A

δ A ⊗
k

A⊗n
k ⊗

k
A · · · A ⊗

k
A μ

A 0

(1)

commutes.

Map (pn). We define p0 as the linear map given by



S. Sánchez-Flores / Journal of Algebra 320 (2008) 4249–4269 4253
p0 : A ⊗
k

A → A ⊗
E

A,

a ⊗
k

b 	→ a ⊗
E

b.

Now, let n � 1. Define

pn : A ⊗
k

A⊗n
k ⊗

k
A → A ⊗

E
r⊗n

E ⊗
E

A

as the linear map given by

a ⊗
k

x1 ⊗
k

· · ·⊗
k

xi ⊗
k

· · ·⊗
k

xn+1 ⊗
k

b 	→ a ⊗
E
π(x1)⊗

E
· · ·⊗

E
π(xi)⊗

E
· · ·⊗

E
π(xn+1)⊗

E
b

where π denotes the projection map from A to the Jacobson radical square zero. Notice that pn is an
Ae-morphism for all n.

In order to define the maps (sn) we introduce some notation. In the sequel, let E0 denote a com-
plete system of idempotents and orthogonal elements of E . Note that the set E0 is finite.

Remark. Now, consider elements of A ⊗
E

r⊗n
E ⊗

E
A of the form

ae j1 ⊗
E

· · ·⊗
E

e ji−1 xi−1e ji ⊗
E

e ji xie ji+1 ⊗
E

e ji+1 xi+1e ji+2 ⊗
E

· · ·⊗
E

e jn+1 b

where each e ji is in E0, a,b are in A and xi in r. It is not difficult to see that those elements generate
the vector space A ⊗

E
r⊗n

E ⊗
E

A. Indeed, we have that

a ⊗
E

x1 ⊗
E

· · ·⊗
E

xi ⊗
E

· · ·⊗
E

xn ⊗
E

b

=
∑

j1,..., jn+1

ae j1 ⊗
E

· · ·⊗
E

e ji−1 xi−1e ji ⊗
E

e ji xie ji+1 ⊗
E

e ji+1 xi+1e ji+2 ⊗
E

· · ·⊗
E

e jn+1 b

where the sum is over all (n + 1)-tuples (e j1 , . . . , e ji , . . . , e jn+1) of elements of E0.

Map (sn). Define s0 as the linear map given by

s0 : A ⊗
E

A → A ⊗
k

A,

ae ⊗
E

eb 	→ ae ⊗
k

eb.

So we have that

s0(a ⊗
E

b) =
∑
e∈E0

ae ⊗
k

eb.

It is well defined because s0(ae ⊗
E

b) = ae ⊗
k

eb = s0(a ⊗
E

eb) for all e ∈ E . Now, let n � 1. Define

sn : A ⊗
E

r⊗n
E ⊗

E
A → A ⊗

k
A⊗n

k ⊗
k

A

as the linear map given by
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ae j1 ⊗
E

· · ·⊗
E

e ji−1 xi−1e ji ⊗
E

e ji xie ji+1 ⊗
E

e ji+1 xi+1e ji+2 ⊗
E

· · ·⊗
E

e jn+1 b

	→ ae j1 ⊗
k

· · ·⊗
k

e ji−1 xi−1e ji ⊗
k

e ji xie ji+1 ⊗
k

e ji+1 xi+1e ji+2 ⊗
k

· · ·⊗
k

e jn+1 b

where each e ji is in E0. So we have that

sn(a ⊗
E

x1 ⊗
E

· · ·⊗
E

xi ⊗
E

· · ·⊗
E

xn ⊗
E

b)

=
∑

j1,..., jn+1

ae j1 ⊗
k

· · ·⊗
k

e ji−1 xi−1e ji ⊗
k

e ji xie ji+1 ⊗
k

e ji+1 xi+1e ji+2 ⊗
k

· · ·⊗
k

e jn+1 b

where the sum is over all (n + 1)-tuples (e j1 , . . . , e ji , . . . , e jn+1) of elements of E0. Notice that sn is an
Ae-morphism.

Remark. It is clear that pnsn = id
A ⊗

E
r⊗n

E ⊗
E

A
.

Lemma 1.1. The maps

p : S → R and s : R → S

defined above are maps of complexes.

Proof. A straightforward verification shows that the diagram (1) is commutative. �
Two complexes

We will denote the Hochschild cochain complex by C•(A,A). Recall that it is defined by the complex,

0 → A δ−→ Homk(A, A)
δ−→

· · · −→ Homk
(

A⊗n
k , A

)
δ−→ Homk

(
A⊗n+1

k , A
) · · ·

where δ(a)(x) = xa − ax for a in A and

δ f (x1 ⊗ · · · ⊗ xn ⊗ xn+1) = x1 f (x2 ⊗ · · · ⊗ xn+1)

+
n∑

i=1

(−1)i f (x1 ⊗ · · · ⊗ xi xi+1 ⊗ · · · ⊗ xn+1)

+ (−1)n+1 f (x1 ⊗ · · · ⊗ xn)xn+1

for f in Homk(A⊗n
k , A). Notice that after applying the functor HomAe (−, A) to the standard bar

resolution, the Hochschild cochain complex is obtained by identifying HomAe (A ⊗k A⊗n
k ⊗k A, A)

to Homk(A⊗n
k , A). The reduced complex is obtained from the reduced bar resolution in a similar

way. First we apply HomAe (−, A) to the reduced bar resolution, then we identify the vector space
HomAe (A ⊗E r⊗n

E ⊗E A, A) to HomEe (r⊗n
E , A). Therefore, the reduced bar complex that we denote

by R•(A,A) is given by

0 → AE δ−→ HomEe (r, A)
δ−→

· · · −→ HomEe
(
r⊗n

E , A
)

δ−→ HomEe
(
r⊗n+1

E , A
) · · ·
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where AE is the subalgebra of A defined as follows:

AE := {a ∈ A | ae = ea for all e ∈ E}.

The differentials in the reduced complex are given as the above formulas.

Induced quasi-isomorphism

In this paragraph, we will compute the quasi-isomorphisms between the Hochschild cochain com-
plex and the reduced complex, induced by the comparison maps p and s. We will denote them by

p• : R•(A,A) → C•(A,A) and s• : C•(A,A) → R•(A,A).

Map (p•). In degree zero, we have that p0 : AE → A is the inclusion map. For n � 1,

pn : HomEe
(
r⊗n

E , A
) −→ Homk

(
A⊗n

k , A
)

is given by

pn f (x1 ⊗
k

· · ·⊗
k

xn) = f
(
π(x1)⊗

E
· · ·⊗

E
π(xn)

)

where f is in HomEe (r⊗n
E , A) and xi ∈ r.

Map (s•). In degree zero, we have that s0 : A → AE is given by

s0(x) =
∑
e∈E0

exe

where x ∈ A. For n � 1, we have that

sn : Homk
(

A⊗n
k , A

) −→ HomEe
(
r⊗n

E , A
)

is given by

sn f (x1 ⊗
E

· · ·⊗
E

xn) =
∑

j0,..., jn

e j0 f (e j0 x1e j1 ⊗
k

· · ·⊗
k

e ji−1 xie ji ⊗
k

· · ·⊗
k

e jn−1 xne jn )e jn

where the sum is over all (n +1)-tuples (e j0 , . . . , e ji , . . . , e jn ) of elements of E0, f is in Homk(A⊗n
k , A)

and xi is in r.

Remark. Let us remark that s• p• = idR•(A,A) .

2. Gerstenhaber bracket and reduced bracket

The Gerstenhaber bracket is defined on the Hochschild cohomology groups using the Hochschild
complex. In this section we will define the reduced bracket using the reduced complex. We show that
the Gerstenhaber bracket and the reduced bracket provides the same graded Lie algebra structure
on HH∗+1(A). We begin by recalling the Gerstenhaber bracket in order to fix notation.
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Gerstenhaber bracket

Set C0(A, A) := A and for n � 1, we will denote the space of Hochschild cochains by

Cn(A, A) := Homk
(

A⊗n
k , A

)
.

In [Ger63], Gerstenhaber defined a right pre-Lie system {Cn(A, A),◦i} where elements of Cn(A, A) are
declared to have degree n − 1. The operation ◦i is given as follows. Given n � 1, let us fix i = 1, . . . ,n.
The bilinear map

◦i : Cn(A, A) × Cm(A, A) −→ Cn+m−1(A, A)

is given by the following formula:

f n ◦i gm(x1 ⊗ · · · ⊗ xn+m−1) := f n(
x1 ⊗ · · · ⊗ gm(xi ⊗ · · · ⊗ xi+m−1) ⊗ · · · ⊗ xn+m−1

)

where f n is in Cn(A, A) and gm is in Cm(A, A). Then he proved that such pre-Lie system induces a
graded pre-Lie algebra structure on

C∗+1(A, A) :=
∞⊕

n=1

Cn(A, A)

by defining an operation ◦ as follows:

f n ◦ gm :=
n∑

i=1

(−1)(i−1)(m−1) f n ◦i gm.

Finally, C∗+1(A, A) becomes a graded Lie algebra by defining the bracket as the graded commutator
of ◦. So we have that

[
f n, gm] := f n ◦ gm − (−1)(n−1)(m−1) gm ◦ f n.

Remark. The Gerstenhaber restricted to C1(A, A) is the usual Lie commutator bracket.

Moreover, Gerstenhaber proved that

δ
[

f n, gm] = [
f n, δgm] + (−1)m−1[δ f n, gm]

where δ is the differential of Hochschild cochain complex. This formula implies that the following
bilinear map:

[− ,−] : HHn(A) × HHm(A) −→ HHn+m−1(A)

is well defined. Therefore, HH∗+1(A) endowed with the induced Gerstenhaber bracket is also a graded
Lie algebra.
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Reduced bracket

In order to define the reduced bracket, we proceed in the same way as Gerstenhaber did. We will
define the reduced bracket as the graded commutator of an operation ◦

R
. Such operation will be given

by ◦
i
. Denote by Cn

E (r, A) the cochain space of the reduced complex, this is

Cn
E (r, A) := HomEe

(
r⊗n

E , A
)
.

Definition. Let n � 1 and fix i = 1, . . . ,n. The bilinear map

◦
i

: Cn
E (r, A) × Cm

E (r, A) → Cn+m−1
E (r, A)

is given by the following formula:

f n ◦
i

gm(x1 ⊗
E

· · ·⊗
E

xn+m−1) := f n(
x1 ⊗

E
· · ·⊗

E
π gm(xi ⊗

E
· · ·⊗

E
xi+m−1)⊗

E
· · ·⊗

E
xn+m−1

)

where f n is in Cn
E (r, A) and gm is in Cm

E (r, A) and x1, . . . , xn+m−1 are in r. Let us remark that the
image of gm does not necessarily belong to the radical but the image of π gm clearly does. Therefore
f n ◦

i
gm is well defined.

Then we can define ◦
R

on

C∗+1
E (r, A) :=

∞⊕
n=1

Cn
E (r, A)

as above but replacing ◦
i

instead of ◦i . This means that

f n ◦
R

gm :=
n∑

i=1

(−1)(i−1)(m−1) f n ◦
i

gm.

Let us remark ◦
R

is a graded operation on C∗+1
E (r, A) by declaring elements of Cn

E (r, A) to have degree

n − 1.

Definition. We call the reduced bracket, denoted by [− ,−]R , to the graded commutator bracket of ◦
R

.

This is,

[− ,−]R : Cn
E (r, A) × Cm

E (r, A) −→ Cn+m−1
E (r, A)

is given by

[
f n, gm]

R := f n ◦
R

gm − (−1)(n−1)(m−1) gm ◦
R

f n.

The following lemmas will relate the Gerstenhaber bracket and the reduced bracket.

Lemma 2.1. We have the following formula:

[
f n, gm]

R = sn+m−1[pn f n, pm gm]
.
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Proof. A straightforward verification shows that

f n ◦
i

gm = sn+m−1(pn f n ◦i pm gm)
.

Since sn+m−1 is a linear application we have the formula wanted. �
Lemma 2.2. We have the following formula:

pn+m−1[ f n, gm]
R = [

pn f n, pm gm]
.

Proof. Since pn+m−1 is a complex morphism, we prove that

pn+m−1( f n ◦
i

gm) = pn f n ◦i pm gm

by a direct computation. �
We will write p∗ for the morphism

p∗ : C∗+1
E (r, A) −→ C∗+1(A, A)

induced by p• . We have the following proposition due to the above lemmas that relate both brackets.

Proposition 2.3. The graded product [− ,−]R endows C∗
E (r, A) with the structure of graded Lie algebra. We

also have that p∗ is a morphism of graded Lie algebras.

Proof. Using the Lemma 2.1, it is easy to see that the reduced bracket satisfies the graded anti-
symmetric property as a consequence of the fact that the Gerstenhaber bracket satisfies the same
condition. For the graded Jacobi identity, we proceed in the same way. First, let us write a formula
that relates both brackets, using Lemma 2.1 and Lemma 2.2 we have that

[[
f n, gm]

R ,hl]
R = sn+m+p−2[pn+m−1[ f n, gm]

R , plhl]
= sn+m+p−2[[pn f n, pm gm]

, plhl].
Then, using the linearity of sn+m+p−2 and the fact that the Gerstenhaber bracket satisfies the graded
Jacobi identity we have proved that [− ,−]R satisfies the two conditions of the definition of graded
Lie algebra. Finally, p∗ becomes a Lie graded morphism because of Lemma 2.2. �

Now, the reduced bracket induce a bracket in Hochschild cohomology groups because of the fol-
lowing lemma.

Lemma 2.4. Let δ be the differential of the Hochschild cocomplex then we have

δ
[

f n, gm]
R = [

f n, δgm]
R + (−1)m−1[δ f n, gm]

R .

Hence we have a well defined bracket in the Hochschild cohomology groups:

[− ,−]R : HHn(A) × HHm(A) −→ HHn+m−1(A).
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Proof. We have that

δ
[

f n, gm]
R = δsn+m−1[pn f n, pm gm]

= sn+m−1δ
[

pn f n, pm gm]
= sn+m−1[pn f n, δpm gm] + (−1)m−1sn+m−1[δpn f n, pm gm]
= sn+m−1[pn f n, pmδgm] + (−1)m−1sn+m−1[pnδ f n, pm gm]
= [

f n, δgm]
R + (−1)m−1[δ f n, gm]

R . �
We have equipped HH∗+1(A) with a graded Lie algebra structure induced by the reduced bracket.

We know that HH∗+1(A) is already a graded Lie algebra and this structure is given by the Gersten-
haber bracket. We have then the following proposition.

Proposition 2.5. The graded Lie algebra HH∗+1(A) endowed with the Gerstenhaber bracket is isomorphic to
HH∗+1(A) endowed with the reduced bracket.

Proof. By abuse of notation we continue to write p∗ for the automorphism of HH∗+1(A) given by the
family of morphisms (pn). Thus, a direct consequence of the above proposition is that p∗ becomes an
isomorphism of graded Lie algebras. �
3. Reduced bracket for monomial algebras with radical square zero

Let Q be a quiver. The path algebra kQ is the k-linear span of the set of paths of Q where
multiplication is provided by concatenation or zero. We denote by Q 0 the set of vertices and Q 1 the
set of arrows. The trivial paths are denoted by ei where i is a vertex. The set of all paths of length n
is denoted by Q n .

In the sequel, let A be a monomial algebra with radical square zero, this is

A := kQ

〈Q 2〉 .

The Jacobson radical of A is given by r = kQ 1. Moreover, the Wedderburn–Malcev decomposition of
these algebras is A = kQ 0 ⊕kQ 1 where E = kQ 0. In this section we are going to describe the reduced
bracket on HH∗+1(A). Such bracket is given in terms of the combinatorics of the quiver. We will use
computations of the Hochschild cohomology groups of these algebras given by Cibils in [Cib98].

The reduced complex

Notice that in the case of monomial algebras with radical square zero, the middle-sum terms of
the coboundary morphism of the reduced projective resolution R vanishes because the multiplication
of two arrows is always zero. Therefore, we have that the coboundary morphism is given by the
following formula:

δ(a ⊗ x1 ⊗ · · · ⊗ xn+1 ⊗ b) = ax1 ⊗ x2 ⊗ · · · ⊗ xn+1 ⊗ b

+ (−1)n+1a ⊗ x1 ⊗ · · · ⊗ xn ⊗ xn+1b.

In [Cib98] an isomorphic complex to R•(A,A) is given. This new complex is obtained in terms of
the combinatorics of the quiver. To describe it we will need to introduce some notation. We say that
two paths α and β are parallels if and only if they have the same source and the same end. If α and
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β are parallel paths we write α ‖ β . Let X and Y be sets consisting of paths of Q , the set of parallel
paths X ‖ Y is given by:

X ‖ Y := {
(γ ,γ ′) ∈ X × Y

∣∣ γ ‖ γ ′}.
For example:

• Q n ‖ Q 0 is the set of pointed oriented cycles, this is the set of pairs (γ n, e) where γ n is an oriented
cycle of length n.

• Q n ‖ Q 1 is the set of pairs (γ n,a) where the arrow a is a shortcut of the path γ n of length n.

We denote by k(X ‖ Y ) the k-vector space generated by the set X ‖ Y .
For each natural number n, Cibils defines

Dn : k(Q n ‖ Q 0) → k(Q n+1 ‖ Q 1)

as follows:

Dn
(
γ n, e

) =
∑

a∈Q 1e

(
aγ n,a

) + (−1)n+1
∑

a∈e Q 1

(
γ na,a

)
(2)

where the path γ n is parallel to the vertex e.
In [Cib98], the Hochschild cohomology groups of a radical square zero algebra are obtained from

the following complex, denoted by C•(Q ):

0 → k(Q 0 ‖ Q 0) ⊕ k(Q 0 ‖ Q 1)

( 0 0
D0 0

)
−−−−−→ k(Q 1 ‖ Q 0) ⊕ k(Q 1 ‖ Q 1)

( 0 0
D1 0

)
−−−−−→ · · ·k(Q n ‖ Q 0) ⊕ k(Q n ‖ Q 1)

( 0 0
Dn 0

)
−−−−−→ k(Q n+1 ‖ Q 0) ⊕ k(Q n+1 ‖ Q 1).

Cibils proved that C•(Q ) is isomorphic to the reduced complex R•(A,A) using the following lemma.

Lemma 3.1. (See [Cib98].) Let A := kQ /〈Q 2〉 where Q is a finite quiver. The vector space Cn
E (r, A) =

HomEe (r⊗n
E , A) is isomorphic to

k(Q n ‖ Q 0 ∪ Q 1) = k(Q n ‖ Q 0) ⊕ k(Q n ‖ Q 1).

The reduced bracket

Once we have the combinatorial description of Cn
E (r, A), we are going to compute the reduced

bracket in the same terms. To do so we use the above lemma. We begin by introducing some notation.

Notation. Given two paths: αn in Q n and βm in Q m , we will suppose that

αn = a1a2 . . .an,

βm = b1b2 . . .bm

where ai and b j are in Q 1. Under this assumption, we say that ai and b j are arrows in the decomposi-
tion of αn and βm , respectively. Let i = 1, . . . ,n, if ai ‖ βm , we denote by αn �

i
βm the path in Q n+m−1

obtained by replacing the arrow ai with the path βm . This means

αn �βm := a1 . . .ai−1b1 . . .bmai+1 . . .an.

i
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If ai is not parallel to βm then αn �
i
βm has no sense. Clearly, �

i
is not commutative. For example, let

a in Q 1. If a ‖ βm then we have that

a �
1
βm = βm.

Now, if bi ‖ a we have that

βm �
i

a = b1 . . .bi−1abi+1 . . .bm.

Definition. Let Q be a finite quiver and n � 1. Fix i = 1, . . . ,n. The bilinear map

◦
i

: k(Q n ‖ Q 0 ∪ Q 1) × k(Q m ‖ Q 0 ∪ Q 1) −→ k(Q n+m−1 ‖ Q 0 ∪ Q 1)

is given by

(
αn, x

) ◦
i

(
βm, y

) = δai ,y · (αn �
i
βm, x

)

where

δai ,y =
{

1 if ai = y,

0 otherwise

and αn = a1 . . .ai . . .an .

Denote by C∗+1(Q ) the following vector space

C∗+1(Q ) :=
∞⊕

n=1

k(Q n ‖ Q 0) ⊕ k(Q n ‖ Q 1).

Definition. Let Q be a finite quiver. The bilinear map

[− ,−]Q : k(Q n ‖ Q 0 ∪ Q 1) × k(Q m ‖ Q 0 ∪ Q 1) −→ k(Q n+m−1 ‖ Q 0 ∪ Q 1)

is defined as follows

[(
αn, x

)
,
(
βm, y

)]
Q =

n∑
i=1

(−1)(i−1)(m−1)
(
αn, x

) ◦
i

(
βm, y

)

− (−1)(n−1)(m−1)

m∑
i=1

(−1)(i−1)(n−1)
(
βm, y

) ◦
i

(
αn, x

)
.

Theorem 3.2. Let Q be a finite quiver. The vector space C∗+1(Q ) together with the bracket [− ,−]Q is a
graded Lie algebra. Moreover, if A := kQ /〈Q 2〉 then the graded Lie algebra C∗+1

E (r, A) endowed with the
reduced bracket is isomorphic to C∗+1(Q ) endowed with the bracket [− ,−]Q .

Proof. Let Q be a finite quiver and A := kQ /〈Q 2〉. Let us remark that C∗+1(Q ) is isomorphic as a
vector space to C∗+1(r, A) because of Lemma 3.1. Using the same isomorphism defined by Cibils to
prove lemma (3.1), a straightforward verification shows that the bracket [− ,−]Q is the combinatorial
translation of the reduced bracket. �
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Corollary 3.3. Let A := kQ /〈Q 2〉 where Q is a finite quiver. The graded Lie algebra structure on HH∗+1(A)

given by the Gerstenhaber bracket is induced by the graded Lie algebra structure on C∗+1(Q ) given
by [− ,−]Q .

4. Lie module structure of HHn(A) over HH1(A)

In this section, we are going to study the Lie module structure of HHn(A) over HH1(A) when
A := kQ /Q 2 in two cases. The first case is when Q is a loop and the second case is when Q is a two
loops quiver.

The one loop case

It is shown in [Cib98] that if char k = 0 and Q is the one loop quiver then the function Dn , given
by Eq. (2), is zero when n is even and Dn is injective when n is odd. In fact we have the following
proposition:

Proposition. (See [Cib98].) Assume that Q is the one loop quiver. Let k be a field of characteristic zero and
A := kQ /〈Q 2〉. Then we have that HH0(A) ∼= A and for n > 0 we have that

HHn(A) ∼=
{

k(Q n ‖ Q 0) if n is even,

k(Q n ‖ Q 1) if n is odd.

Therefore, for n � 0 the Hochschild cohomology group HHn(A) is one dimensional.

Proposition 4.1. Assume that Q is the one loop quiver, where e is the vertex and a is the loop. Let k be a field
of characteristic zero and A := kQ /〈Q 2〉. Then HH1(A) is the one dimensional (abelian) Lie algebra and the
Lie module structure on the Hochschild cohomology groups given by the Gerstenhaber bracket

HH1(A) × HHn(A) −→ HHn(A)

is induced by the following morphisms:
If n is even, we have that

k(Q 1 ‖ Q 1) × k(Q n ‖ Q 0) −→ k(Q n ‖ Q 0)

is given as follows

(a,a).
(
an, e

) = −n
(
an, e

)
.

If n is odd, we have that

k(Q 1 ‖ Q 1) × k(Q n ‖ Q 1) −→ k(Q n ‖ Q 1)

is given as follows

(a,a).
(
an,a

) = −(n − 1)
(
an,a

)
.

So, the Lie module HHn(A) over HH1(A) corresponds to the one dimensional standard module over k.

Proof. It is an immediate consequence of the definition of the bracket [− ,−]Q and the Corol-
lary 3.3. �
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Moreover, we have that

Proposition 4.2. Let k be a field of characteristic zero, Q the one loop quiver and A := kQ /〈Q 2〉. The Lie
algebra HHodd is the infinite dimensional Witt algebra.

Proof. If n and m are odd then, using the formula for the bracket, we have

[(
an,a

)
,
(
am,a

)]
Q = (n − m)

(
an+m−1,a

)
. �

The two loops case

In [Cib98], Cibils proved that the function Dn , given by Eq. (2), is injective for n � 1 when Q is
neither a loop nor an oriented cycle. Hence we have the following result:

Theorem. (See [Cib98].) Let A := kQ /〈Q 2〉 where Q is the two loops quiver. Then, HH0(A) = A and for n � 1

HHn(A) ∼= k(Q n ‖ Q 1)

Im Dn−1

where

Dn−1 : k(Q n−1 ‖ Q 0) −→ k(Q n ‖ Q 1)

is given by the formula (2). Moreover, we have that for n > 1,

dimk HHn(A) = 2n+1 − 2n−1.

Theorem 4.3. Let A := kQ /〈Q 2〉 where Q is a finite quiver. If Q is not an oriented cycle then the Lie module
structure on the Hochschild cohomology groups given by the Gerstenhaber bracket

HH1(A) × HHn(A) −→ HHn(A)

is induced by the following bilinear map:

k(Q 1 ‖ Q 1) × k(Q n ‖ Q 1) −→ k(Q n ‖ Q 1)

given as follows

(a, x).
(
αn, y

) = δy,a · (αn,a
) −

n∑
i=1

δx,ai · (αn �
i

x, y
)

where a ‖ x and y is a shortcut of the path αn whose decomposition into arrows is given by αn = a1 . . .ai . . .an.
The path αn �

i
x is obtained by replacing ai with x if ai = y.

Proof. It is an immediate consequence of the definition of the bracket [− ,−]Q and Corollary 3.3. �
In [Str06], Strametz studies the Lie algebra structure on the first Hochschild cohomology group for

monomial algebras. She formulates the Lie bracket on HH1(A) using the combinatorics of the quiver.
Let us remark that the formula given by the above theorem gives the Lie bracket on HH1(A) when
we set n = 1. Such formula coincides with the one given in [Str06]. Let us describe the Lie algebra
HH1(A).
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Proposition 4.4. Assume that Q is the two loops quiver where e is the vertex and the loops are denoted by a
and b. Let A := CQ /〈Q 2〉 where C is the complex number field. Then the elements

H := (b,b) − (a,a),

E := (a,b),

F := (b,a)

generate a copy of the Lie algebra sl2(C) in HH1(A). Moreover, the Lie algebra HH1(A) is isomorphic to
sl2(C) × C.

Proof. First notice that HH1(A) ∼= k(Q 1 ‖ Q 1) and that the elements H , E , F and I := (a,a) + (b,b)

form a basis of HH1(A). A straightforward verification of the following relations:

[H, E]Q = 2E, [H, F ]Q = −2F , [E, F ]Q = H

proves that HH1(A) contains a copy of sl2C. Finally, it is easy to see that

[I, H]Q = 0, [I, E]Q = 0, [I, F ]Q = 0, �
In order to study the Lie module HHn(A) over HH1(A), we will study HHn(A) as a sl2(C)-module.

Now, let us recall two classical Lie theory results, see [EW06,FH91] for more detail.

(i) Every (finite dimensional) sl2C-module has a decomposition into direct sum of irreducible mod-
ules.

(ii) Classification of irreducible sl2C-modules: there exists a unique irreducible module for each di-
mension. We denote by V (t) the irreducible sl2C module of dimension t + 1.

Using the above notation, this means that HHn(A) has a decomposition into direct sum of irre-
ducible modules over sl2C as follows:

HHn(A) =
∞⊕

t=0

V (t)qt .

We will determine each qt and to do so we will use the usual tools of the classical Lie theory. We
begin by calculating the eigenvector spaces of H as endomorphism of k(Q n ‖ Q 0) and Im Dn−1.

Given a path γ n in Q n we denote by a(γ n) the number of times that the arrow “a” appears in
the decomposition of γ n . We also denote by b(γ n) the number of times that the arrow “b” appears
in the decomposition of γ n .

Map (v). Define v as the function given by:

vn : Q n → Z,

γ n 	→ a
(
γ n) − b

(
γ n)

.

Lemma 4.5. For all γ n in Q n we have that

H .
(
γ n,a

) = (
vn

(
γ n) − 1

)(
γ n,a

)
,

H .
(
γ n,b

) = (
vn

(
γ n) + 1

)(
γ n,b

)
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and for all γ n−1 in Q n−1 we have that

H .Dn−1
(
γ n−1, e

) = vn−1
(
γ n−1)Dn−1

(
γ n−1, e

)
.

Proof. Use the formula given in Proposition 4.3. �
Proposition 4.6. Assume that char k = 0.

(i) Consider H as an endomorphism of k(Q n ‖ Q 1). The eigenvalues of H are n+1−2l where l = 0, . . . ,n+1.
Denote by W (λ) the eigenspace of H of the eigenvalue λ. We have that

dimk W (n + 1 − 2l) =
(

n + 1
l

)
.

(ii) Consider H as an endomorphism of Im Dn−1 . The eigenvalues of H restricted to Im Dn−1 are n − 1 − 2l
where l = 0, . . . ,n − 1. As above, denote by W (λ) the eigenspace of H of the eigenvalue λ. We have that

dimk W (n − 1 − 2l) =
(

n − 1
l

)
.

Proof. (i) From the above lemma, it is clear that the set

{(
γ n,a

) ∣∣ γ n ∈ Q n
} ∪ {(

γ n,b
) ∣∣ γ n ∈ Q n

}

is a basis of k(Q n ‖ Q 1) consisting of eigenvectors. We also have that (γ n,a) and (γ n,b) are eigen-
vectors of eigenvalue v(γ n) + 1 and v(γ n) − 1 respectively. Since a(γ n) + b(γ n) = n for all paths γ n ,
we have that v(γ n) = n − 2b(γ n) where b(γ n) varies from 0 to n. Then we have that v(γ n) ± 1 is of
the form n + 1 − 2l(γ n) where l = 0, . . . ,n + 1. Let us remark the following:

– (an,b) is the only eigenvector of value n + 1;
– (bn,a) is the only eigenvector of value −(n + 1);
– If 0 < l < n + 1, we have that:

• (γ n,a) is an eigenvector of eigenvalue n + 1 − 2l iff l = b(γ n);
• (γ n,b) is an eigenvector of eigenvalue n + 1 − 2l iff l − 1 = b(γ n).

On the other hand, if 0 < l < n + 1, we know that there are
( n

l

)
paths γ n such that b(γ n) = l and( n

l−1

)
paths γ n such that b(γ n) = l − 1. Therefore, there are

(
n
l

)
+

(
n

l − 1

)
=

(
n + 1

l

)

eigenvectors (γ n, x) of eigenvalue n + 1 − 2l.
(ii) From the above lemma, it is clear that the set

{
Dn−1

(
γ n−1, e

) ∣∣ γ n−1 ∈ Q n−1
}

is a basis of Im Dn−1 consisting of eigenvectors. We also have that Dn−1(γ
n−1, e) is an eigenvector

of eigenvalue v(γ n−1). Since a(γ n−1) + b(γ n−1) = n − 1 for all paths γ n−1, we have that v(γ n−1) =
n − 1 − 2b(γ n−1) where b(γ n) varies from 0 to n − 1. Therefore the eigenvalues are of the form
n − 1 − 2l where l varies from 0 to n − 1 and there are

( n−1
l

)
eigenvectors of eigenvalue n + 1 − 2l. �

Recall the following result from Lie theory:
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Lemma 4.7 (General Multiplicity Formula [BH06]). Let V a finite dimensional sl2C-module. For every integer t,
let Vt be the eigenspace of H of eigenvalue n. Then for any nonnegative integer t, the indecomposable module
the number of copies of V (t) that appear in the decomposition into direct sum of indecomposable is dim Vt −
dim Vt−2 .

A consequence of the above lemma is the following result:

Lemma 4.8. Let C be the field of complex numbers, Q the quiver given by two loops and A := CQ /〈Q 2〉. For
n � 1, we denote by h(n) the following:

h(n) := max{l | n + 1 − 2l � 0}

and for l = 0, . . . ,h(n) we denote by p(n, l) the following:

p(n, l) :=

⎧⎪⎪⎨
⎪⎪⎩

(
n
l

)
if l = 0,

(
n
l

)
−

(
n

l − 1

)
if l � 1.

Then we have that

(i) the decomposition into direct sum of irreducibles of C(Q n ‖ Q 1) as sl2(C) Lie module is given by

C(Q n ‖ Q 1) ∼=
h(n)⊕
l=0

V (n + 1 − 2l)p(n+1,l),

(ii) the decomposition into direct sum of irreducibles of Im Dn−1 as sl2(C) Lie module is given by

Im Dn−1 ∼=
h(n)−1⊕

l=0

V (n − 1 − 2k)p(n−1,l).

Proposition 4.9. Let C be the field of complex numbers, Q the quiver given by two loops and A := CQ /〈Q 2〉.
For n � 1 and l = 0, . . . ,h(n) we denote by q(n, l) the following:

q(n, l) :=

⎧⎪⎪⎨
⎪⎪⎩

(
n − 1

l

)
if l = 0,1,

(
n + 1

l

)
−

(
n + 1
l − 1

)
−

(
n − 1
l − 1

)
+

(
n − 1
l − 2

)
if l � 2.

Then, the decomposition of HHn(A) into a direct sum of irreducible Lie modules over sl2(C) is given by

HHn(A) ∼=
h(n)⊕
l=0

V (n + 1 − 2l)q(n,l).
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Algorithm. There is an algorithm that give us the decomposition of HHn(A) described in the above
proposition. We will explain it in the next paragraph. We use the following table to write such de-
composition:

n V (0) V (1) V (2) V (3) V (4) V (5) V (6) V (7) · · ·
HH2(A) 1 1

.

.

.

HHn(A) q0 q1 q2 q3 q4 q5 q6 q7 · · ·

In the above table, at the row HHn(A), the number that appears in the column V (t) states the number
of copies of the irreducible module V (t) that appears in the decomposition of HHn(A). We leave a
blank space if no V (t) appears in the decomposition of HHn(A). We fix the first row of the table
with the decomposition of HH2(A). Now, given the entries of the row HHn(A), we can fill out the
coefficients of the next row, this is for HHn+1(A), in the following manner:

(i) Add an imaginary column (−) just before the column V (0), consisting of zeros.
(ii) Write down the coefficients of the next row by using the rule from Pascal’s triangle: add the

number directly above and to the left with the number directly above and to the right.

(−) V (0) V (1) · · · V (t − 1) V (t) V (t + 1) · · ·
HHn(A) 0 q0 q1

0 q1 · · ·

· · · qt−1 qt qt+1

· · · qt−1 + qt+1 · · ·

· · ·

HHn+1(A) · · · · · ·

Let us remark that the number of copies of V (1) that appear in the decomposition of HHn(A) is equal
to the number of copies of V (0) that appear in the decomposition of HHn+1(A).

Lemma 4.10. We have that

(i) If n is even then q(n,h(n)) = q(n + 1,h(n + 1)).
(ii) If n � 2 then q(n, l) + q(n, l + 1) = q(n + 1, l + 1).

Proof. For the first equality, we verify by a direct computation for n = 2 and n = 4. For n � 6, we use
that if n is even then we have that

(
n + 1
n/2

)
=

(
n + 1

n/2 + 1

)
.

For the second equality, we verify by a direct computation for l = 0 and l = 1. For l � 2, we use the
Pascal triangle’s rule:

(
n
l

)
+

(
n

l + 1

)
=

(
n + 1
l + 1

)
. �

Remark. The algorithm is justify by the above lemma. Moreover, we have that

q(n,2) =
(

n − 1
2

)
.

This is the reason why we have a section of the Pascal triangle in the above table.
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Finally, once we have the decomposition of HHn(A) into direct sum of irreducible modules
over sl2C, we return to study HHn(A) as a HH1(A)-module.

Corollary 4.11. We have that

HHn(A) ∼=
h(n)⊕
l=0

V (n + 1 − 2l)q(n,l) ⊗ C

as Lie modules over HH1(A).

Proof. Notice that

I.
(
γ n, x

) = (
1 − a

(
γ n) − b

(
γ n))(

γ n, x
) = (1 − n)

(
γ n, x

)
. �
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