The Lie module structure on the Hochschild cohomology groups of monomial algebras with radical square zero

Selene Sánchez-Flores
Institut de Mathématiques et de Modélisation de Montpellier, Université de Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France

```
A R T I CLE IN F O
```


Article history:

Received 22 November 2007
Available online 1 October 2008
Communicated by Kent R. Fuller

Keywords:

Hochschild cohomology
Gerstenhaber bracket
Monomial algebras

Abstract

We study the Lie module structure given by the Gerstenhaber bracket on the Hochschild cohomology groups of a monomial algebra with radical square zero. The description of such Lie module structure will be given in terms of the combinatorics of the quiver. The Lie module structure will be related to the classification of finite dimensional modules over simple Lie algebras when the quiver is given by the two loops and the ground field is the complex numbers.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Let A be an associative unital k-algebra where k is a field. The nth Hochschild cohomology group of A, denoted by $\mathrm{HH}^{n}(A)$, refers to

$$
\operatorname{HH}^{n}(A):=\operatorname{HH}^{n}(A, A)=\operatorname{Ext}_{A^{e}}^{n}(A, A)
$$

where A^{e} is the enveloping algebra $A^{\mathrm{op}} \otimes_{k} A$ of A. Thus, for example, $\mathrm{HH}^{0}(A)$ is the center of A and the first Hochschild cohomology group $\mathrm{HH}^{1}(A)$ is the vector space of the outer derivations. Note that the first Hochschild cohomology group has a Lie algebra structure given by the commutator bracket. In [Ger63], Gerstenhaber introduced two operations on the Hochschild cohomology groups: the cup product and the bracket

$$
[-,-]: \mathrm{HH}^{n}(A) \times \mathrm{HH}^{m}(A) \longrightarrow \mathrm{HH}^{n+m-1}(A)
$$

[^0]He proved that the Hochschild cohomology of A,

$$
\mathrm{HH}^{*}(A):=\bigoplus_{n=0}^{\infty} \mathrm{HH}^{n}(A),
$$

provided with the cup product is a graded commutative algebra. Furthermore, he demonstrated that $\mathrm{HH}^{*+1}(A)$ endowed with the Gerstenhaber bracket has a graded Lie algebra structure. Consequently, $\mathrm{HH}^{1}(A)$ is a Lie algebra and $\mathrm{HH}^{n}(A)$ is a Lie module over $\mathrm{HH}^{1}(A)$. As a matter of fact, the Gerstenhaber bracket restricted to $\mathrm{HH}^{1}(A)$ is the commutator Lie bracket of the outer derivations. Moreover, the cup product and the Gerstenhaber bracket endow $\mathrm{HH}^{*}(A)$ with the so-called Gerstenhaber algebra structure.

Besides, it was shown that the algebra structure on $\mathrm{HH}^{*}(A)$ is invariant under derived equivalence [Hap89,Ric91]. In addition, in [Kel04], Keller proved that the Gerstenhaber bracket on $\mathrm{HH}^{*+1}(A)$ is preserved under derived equivalence. Therefore, the Lie module structure on $\mathrm{HH}^{n}(A)$ over $\mathrm{HH}^{1}(A)$ is also an invariant under derived equivalence.

Understanding both the graded commutative algebra and the graded Lie algebra structure, on the Hochschild cohomology of algebras is a difficult assignment. Different techniques have been used in order to: (1) describe the Hochschild cohomology algebra (or ring) for some algebras [Hol96,CS97, Cib98,ES98,EH99,SW00,Alv02,EHSO2,GA08,Eu07b,FX06]; (2) study the Hochschild cohomology ring modulo nilpotence [GSS03,GSS06,GS06] and (3) compute the Gerstenhaber bracket [Bus06,Eu07a].

On the other hand, C. Strametz studied, in [Str06], the Lie algebra structure on the first Hochschild cohomology group of monomial algebras. She accomplishes to describe such Lie algebra structure in terms of the combinatorics of the monomial algebras. Moreover, she relates such description to the algebraic groups which appear in Guil-Asensio and Saorín's study of the outer automorphisms [GAS99]. In [Str06], Strametz also gave criteria for simplicity of the first Hochschild cohomology group.

In this paper we are interested in the Lie module structure on the Hochschild cohomology groups induced by the Gerstenhaber bracket. This approach was suggested by C. Kassel and motivated by the work of C. Strametz. The aim of this paper is to describe the Lie module structure on the Hochschild cohomology groups for monomial algebras of (Jacobson) radical square zero. Recall that a monomial algebra of radical square zero is the quotient of the path algebra of a quiver Q by the two-sided ideal generated by the set of paths of length two. We will use the combinatorics of the quiver in order to describe the Lie module structure. Moreover, for the case of the two loops quiver, we relate such Lie module structure of $\mathrm{HH}^{n}(A)$ to the classification of the (finite dimensional) irreducible Lie modules over $s l_{2}$ when the ground field is the complex numbers.

The Hochschild cohomology groups of those algebras have been described in [Cib98] using the combinatorics of the quiver. Such description enables to prove that the cup product of elements of positive degree is zero when Q is not an oriented cycle. In this paper, we use Cibils' description of $\mathrm{HH}^{n}(A)$ in order to study the Lie module structure on the Hochschild cohomology groups. First, we reformulate the Gerstenhaber bracket for the realization of the Hochschild cohomology groups obtained through the computations in [Cib98]. In the first section we construct two quasi-isomorphisms between the Hochschild cochain complex and the complex induced by the reduced projective resolution. Then in the second section, using such quasi-isomorphisms, we introduce a new bracket; which coincides with the Gerstenhaber bracket. In the third section, we use the combinatorics of the quiver to describe the Gerstenhaber bracket.

In the last section, we study a particular case: the monomial algebra of radical square zero given by the two loops quiver. For this algebra, we prove that $\mathrm{HH}^{1}(A)$ is isomorphic as a Lie algebra to $g l_{2} \mathbb{C}$ and then we identify a copy of $s l_{2} \mathbb{C}$ in $\mathrm{HH}^{1}(A)$. In order to describe $\mathrm{HH}^{n}(A)$ as a Lie module over $\mathrm{HH}^{1}(A)$, we start studying the Lie module structure of $\mathrm{HH}^{n}(A)$ over $s l_{2} \mathbb{C}$. In this article, we determine the decomposition of $\mathrm{HH}^{n}(A)$ into direct sum of irreducible modules over $s l_{2} \mathbb{C}$. Moreover, we show that such decomposition can be obtained by an algorithm. In the following table we illustrate
the decomposition for the Hochschild cohomology groups of degrees between 2 and 7. We denote by $V(i)$ the unique irreducible Lie module of dimension $i+1$ over $s l_{2} \mathbb{C}$.

n	$V(0)$	$V(1)$	$V(2)$	$V(3)$	$V(4)$	$V(5)$	$V(6)$	$V(7)$	$V(8)$
$\mathrm{HH}^{2}(A)$		1		1					
$\mathrm{HH}^{3}(A)$	1		2		1				
$\mathrm{HH}^{4}(A)$		3		3		1			
$\mathrm{HH}^{5}(A)$	3		6		4		1		
$\mathrm{HH}^{6}(A)$		9		10		5		1	
$\mathrm{HH}^{7}(A)$	9		19		15		6		1

In the above table, let us remark that the three last diagonal form a component of the Pascal triangle. Note also that the integer sequence given by the first and second column are the same. We will prove that these two remarks are in general true. This will enable to show the validity of the algorithm and in consequence obtain the other diagonals of the table. Moreover, we have introduced the sequence of numbers in the Encyclopedia of Integer Sequences [http://www.research.att.com/~njas/sequences/index.html], it appears to be related with two sequences. Among these sequence, there is one that represents the expected saturation of a binary search tree (or BST) on n nodes times the number of binary search trees on n nodes, or alternatively, the sum of the saturation of all binary search trees on n nodes. Another sequence gives the number of standard tableaux of shapes $(n+1, n-1)$. The two sequences are given by explicit formulas.

In a future paper, we will apply the same techniques, as those we use in this article, to prove that the first Hochschild cohomology group of the monomial algebra of radical square zero is the Lie algebra $g l_{n} \mathbb{C}$ when the quiver is given by n loops. Moreover, we will determine, as we did for the two loops case, the decomposition into direct sum of irreducible modules over $s l_{n} \mathbb{C}$ but only for the second Hochschild cohomology group. We will also be dealing with the case when the quiver has no loops and no cycles.

1. A comparison map between the bar projective resolution and the reduced bar projective resolution

In this section, we deal with finite dimensional k-algebras whose semisimple part (i.e. the quotient by its radical) is isomorphic to a finite number of copies of the field. Monomial algebras of radical square are a particular case of these algebras.

Two projective resolutions

The usual A^{e}-projective resolution of A used to calculate the Hochschild cohomology groups is the standard bar resolution. The standard bar resolution, that we will denote by \mathbf{S}, is given by the following exact sequence:

$$
\mathbf{S}:=\cdots \rightarrow A^{\otimes_{k}^{n+1}} \xrightarrow{\delta} A^{\otimes_{k}^{n}} \xrightarrow{\delta} \cdots \xrightarrow{\delta} A^{\otimes_{k}^{3}} \xrightarrow{\delta} A \underset{k}{\otimes} A \xrightarrow{\mu} A \rightarrow 0
$$

where μ is the multiplication and the A^{e}-morphisms δ are given by

$$
\delta\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)=\sum_{i=1}^{n}(-1)^{i+1} x_{1} \otimes \cdots \otimes x_{i} x_{i+1} \otimes \cdots \otimes x_{n+1}
$$

where $x_{i} \in A$ and \otimes means \otimes.

Now, the A^{e}-projective resolution of A used in [Cib98] to compute the Hochschild cohomology groups of a monomial radical square zero is the reduced bar resolution. It is defined for a finite dimensional k-algebra A whose Wedderburn-Malcev decomposition is given by the direct sum $A=E \oplus r$ where r is the Jacobson radical of A and $E \cong A / r \cong k \times k \times \cdots \times k$. In the sequel A denotes an algebra verifying those conditions. Let us denote by \mathbf{R} the reduced bar resolution. It is given by the following exact sequence:

$$
\mathbf{R}:=\cdots \rightarrow A \underset{E}{\otimes} r^{\otimes_{E}^{n+1}} \underset{E}{\otimes} A \xrightarrow{\delta} A \underset{E}{\otimes} r^{\otimes_{E}^{n}} \underset{E}{\otimes} A \xrightarrow{\delta} \cdots \xrightarrow{\delta} A \underset{E}{\otimes} r \underset{E}{\otimes} A \xrightarrow{\delta} A \underset{E}{\otimes} A \xrightarrow{\mu} A \rightarrow 0
$$

where μ is the multiplication and the A^{e}-morphisms δ are given by

$$
\begin{aligned}
\delta\left(a \otimes x_{1} \otimes \cdots \otimes x_{n+1} \otimes b\right)= & a x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n+1} \otimes b \\
& +\sum_{i=1}^{n}(-1)^{i} a \otimes x_{1} \otimes \cdots \otimes x_{i} x_{i+1} \otimes \ldots \otimes b \\
& +(-1)^{n+1} a \otimes x_{1} \otimes \cdots \otimes x_{n} \otimes x_{n+1} b
\end{aligned}
$$

where $a, b \in A, x_{i} \in r$ and \otimes means \otimes. The proof that this sequence is a projective resolution can be found in [Cib90].

Comparison maps

Theorically, a comparison map exists between these two projective resolutions. The objective of this section is to give an explicit comparison map between the projective resolutions \mathbf{S} and \mathbf{R} in both directions. Such comparison map will induce some quasi-isomorphisms between the Hochschild cochain complex and the complex induced by the reduced bar resolution. The explicit calculations of these quasi-isomorphisms, enables to reformulate the Gerstenhaber bracket.

In this paragraph, we are going to give two maps of complexes:

$$
p: \mathbf{S} \rightarrow \mathbf{R} \text { and } s: \mathbf{R} \rightarrow \mathbf{S}
$$

This means we will define maps $\left(p_{n}\right)$ and $\left(s_{n}\right)$ such that the next diagram

commutes.
$\operatorname{Map}\left(p_{n}\right)$. We define p_{0} as the linear map given by

$$
\begin{array}{r}
p_{0}: A \underset{k}{\otimes} A \rightarrow A \underset{E}{\otimes} A, \\
a \underset{k}{\otimes} b \mapsto a \underset{E}{\otimes} b .
\end{array}
$$

Now, let $n \geqslant 1$. Define

$$
p_{n}: A \underset{k}{\otimes} A^{\otimes_{k}^{n}} \underset{k}{\otimes} A \rightarrow A \underset{E}{\otimes} r^{\otimes_{E}^{n}} \underset{E}{\otimes} A
$$

as the linear map given by

$$
a \underset{k}{\otimes} x_{1} \underset{k}{\otimes} \cdots \underset{k}{\otimes} x_{i} \underset{k}{\otimes} \cdots \underset{k}{\otimes} x_{n+1} \underset{k}{\otimes} b \mapsto a \underset{E}{\otimes} \pi\left(x_{1}\right) \underset{E}{\otimes} \cdots \underset{E}{\otimes} \pi\left(x_{i}\right) \underset{E}{\otimes} \cdots \underset{E}{\otimes} \pi\left(x_{n+1}\right) \underset{E}{\otimes} b
$$

where π denotes the projection map from A to the Jacobson radical square zero. Notice that p_{n} is an A^{e}-morphism for all n.

In order to define the maps $\left(s_{n}\right)$ we introduce some notation. In the sequel, let E_{0} denote a complete system of idempotents and orthogonal elements of E. Note that the set E_{0} is finite.

Remark. Now, consider elements of $A \underset{E}{\otimes} r^{\otimes_{E}^{n}} \underset{E}{\otimes} A$ of the form
where each $e_{j_{i}}$ is in E_{0}, a, b are in A and x_{i} in r. It is not difficult to see that those elements generate the vector space $A \underset{E}{\otimes} r^{\otimes_{E}^{n}} \underset{E}{\otimes} A$. Indeed, we have that

$$
\begin{aligned}
& a \underset{E}{\otimes} x_{1} \underset{E}{\otimes} \cdots \underset{E}{\otimes} x_{i} \underset{E}{\otimes} \cdots \underset{E}{\cdots} x_{n} \underset{E}{\otimes} b \\
& \quad=\sum_{j_{1}, \ldots, j_{n+1}} a e_{j_{1}} \underset{E}{\otimes} \cdots \underset{E}{\otimes} e_{j_{i-1}} x_{i-1} e_{j_{i}} \underset{E}{\otimes} e_{j_{i}} x_{i} e_{j_{i+1}} \underset{E}{\otimes} e_{j_{i+1}} x_{i+1} e_{j_{i+2}} \underset{E}{\otimes} \cdots \underset{E}{\otimes} e_{j_{n+1}} b
\end{aligned}
$$

where the sum is over all $(n+1)$-tuples $\left(e_{j_{1}}, \ldots, e_{j_{i}}, \ldots, e_{j_{n+1}}\right)$ of elements of E_{0}.
$\operatorname{Map}\left(s_{n}\right)$. Define s_{0} as the linear map given by

$$
\begin{aligned}
& s_{0}: A \underset{E}{A} A \rightarrow A \underset{k}{\otimes} A, \\
& a e{\underset{E}{*}}_{\otimes}^{\otimes} e b \mapsto a e \underset{k}{\otimes} e b .
\end{aligned}
$$

So we have that

$$
s_{0}(a \underset{E}{\otimes} b)=\sum_{e \in E_{0}} a e \underset{k}{\otimes} e b .
$$

It is well defined because $s_{0}(a e \underset{E}{\otimes} b)=a e \underset{k}{\otimes e b}=s_{0}(a \underset{E}{\otimes} e b)$ for all $e \in E$. Now, let $n \geqslant 1$. Define
as the linear map given by

$$
\begin{aligned}
& \mapsto a e_{j_{1}} \underset{k}{\otimes} \cdots \underset{k}{\otimes} e_{j_{i-1}} x_{i-1} e_{j_{i}} \otimes e_{k} e_{j_{i}} x_{i} e_{j_{i+1}} \underset{k}{\otimes} e_{j_{i+1}} x_{i+1} e_{j_{i+2}} \underset{k}{\otimes} \cdots \underbrace{\otimes}_{k} e_{j_{n+1}} b
\end{aligned}
$$

where each $e_{j_{i}}$ is in E_{0}. So we have that

$$
\begin{aligned}
s_{n} & \left(a \underset{E}{\otimes} x_{1} \underset{E}{\otimes} \cdots \underset{E}{\otimes} \underset{E}{x_{i}} \underset{E}{\otimes} \cdots \underset{E}{\otimes} x_{n} \underset{E}{\otimes} b\right) \\
& =\sum_{j_{1}, \ldots, j_{n+1}} a e_{j_{1}} \underset{k}{\otimes \cdots \underbrace{}_{k} e_{j_{i-1}} x_{i-1}} e_{j_{i}} \underset{k}{\otimes e} e_{j_{i}} x_{i} e_{j_{i+1}} \underset{k}{\otimes} e_{j_{i+1}} x_{i+1} e_{j_{i+2}} \underset{k}{\otimes \cdots} \underset{k}{\otimes} e_{j_{n+1}} b
\end{aligned}
$$

where the sum is over all $(n+1)$-tuples $\left(e_{j_{1}}, \ldots, e_{j_{i}}, \ldots, e_{j_{n+1}}\right)$ of elements of E_{0}. Notice that s_{n} is an A^{e}-morphism.

Remark. It is clear that $p_{n} s_{n}=i d \underset{E}{\otimes} r^{\otimes} \otimes_{E}^{n} \underset{E}{\otimes}$.
Lemma 1.1. The maps

$$
p: \mathbf{S} \rightarrow \mathbf{R} \text { and } s: \mathbf{R} \rightarrow \mathbf{S}
$$

defined above are maps of complexes.

Proof. A straightforward verification shows that the diagram (1) is commutative.

Two complexes

We will denote the Hochschild cochain complex by $\mathbf{C}^{\bullet}(\mathbf{A}, \mathbf{A})$. Recall that it is defined by the complex,

$$
\begin{aligned}
0 & \rightarrow A \xrightarrow{\delta} \operatorname{Hom}_{k}(A, A) \xrightarrow{\delta} \\
& \cdots \longrightarrow \operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n}}, A\right) \xrightarrow{\delta} \operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n+1}}, A\right) \cdots
\end{aligned}
$$

where $\delta(a)(x)=x a-a x$ for a in A and

$$
\begin{aligned}
\delta f\left(x_{1} \otimes \cdots \otimes x_{n} \otimes x_{n+1}\right)= & x_{1} f\left(x_{2} \otimes \cdots \otimes x_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} f\left(x_{1} \otimes \cdots \otimes x_{i} x_{i+1} \otimes \cdots \otimes x_{n+1}\right) \\
& +(-1)^{n+1} f\left(x_{1} \otimes \cdots \otimes x_{n}\right) x_{n+1}
\end{aligned}
$$

for f in $\operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n}}, A\right)$. Notice that after applying the functor $\operatorname{Hom}_{A^{e}}(-, A)$ to the standard bar resolution, the Hochschild cochain complex is obtained by identifying $\operatorname{Hom}_{A^{e}}\left(A \otimes_{k} A^{\otimes_{k}^{n}} \otimes_{k} A, A\right)$ to $\operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n}}, A\right)$. The reduced complex is obtained from the reduced bar resolution in a similar way. First we apply $\operatorname{Hom}_{A^{e}}(-, A)$ to the reduced bar resolution, then we identify the vector space $\operatorname{Hom}_{A^{e}}\left(A \otimes_{E} r^{\otimes_{E}^{n}} \otimes_{E} A, A\right)$ to $\operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n}}, A\right)$. Therefore, the reduced bar complex that we denote by $\mathbf{R}^{\bullet}(\mathbf{A}, \mathbf{A})$ is given by

$$
\begin{aligned}
0 & \rightarrow A^{E} \xrightarrow{\delta} \operatorname{Hom}_{E^{e}}(r, A) \xrightarrow{\delta} \\
& \cdots \longrightarrow \operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n}}, A\right) \xrightarrow{\delta} \operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n+1}}, A\right) \cdots
\end{aligned}
$$

where A^{E} is the subalgebra of A defined as follows:

$$
A^{E}:=\{a \in A \mid a e=e a \text { for all } e \in E\}
$$

The differentials in the reduced complex are given as the above formulas.
Induced quasi-isomorphism
In this paragraph, we will compute the quasi-isomorphisms between the Hochschild cochain complex and the reduced complex, induced by the comparison maps p and s. We will denote them by

$$
p^{\bullet}: \mathbf{R}^{\bullet}(\mathbf{A}, \mathbf{A}) \rightarrow \mathbf{C}^{\bullet}(\mathbf{A}, \mathbf{A}) \quad \text { and } \quad s^{\bullet}: \mathbf{C}^{\bullet}(\mathbf{A}, \mathbf{A}) \rightarrow \mathbf{R}^{\bullet}(\mathbf{A}, \mathbf{A}) .
$$

$\operatorname{Map}\left(p^{\bullet}\right)$. In degree zero, we have that $p_{0}: A^{E} \rightarrow A$ is the inclusion map. For $n \geqslant 1$,

$$
p^{n}: \operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n}}, A\right) \longrightarrow \operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n}}, A\right)
$$

is given by

$$
p^{n} f\left(x_{1} \underset{k}{\otimes} \cdots \underset{k}{\otimes} x_{n}\right)=f\left(\pi\left(x_{1}\right) \underset{E}{\otimes} \cdots \underset{E}{\otimes} \pi\left(x_{n}\right)\right)
$$

where f is in $\operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n}}, A\right)$ and $x_{i} \in r$.

Map $\left(s^{\bullet}\right)$. In degree zero, we have that $s^{0}: A \rightarrow A^{E}$ is given by

$$
s^{0}(x)=\sum_{e \in E_{0}} e x e
$$

where $x \in A$. For $n \geqslant 1$, we have that

$$
s^{n}: \operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n}}, A\right) \longrightarrow \operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n}}, A\right)
$$

is given by

$$
s^{n} f\left(x_{1} \underset{E}{\otimes} \cdots \underset{E}{\cdots} x_{n}\right)=\sum_{j_{0}, \ldots, j_{n}} e_{j_{0}} f\left(e_{j_{0}} x_{1} e_{j_{1}} \underset{k}{\left.\otimes \cdots \otimes_{k} e_{j_{i-1}} x_{i} e_{j_{i}} \underset{k}{\otimes \cdots} \underset{k}{\otimes} e_{j_{n-1}} x_{n} e_{j_{n}}\right) e_{j_{n}}}\right.
$$

where the sum is over all $(n+1)$-tuples $\left(e_{j_{0}}, \ldots, e_{j_{i}}, \ldots, e_{j_{n}}\right)$ of elements of E_{0}, f is in $\operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n}}, A\right)$ and x_{i} is in r.

Remark. Let us remark that $s^{\bullet} p^{\bullet}=i d_{\mathbf{R}^{\bullet}(\mathbf{A}, \mathbf{A})}$.

2. Gerstenhaber bracket and reduced bracket

The Gerstenhaber bracket is defined on the Hochschild cohomology groups using the Hochschild complex. In this section we will define the reduced bracket using the reduced complex. We show that the Gerstenhaber bracket and the reduced bracket provides the same graded Lie algebra structure on $\mathrm{HH}^{*+1}(A)$. We begin by recalling the Gerstenhaber bracket in order to fix notation.

Gerstenhaber bracket

Set $C^{0}(A, A):=A$ and for $n \geqslant 1$, we will denote the space of Hochschild cochains by

$$
C^{n}(A, A):=\operatorname{Hom}_{k}\left(A^{\otimes_{k}^{n}}, A\right) .
$$

In [Ger63], Gerstenhaber defined a right pre-Lie system $\left\{C^{n}(A, A), o_{i}\right\}$ where elements of $C^{n}(A, A)$ are declared to have degree $n-1$. The operation \circ_{i} is given as follows. Given $n \geqslant 1$, let us fix $i=1, \ldots, n$. The bilinear map

$$
\circ_{i}: C^{n}(A, A) \times C^{m}(A, A) \longrightarrow C^{n+m-1}(A, A)
$$

is given by the following formula:

$$
f^{n} \circ_{i} g^{m}\left(x_{1} \otimes \cdots \otimes x_{n+m-1}\right):=f^{n}\left(x_{1} \otimes \cdots \otimes g^{m}\left(x_{i} \otimes \cdots \otimes x_{i+m-1}\right) \otimes \cdots \otimes x_{n+m-1}\right)
$$

where f^{n} is in $C^{n}(A, A)$ and g^{m} is in $C^{m}(A, A)$. Then he proved that such pre-Lie system induces a graded pre-Lie algebra structure on

$$
C^{*+1}(A, A):=\bigoplus_{n=1}^{\infty} C^{n}(A, A)
$$

by defining an operation \circ as follows:

$$
f^{n} \circ g^{m}:=\sum_{i=1}^{n}(-1)^{(i-1)(m-1)} f^{n} \circ_{i} g^{m} .
$$

Finally, $C^{*+1}(A, A)$ becomes a graded Lie algebra by defining the bracket as the graded commutator of o . So we have that

$$
\left[f^{n}, g^{m}\right]:=f^{n} \circ g^{m}-(-1)^{(n-1)(m-1)} g^{m} \circ f^{n}
$$

Remark. The Gerstenhaber restricted to $C^{1}(A, A)$ is the usual Lie commutator bracket.
Moreover, Gerstenhaber proved that

$$
\delta\left[f^{n}, g^{m}\right]=\left[f^{n}, \delta g^{m}\right]+(-1)^{m-1}\left[\delta f^{n}, g^{m}\right]
$$

where δ is the differential of Hochschild cochain complex. This formula implies that the following bilinear map:

$$
[-,-]: \mathrm{HH}^{n}(A) \times \mathrm{HH}^{m}(A) \longrightarrow \mathrm{HH}^{n+m-1}(A)
$$

is well defined. Therefore, $\mathrm{HH}^{*+1}(A)$ endowed with the induced Gerstenhaber bracket is also a graded Lie algebra.

Reduced bracket

In order to define the reduced bracket, we proceed in the same way as Gerstenhaber did. We will define the reduced bracket as the graded commutator of an operation $\underset{R}{\circ}$. Such operation will be given by \circ. Denote by $C_{E}^{n}(r, A)$ the cochain space of the reduced complex, this is

$$
C_{E}^{n}(r, A):=\operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n}}, A\right) .
$$

Definition. Let $n \geqslant 1$ and fix $i=1, \ldots, n$. The bilinear map

$$
\bigcirc: C_{E}^{n}(r, A) \times C_{E}^{m}(r, A) \rightarrow C_{E}^{n+m-1}(r, A)
$$

is given by the following formula:

$$
f^{n} \stackrel{\circ}{i} g^{m}\left(x_{1} \underset{E}{\otimes \cdots} \underset{E}{\otimes} x_{n+m-1}\right):=f^{n}\left(x_{1} \underset{E}{\otimes} \cdots \underset{E}{\otimes} \pi g^{m}\left(x_{i} \underset{E}{\otimes} \cdots \underset{E}{\otimes} x_{i+m-1}\right) \underset{E}{\otimes} \cdots \underset{E}{\otimes} x_{n+m-1}\right)
$$

where f^{n} is in $C_{E}^{n}(r, A)$ and g^{m} is in $C_{E}^{m}(r, A)$ and x_{1}, \ldots, x_{n+m-1} are in r. Let us remark that the image of g^{m} does not necessarily belong to the radical but the image of πg^{m} clearly does. Therefore $f^{n}{ }_{i} g^{m}$ is well defined.

Then we can define $\underset{R}{\circ}$ on

$$
C_{E}^{*+1}(r, A):=\bigoplus_{n=1}^{\infty} C_{E}^{n}(r, A)
$$

as above but replacing \circ_{i} instead of \circ_{i}. This means that

$$
f^{n} \underset{R}{\circ} g^{m}:=\sum_{i=1}^{n}(-1)^{(i-1)(m-1)} f_{i}^{n} g^{m} .
$$

Let us remark ${\underset{R}{R}}_{\circ}$ is a graded operation on $C_{E}^{*+1}(r, A)$ by declaring elements of $C_{E}^{n}(r, A)$ to have degree $n-1$.

Definition. We call the reduced bracket, denoted by $[-,-]_{R}$, to the graded commutator bracket of $\underset{R}{\circ}$. This is,

$$
[-,-]_{R}: C_{E}^{n}(r, A) \times C_{E}^{m}(r, A) \longrightarrow C_{E}^{n+m-1}(r, A)
$$

is given by

$$
\left[f^{n}, g^{m}\right]_{R}:=f_{R}^{n}{ }_{R} g^{m}-(-1)^{(n-1)(m-1)} g^{m} \underset{R}{\circ} f^{n} .
$$

The following lemmas will relate the Gerstenhaber bracket and the reduced bracket.
Lemma 2.1. We have the following formula:

$$
\left[f^{n}, g^{m}\right]_{R}=s^{n+m-1}\left[p^{n} f^{n}, p^{m} g^{m}\right]
$$

Proof. A straightforward verification shows that

$$
f_{i}^{n} g^{m}=s^{n+m-1}\left(p^{n} f^{n} \circ_{i} p^{m} g^{m}\right)
$$

Since s^{n+m-1} is a linear application we have the formula wanted.
Lemma 2.2. We have the following formula:

$$
p^{n+m-1}\left[f^{n}, g^{m}\right]_{R}=\left[p^{n} f^{n}, p^{m} g^{m}\right] .
$$

Proof. Since p^{n+m-1} is a complex morphism, we prove that

$$
p^{n+m-1}\left(f_{i}^{n} g^{m}\right)=p^{n} f^{n} \circ_{i} p^{m} g^{m}
$$

by a direct computation.
We will write p^{*} for the morphism

$$
p^{*}: C_{E}^{*+1}(r, A) \longrightarrow C^{*+1}(A, A)
$$

induced by p^{\bullet}. We have the following proposition due to the above lemmas that relate both brackets.
Proposition 2.3. The graded product $[-,-]_{R}$ endows $C_{E}^{*}(r, A)$ with the structure of graded Lie algebra. We also have that p^{*} is a morphism of graded Lie algebras.

Proof. Using the Lemma 2.1, it is easy to see that the reduced bracket satisfies the graded antisymmetric property as a consequence of the fact that the Gerstenhaber bracket satisfies the same condition. For the graded Jacobi identity, we proceed in the same way. First, let us write a formula that relates both brackets, using Lemma 2.1 and Lemma 2.2 we have that

$$
\begin{aligned}
{\left[\left[f^{n}, g^{m}\right]_{R}, h^{l}\right]_{R} } & =s^{n+m+p-2}\left[p^{n+m-1}\left[f^{n}, g^{m}\right]_{R}, p^{l} h^{l}\right] \\
& =s^{n+m+p-2}\left[\left[p^{n} f^{n}, p^{m} g^{m}\right], p^{l} h^{l}\right]
\end{aligned}
$$

Then, using the linearity of $s^{n+m+p-2}$ and the fact that the Gerstenhaber bracket satisfies the graded Jacobi identity we have proved that $[-,-]_{R}$ satisfies the two conditions of the definition of graded Lie algebra. Finally, p^{*} becomes a Lie graded morphism because of Lemma 2.2.

Now, the reduced bracket induce a bracket in Hochschild cohomology groups because of the following lemma.

Lemma 2.4. Let δ be the differential of the Hochschild cocomplex then we have

$$
\delta\left[f^{n}, g^{m}\right]_{R}=\left[f^{n}, \delta g^{m}\right]_{R}+(-1)^{m-1}\left[\delta f^{n}, g^{m}\right]_{R}
$$

Hence we have a well defined bracket in the Hochschild cohomology groups:

$$
[-,-]_{R}: \mathrm{HH}^{n}(A) \times \mathrm{HH}^{m}(A) \longrightarrow \mathrm{HH}^{n+m-1}(A) .
$$

Proof. We have that

$$
\begin{aligned}
\delta\left[f^{n}, g^{m}\right]_{R} & =\delta s^{n+m-1}\left[p^{n} f^{n}, p^{m} g^{m}\right] \\
& =s^{n+m-1} \delta\left[p^{n} f^{n}, p^{m} g^{m}\right] \\
& =s^{n+m-1}\left[p^{n} f^{n}, \delta p^{m} g^{m}\right]+(-1)^{m-1} s^{n+m-1}\left[\delta p^{n} f^{n}, p^{m} g^{m}\right] \\
& =s^{n+m-1}\left[p^{n} f^{n}, p^{m} \delta g^{m}\right]+(-1)^{m-1} s^{n+m-1}\left[p^{n} \delta f^{n}, p^{m} g^{m}\right] \\
& =\left[f^{n}, \delta g^{m}\right]_{R}+(-1)^{m-1}\left[\delta f^{n}, g^{m}\right]_{R} .
\end{aligned}
$$

We have equipped $\mathrm{HH}^{*+1}(A)$ with a graded Lie algebra structure induced by the reduced bracket. We know that $\mathrm{HH}^{*+1}(A)$ is already a graded Lie algebra and this structure is given by the Gerstenhaber bracket. We have then the following proposition.

Proposition 2.5. The graded Lie algebra $\mathrm{HH}^{*+1}(A)$ endowed with the Gerstenhaber bracket is isomorphic to $\mathrm{HH}^{*+1}(A)$ endowed with the reduced bracket.

Proof. By abuse of notation we continue to write $\overline{p^{*}}$ for the automorphism of $\mathrm{HH}^{*+1}(A)$ given by the family of morphisms $\left(\overline{p^{n}}\right)$. Thus, a direct consequence of the above proposition is that $\overline{p^{*}}$ becomes an isomorphism of graded Lie algebras.

3. Reduced bracket for monomial algebras with radical square zero

Let Q be a quiver. The path algebra $k Q$ is the k-linear span of the set of paths of Q where multiplication is provided by concatenation or zero. We denote by Q_{0} the set of vertices and Q_{1} the set of arrows. The trivial paths are denoted by e_{i} where i is a vertex. The set of all paths of length n is denoted by Q_{n}.

In the sequel, let A be a monomial algebra with radical square zero, this is

$$
A:=\frac{k Q}{\left\langle Q_{2}\right\rangle} .
$$

The Jacobson radical of A is given by $r=k Q_{1}$. Moreover, the Wedderburn-Malcev decomposition of these algebras is $A=k Q_{0} \oplus k Q_{1}$ where $E=k Q_{0}$. In this section we are going to describe the reduced bracket on $\mathrm{HH}^{*+1}(A)$. Such bracket is given in terms of the combinatorics of the quiver. We will use computations of the Hochschild cohomology groups of these algebras given by Cibils in [Cib98].

The reduced complex
Notice that in the case of monomial algebras with radical square zero, the middle-sum terms of the coboundary morphism of the reduced projective resolution \mathbf{R} vanishes because the multiplication of two arrows is always zero. Therefore, we have that the coboundary morphism is given by the following formula:

$$
\begin{aligned}
\delta\left(a \otimes x_{1} \otimes \cdots \otimes x_{n+1} \otimes b\right)= & a x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n+1} \otimes b \\
& +(-1)^{n+1} a \otimes x_{1} \otimes \cdots \otimes x_{n} \otimes x_{n+1} b
\end{aligned}
$$

In [Cib98] an isomorphic complex to $\mathbf{R}^{\bullet}(\mathbf{A}, \mathbf{A})$ is given. This new complex is obtained in terms of the combinatorics of the quiver. To describe it we will need to introduce some notation. We say that two paths α and β are parallels if and only if they have the same source and the same end. If α and
β are parallel paths we write $\alpha \| \beta$. Let X and Y be sets consisting of paths of Q, the set of parallel paths $X \| Y$ is given by:

$$
X \| Y:=\left\{\left(\gamma, \gamma^{\prime}\right) \in X \times Y \mid \gamma \| \gamma^{\prime}\right\} .
$$

For example:

- $Q_{n} \| Q_{0}$ is the set of pointed oriented cycles, this is the set of pairs $\left(\gamma^{n}, e\right)$ where γ^{n} is an oriented cycle of length n.
- $Q_{n} \| Q_{1}$ is the set of pairs (γ^{n}, a) where the arrow a is a shortcut of the path γ^{n} of length n.

We denote by $k(X \| Y)$ the k-vector space generated by the set $X \| Y$.
For each natural number n, Cibils defines

$$
D_{n}: k\left(Q_{n} \| Q_{0}\right) \rightarrow k\left(Q_{n+1} \| Q_{1}\right)
$$

as follows:

$$
\begin{equation*}
D_{n}\left(\gamma^{n}, e\right)=\sum_{a \in Q_{1} e}\left(a \gamma^{n}, a\right)+(-1)^{n+1} \sum_{a \in e Q_{1}}\left(\gamma^{n} a, a\right) \tag{2}
\end{equation*}
$$

where the path γ^{n} is parallel to the vertex e.
In [Cib98], the Hochschild cohomology groups of a radical square zero algebra are obtained from the following complex, denoted by $C^{\bullet}(Q)$:

$$
\begin{aligned}
& 0 \rightarrow k\left(Q_{0} \| Q_{0}\right) \oplus k\left(Q_{0} \| Q_{1}\right) \xrightarrow{\left(\begin{array}{cc}
0 & 0 \\
D_{0} & 0
\end{array}\right)} k\left(Q_{1} \| Q_{0}\right) \oplus k\left(Q_{1} \| Q_{1}\right) \\
& \xrightarrow{\left(\begin{array}{ll}
0 & 0 \\
D_{1} & 0
\end{array}\right)} \cdots k\left(Q_{n} \| Q_{0}\right) \oplus k\left(Q_{n} \| Q_{1}\right) \xrightarrow{\left(\begin{array}{cc}
0 & 0 \\
D_{n} & 0
\end{array}\right)} k\left(Q_{n+1} \| Q_{0}\right) \oplus k\left(Q_{n+1} \| Q_{1}\right) .
\end{aligned}
$$

Cibils proved that $C^{\bullet}(Q)$ is isomorphic to the reduced complex $\mathbf{R}^{\bullet}(\mathbf{A}, \mathbf{A})$ using the following lemma.
Lemma 3.1. (See [Cib98].) Let $A:=k Q /\left\langle Q_{2}\right\rangle$ where Q is a finite quiver. The vector space $C_{E}^{n}(r, A)=$ $\operatorname{Hom}_{E^{e}}\left(r^{\otimes_{E}^{n}}, A\right)$ is isomorphic to

$$
k\left(Q_{n} \| Q_{0} \cup Q_{1}\right)=k\left(Q_{n} \| Q_{0}\right) \oplus k\left(Q_{n} \| Q_{1}\right)
$$

The reduced bracket
Once we have the combinatorial description of $C_{E}^{n}(r, A)$, we are going to compute the reduced bracket in the same terms. To do so we use the above lemma. We begin by introducing some notation.

Notation. Given two paths: α^{n} in Q_{n} and β^{m} in Q_{m}, we will suppose that

$$
\begin{aligned}
& \alpha^{n}=a_{1} a_{2} \ldots a_{n}, \\
& \beta^{m}=b_{1} b_{2} \ldots b_{m}
\end{aligned}
$$

where a_{i} and b_{j} are in Q_{1}. Under this assumption, we say that a_{i} and b_{j} are arrows in the decomposition of α^{n} and β^{m}, respectively. Let $i=1, \ldots, n$, if $a_{i} \| \beta^{m}$, we denote by $\alpha^{n} \diamond \beta^{m}$ the path in Q_{n+m-1} obtained by replacing the arrow a_{i} with the path β^{m}. This means

$$
\alpha_{i}^{n} \diamond \beta^{m}:=a_{1} \ldots a_{i-1} b_{1} \ldots b_{m} a_{i+1} \ldots a_{n}
$$

If a_{i} is not parallel to β^{m} then $\alpha^{n} \diamond \beta^{m}$ has no sense. Clearly, \diamond_{i} is not commutative. For example, let a in Q_{1}. If $a \| \beta^{m}$ then we have that

$$
\underset{1}{a \diamond} \beta^{m}=\beta^{m} .
$$

Now, if $b_{i} \| a$ we have that

$$
\beta_{i}^{m}{ }_{i}=b_{1} \ldots b_{i-1} a b_{i+1} \ldots b_{m}
$$

Definition. Let Q be a finite quiver and $n \geqslant 1$. Fix $i=1, \ldots, n$. The bilinear map

$$
\stackrel{\circ}{i}: k\left(Q_{n} \| Q_{0} \cup Q_{1}\right) \times k\left(Q_{m} \| Q_{0} \cup Q_{1}\right) \longrightarrow k\left(Q_{n+m-1} \| Q_{0} \cup Q_{1}\right)
$$

is given by

$$
\left(\alpha^{n}, x\right)_{i}\left(\beta^{m}, y\right)=\delta_{a_{i}, y} \cdot\left(\alpha_{i}^{n} \diamond \beta^{m}, x\right)
$$

where

$$
\delta_{a_{i}, y}= \begin{cases}1 & \text { if } a_{i}=y \\ 0 & \text { otherwise }\end{cases}
$$

and $\alpha^{n}=a_{1} \ldots a_{i} \ldots a_{n}$.
Denote by $C^{*+1}(Q)$ the following vector space

$$
C^{*+1}(Q):=\bigoplus_{n=1}^{\infty} k\left(Q_{n} \| Q_{0}\right) \oplus k\left(Q_{n} \| Q_{1}\right)
$$

Definition. Let Q be a finite quiver. The bilinear map

$$
[-,-]_{Q}: k\left(Q_{n} \| Q_{0} \cup Q_{1}\right) \times k\left(Q_{m} \| Q_{0} \cup Q_{1}\right) \longrightarrow k\left(Q_{n+m-1} \| Q_{0} \cup Q_{1}\right)
$$

is defined as follows

$$
\begin{aligned}
{\left[\left(\alpha^{n}, x\right),\left(\beta^{m}, y\right)\right]_{Q}=} & \sum_{i=1}^{n}(-1)^{(i-1)(m-1)}\left(\alpha^{n}, x\right)_{i}\left(\beta^{m}, y\right) \\
& -(-1)^{(n-1)(m-1)} \sum_{i=1}^{m}(-1)^{(i-1)(n-1)}\left(\beta^{m}, y\right) \circ\left(\alpha^{n}, x\right) .
\end{aligned}
$$

Theorem 3.2. Let Q be a finite quiver. The vector space $C^{*+1}(Q)$ together with the bracket $[-,-]_{Q}$ is a graded Lie algebra. Moreover, if $A:=k Q /\left\langle Q_{2}\right\rangle$ then the graded Lie algebra $C_{E}^{*+1}(r, A)$ endowed with the reduced bracket is isomorphic to $C^{*+1}(Q)$ endowed with the bracket $[-,-]_{Q}$.

Proof. Let Q be a finite quiver and $A:=k Q /\left\langle Q_{2}\right\rangle$. Let us remark that $C^{*+1}(Q)$ is isomorphic as a vector space to $C^{*+1}(r, A)$ because of Lemma 3.1. Using the same isomorphism defined by Cibils to prove lemma (3.1), a straightforward verification shows that the bracket $[-,-]_{Q}$ is the combinatorial translation of the reduced bracket.

Corollary 3.3. Let $A:=k Q /\left\langle Q_{2}\right\rangle$ where Q is a finite quiver. The graded Lie algebra structure on $H^{*+1}(A)$ given by the Gerstenhaber bracket is induced by the graded Lie algebra structure on $C^{*+1}(Q)$ given by $[-,-]_{Q}$.

4. Lie module structure of $\mathbf{H H}^{\boldsymbol{n}}(A)$ over $\mathbf{H H}{ }^{\mathbf{1}}(A)$

In this section, we are going to study the Lie module structure of $\operatorname{HH}^{n}(A)$ over $\operatorname{HH}^{1}(A)$ when $A:=k Q / Q_{2}$ in two cases. The first case is when Q is a loop and the second case is when Q is a two loops quiver.

The one loop case
It is shown in [Cib98] that if chark $=0$ and Q is the one loop quiver then the function D_{n}, given by Eq. (2), is zero when n is even and D_{n} is injective when n is odd. In fact we have the following proposition:

Proposition. (See [Cib98].) Assume that Q is the one loop quiver. Let k be a field of characteristic zero and $A:=k Q /\left\langle Q_{2}\right\rangle$. Then we have that $\mathrm{HH}^{0}(A) \cong A$ and for $n>0$ we have that

$$
\mathrm{HH}^{n}(A) \cong \begin{cases}k\left(Q_{n} \| Q_{0}\right) & \text { if } n \text { is even } \\ k\left(Q_{n} \| Q_{1}\right) & \text { ifn is odd }\end{cases}
$$

Therefore, for $n \geqslant 0$ the Hochschild cohomology group $\mathrm{HH}^{n}(A)$ is one dimensional.

Proposition 4.1. Assume that Q is the one loop quiver, where e is the vertex and a is the loop. Let k be a field of characteristic zero and $A:=k Q /\left\langle Q_{2}\right\rangle$. Then $\mathrm{HH}^{1}(A)$ is the one dimensional (abelian) Lie algebra and the Lie module structure on the Hochschild cohomology groups given by the Gerstenhaber bracket

$$
\mathrm{HH}^{1}(A) \times \mathrm{HH}^{n}(A) \longrightarrow \mathrm{HH}^{n}(A)
$$

is induced by the following morphisms:
If n is even, we have that

$$
k\left(Q_{1} \| Q_{1}\right) \times k\left(Q_{n} \| Q_{0}\right) \longrightarrow k\left(Q_{n} \| Q_{0}\right)
$$

is given as follows

$$
(a, a) \cdot\left(a^{n}, e\right)=-n\left(a^{n}, e\right)
$$

If n is odd, we have that

$$
k\left(Q_{1} \| Q_{1}\right) \times k\left(Q_{n} \| Q_{1}\right) \longrightarrow k\left(Q_{n} \| Q_{1}\right)
$$

is given as follows

$$
(a, a) \cdot\left(a^{n}, a\right)=-(n-1)\left(a^{n}, a\right)
$$

So, the Lie module $\mathrm{HH}^{n}(A)$ over $\mathrm{HH}^{1}(A)$ corresponds to the one dimensional standard module over k.

Proof. It is an immediate consequence of the definition of the bracket $[-,-]_{Q}$ and the Corollary 3.3.

Moreover, we have that
Proposition 4.2. Let k be a field of characteristic zero, Q the one loop quiver and $A:=k Q /\left\langle Q_{2}\right\rangle$. The Lie algebra $\mathrm{HH}^{\text {odd }}$ is the infinite dimensional Witt algebra.

Proof. If n and m are odd then, using the formula for the bracket, we have

$$
\left[\left(a^{n}, a\right),\left(a^{m}, a\right)\right]_{Q}=(n-m)\left(a^{n+m-1}, a\right)
$$

The two loops case
In [Cib98], Cibils proved that the function D_{n}, given by Eq. (2), is injective for $n \geqslant 1$ when Q is neither a loop nor an oriented cycle. Hence we have the following result:

Theorem. (See [Cib98].) Let $A:=k Q /\left\langle Q_{2}\right\rangle$ where Q is the two loops quiver. Then, $\mathrm{HH}^{0}(A)=A$ and for $n \geqslant 1$

$$
\mathrm{HH}^{n}(A) \cong \frac{k\left(Q_{n} \| Q_{1}\right)}{\operatorname{Im} D_{n-1}}
$$

where

$$
D_{n-1}: k\left(Q_{n-1} \| Q_{0}\right) \longrightarrow k\left(Q_{n} \| Q_{1}\right)
$$

is given by the formula (2). Moreover, we have that for $n>1$,

$$
\operatorname{dim}_{k} \mathrm{HH}^{n}(A)=2^{n+1}-2^{n-1} .
$$

Theorem 4.3. Let $A:=k Q /\left\langle Q_{2}\right\rangle$ where Q is a finite quiver. If Q is not an oriented cycle then the Lie module structure on the Hochschild cohomology groups given by the Gerstenhaber bracket

$$
\mathrm{HH}^{1}(A) \times \mathrm{HH}^{n}(A) \longrightarrow \mathrm{HH}^{n}(A)
$$

is induced by the following bilinear map:

$$
k\left(Q_{1} \| Q_{1}\right) \times k\left(Q_{n} \| Q_{1}\right) \longrightarrow k\left(Q_{n} \| Q_{1}\right)
$$

given as follows

$$
(a, x) \cdot\left(\alpha^{n}, y\right)=\delta_{y, a} \cdot\left(\alpha^{n}, a\right)-\sum_{i=1}^{n} \delta_{x, a_{i}} \cdot\left(\alpha_{i}^{n} \stackrel{x}{ }, y\right)
$$

where $a \| x$ and y is a shortcut of the path α^{n} whose decomposition into arrows is given by $\alpha^{n}=a_{1} \ldots a_{i} \ldots a_{n}$. The path $\alpha_{i}^{n} \stackrel{x}{ }$ is obtained by replacing a_{i} with x if $a_{i}=y$.

Proof. It is an immediate consequence of the definition of the bracket $[-,-]_{Q}$ and Corollary 3.3.
In [Str06], Strametz studies the Lie algebra structure on the first Hochschild cohomology group for monomial algebras. She formulates the Lie bracket on $\mathrm{HH}^{1}(A)$ using the combinatorics of the quiver. Let us remark that the formula given by the above theorem gives the Lie bracket on $\mathrm{HH}^{1}(A)$ when we set $n=1$. Such formula coincides with the one given in [Str06]. Let us describe the Lie algebra $\mathrm{HH}^{1}(A)$.

Proposition 4.4. Assume that Q is the two loops quiver where e is the vertex and the loops are denoted by a and b. Let $A:=\mathbb{C} Q /\left\langle Q_{2}\right\rangle$ where \mathbb{C} is the complex number field. Then the elements

$$
\begin{aligned}
H & :=(b, b)-(a, a), \\
E & :=(a, b), \\
F & :=(b, a)
\end{aligned}
$$

generate a copy of the Lie algebra $\operatorname{sl}_{2}(\mathbb{C})$ in $\mathrm{HH}^{1}(A)$. Moreover, the Lie algebra $\mathrm{HH}^{1}(A)$ is isomorphic to $s l_{2}(\mathbb{C}) \times \mathbb{C}$.

Proof. First notice that $\mathrm{HH}^{1}(A) \cong k\left(Q_{1} \| Q_{1}\right)$ and that the elements H, E, F and $I:=(a, a)+(b, b)$ form a basis of $\mathrm{HH}^{1}(A)$. A straightforward verification of the following relations:

$$
[H, E]_{Q}=2 E, \quad[H, F]_{Q}=-2 F, \quad[E, F]_{Q}=H
$$

proves that $\mathrm{HH}^{1}(A)$ contains a copy of $s l_{2} \mathbb{C}$. Finally, it is easy to see that

$$
[I, H]_{Q}=0, \quad[I, E]_{Q}=0, \quad[I, F]_{Q}=0,
$$

In order to study the Lie module $\mathrm{HH}^{n}(A)$ over $\mathrm{HH}^{1}(A)$, we will study $\mathrm{HH}^{n}(A)$ as a $s_{2}(\mathbb{C})$-module. Now, let us recall two classical Lie theory results, see [EW06,FH91] for more detail.
(i) Every (finite dimensional) $s l_{2} \mathbb{C}$-module has a decomposition into direct sum of irreducible modules.
(ii) Classification of irreducible $s l_{2} \mathbb{C}$-modules: there exists a unique irreducible module for each dimension. We denote by $V(t)$ the irreducible $s l_{2} \mathbb{C}$ module of dimension $t+1$.

Using the above notation, this means that $\mathrm{HH}^{n}(A)$ has a decomposition into direct sum of irreducible modules over $s l_{2} \mathbb{C}$ as follows:

$$
\mathrm{HH}^{n}(A)=\bigoplus_{t=0}^{\infty} V(t)^{q_{t}} .
$$

We will determine each q_{t} and to do so we will use the usual tools of the classical Lie theory. We begin by calculating the eigenvector spaces of H as endomorphism of $k\left(Q_{n} \| Q_{0}\right)$ and $\operatorname{Im} D_{n-1}$.

Given a path γ^{n} in Q_{n} we denote by $a\left(\gamma^{n}\right)$ the number of times that the arrow " a " appears in the decomposition of γ^{n}. We also denote by $b\left(\gamma^{n}\right)$ the number of times that the arrow " b " appears in the decomposition of γ^{n}.

Map (v). Define v as the function given by:

$$
\begin{aligned}
v_{n}: Q_{n} & \rightarrow \mathbb{Z}, \\
\gamma^{n} & \mapsto a\left(\gamma^{n}\right)-b\left(\gamma^{n}\right) .
\end{aligned}
$$

Lemma 4.5. For all γ^{n} in Q_{n} we have that

$$
\begin{aligned}
& H .\left(\gamma^{n}, a\right)=\left(v_{n}\left(\gamma^{n}\right)-1\right)\left(\gamma^{n}, a\right), \\
& H .\left(\gamma^{n}, b\right)=\left(v_{n}\left(\gamma^{n}\right)+1\right)\left(\gamma^{n}, b\right)
\end{aligned}
$$

and for all γ^{n-1} in Q_{n-1} we have that

$$
\text { H. } D_{n-1}\left(\gamma^{n-1}, e\right)=v_{n-1}\left(\gamma^{n-1}\right) D_{n-1}\left(\gamma^{n-1}, e\right) .
$$

Proof. Use the formula given in Proposition 4.3.
Proposition 4.6. Assume that char $k=0$.
(i) Consider H as an endomorphism of $k\left(Q_{n} \| Q_{1}\right)$. The eigenvalues of H are $n+1-2 l$ where $l=0, \ldots, n+1$. Denote by $W(\lambda)$ the eigenspace of H of the eigenvalue λ. We have that

$$
\operatorname{dim}_{k} W(n+1-2 l)=\binom{n+1}{l} .
$$

(ii) Consider H as an endomorphism of $\operatorname{Im} D_{n-1}$. The eigenvalues of H restricted to $\operatorname{Im} D_{n-1}$ are $n-1-2 l$ where $l=0, \ldots, n-1$. As above, denote by $W(\lambda)$ the eigenspace of H of the eigenvalue λ. We have that

$$
\operatorname{dim}_{k} W(n-1-2 l)=\binom{n-1}{l} .
$$

Proof. (i) From the above lemma, it is clear that the set

$$
\left\{\left(\gamma^{n}, a\right) \mid \gamma^{n} \in Q_{n}\right\} \cup\left\{\left(\gamma^{n}, b\right) \mid \gamma^{n} \in Q_{n}\right\}
$$

is a basis of $k\left(Q_{n} \| Q_{1}\right)$ consisting of eigenvectors. We also have that ($\left.\gamma^{n}, a\right)$ and (γ^{n}, b) are eigenvectors of eigenvalue $v\left(\gamma^{n}\right)+1$ and $v\left(\gamma^{n}\right)-1$ respectively. Since $a\left(\gamma^{n}\right)+b\left(\gamma^{n}\right)=n$ for all paths γ^{n}, we have that $v\left(\gamma^{n}\right)=n-2 b\left(\gamma^{n}\right)$ where $b\left(\gamma^{n}\right)$ varies from 0 to n. Then we have that $v\left(\gamma^{n}\right) \pm 1$ is of the form $n+1-2 l\left(\gamma^{n}\right)$ where $l=0, \ldots, n+1$. Let us remark the following:

- $\left(a^{n}, b\right)$ is the only eigenvector of value $n+1$;
- $\left(b^{n}, a\right)$ is the only eigenvector of value $-(n+1)$;
- If $0<l<n+1$, we have that:
- $\left(\gamma^{n}, a\right)$ is an eigenvector of eigenvalue $n+1-2 l$ iff $l=b\left(\gamma^{n}\right)$;
- $\left(\gamma^{n}, b\right)$ is an eigenvector of eigenvalue $n+1-2 l$ iff $l-1=b\left(\gamma^{n}\right)$.

On the other hand, if $0<l<n+1$, we know that there are $\binom{n}{l}$ paths γ^{n} such that $b\left(\gamma^{n}\right)=l$ and $\binom{n}{l-1}$ paths γ^{n} such that $b\left(\gamma^{n}\right)=l-1$. Therefore, there are

$$
\binom{n}{l}+\binom{n}{l-1}=\binom{n+1}{l}
$$

eigenvectors $\left(\gamma^{n}, x\right)$ of eigenvalue $n+1-2 l$.
(ii) From the above lemma, it is clear that the set

$$
\left\{D_{n-1}\left(\gamma^{n-1}, e\right) \mid \gamma^{n-1} \in Q_{n-1}\right\}
$$

is a basis of $\operatorname{Im} D_{n-1}$ consisting of eigenvectors. We also have that $D_{n-1}\left(\gamma^{n-1}, e\right)$ is an eigenvector of eigenvalue $v\left(\gamma^{n-1}\right)$. Since $a\left(\gamma^{n-1}\right)+b\left(\gamma^{n-1}\right)=n-1$ for all paths γ^{n-1}, we have that $v\left(\gamma^{n-1}\right)=$ $n-1-2 b\left(\gamma^{n-1}\right)$ where $b\left(\gamma^{n}\right)$ varies from 0 to $n-1$. Therefore the eigenvalues are of the form $n-1-2 l$ where l varies from 0 to $n-1$ and there are $\binom{n-1}{l}$ eigenvectors of eigenvalue $n+1-2 l$.

Recall the following result from Lie theory:

Lemma 4.7 (General Multiplicity Formula [BH06]). Let V a finite dimensional $s_{2} \mathbb{C}$-module. For every integer t, let V_{t} be the eigenspace of H of eigenvalue n. Then for any nonnegative integer t, the indecomposable module the number of copies of $V(t)$ that appear in the decomposition into direct sum of indecomposable is $\operatorname{dim} V_{t}-$ $\operatorname{dim} V_{t-2}$.

A consequence of the above lemma is the following result:
Lemma 4.8. Let \mathbb{C} be the field of complex numbers, Q the quiver given by two loops and $A:=\mathbb{C Q} /\left\langle Q_{2}\right\rangle$. For $n \geqslant 1$, we denote by $h(n)$ the following:

$$
h(n):=\max \{l \mid n+1-2 l \geqslant 0\}
$$

and for $l=0, \ldots, h(n)$ we denote by $p(n, l)$ the following:

$$
p(n, l):= \begin{cases}\binom{n}{l} & i f l=0 \\ \binom{n}{l}-\binom{n}{l-1} & \text { if } l \geqslant 1 .\end{cases}
$$

Then we have that
(i) the decomposition into direct sum of irreducibles of $\mathbb{C}\left(Q_{n} \| Q_{1}\right)$ as $s l_{2}(\mathbb{C})$ Lie module is given by

$$
\mathbb{C}\left(Q_{n} \| Q_{1}\right) \cong \bigoplus_{l=0}^{h(n)} V(n+1-2 l)^{p(n+1, l)}
$$

(ii) the decomposition into direct sum of irreducibles of $\operatorname{Im} D_{n-1}$ as $s_{2}(\mathbb{C})$ Lie module is given by

$$
\operatorname{Im} D_{n-1} \cong \bigoplus_{l=0}^{h(n)-1} V(n-1-2 k)^{p(n-1, l)}
$$

Proposition 4.9. Let \mathbb{C} be the field of complex numbers, Q the quiver given by two loops and $A:=\mathbb{C Q} /\left\langle Q_{2}\right\rangle$. For $n \geqslant 1$ and $l=0, \ldots, h(n)$ we denote by $q(n, l)$ the following:

$$
q(n, l):= \begin{cases}\binom{n-1}{l} & \text { if } l=0,1, \\ \binom{n+1}{l}-\binom{n+1}{l-1}-\binom{n-1}{l-1}+\binom{n-1}{l-2} & \text { if } l \geqslant 2 .\end{cases}
$$

Then, the decomposition of $\mathrm{HH}^{n}(A)$ into a direct sum of irreducible Lie modules over $s l_{2}(\mathbb{C})$ is given by

$$
\mathrm{HH}^{n}(A) \cong \bigoplus_{l=0}^{h(n)} V(n+1-2 l)^{q(n, l)} .
$$

Algorithm. There is an algorithm that give us the decomposition of $\mathrm{HH}^{n}(A)$ described in the above proposition. We will explain it in the next paragraph. We use the following table to write such decomposition:

n	$V(0)$	$V(1)$	$V(2)$	$V(3)$	$V(4)$	$V(5)$	$V(6)$	$V(7)$
$\mathrm{HH}^{2}(A)$		1		1				
\vdots								
$\mathrm{HH}^{n}(A)$	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}

In the above table, at the row $\mathrm{HH}^{n}(A)$, the number that appears in the column $V(t)$ states the number of copies of the irreducible module $V(t)$ that appears in the decomposition of $\mathrm{HH}^{n}(A)$. We leave a blank space if no $V(t)$ appears in the decomposition of $\mathrm{HH}^{n}(A)$. We fix the first row of the table with the decomposition of $\mathrm{HH}^{2}(A)$. Now, given the entries of the row $\mathrm{HH}^{n}(A)$, we can fill out the coefficients of the next row, this is for $\mathrm{HH}^{n+1}(A)$, in the following manner:
(i) Add an imaginary column (-) just before the column $V(0)$, consisting of zeros.
(ii) Write down the coefficients of the next row by using the rule from Pascal's triangle: add the number directly above and to the left with the number directly above and to the right.

	$(-)$	$V(0)$	$V(1)$	\cdots	$V(t-1)$	$V(t)$	$V(t+1)$	\cdots
$\mathrm{HH}^{n}(A)$	0	q_{0}	q_{1}	\cdots	q_{t-1}	q_{t}	q_{t+1}	\cdots
$\operatorname{HH}^{n+1}(A)$	0	q_{1}	\cdots	\cdots	\cdots	$q_{t-1}+q_{t+1}$	\cdots	\cdots

Let us remark that the number of copies of $V(1)$ that appear in the decomposition of $\mathrm{HH}^{n}(A)$ is equal to the number of copies of $V(0)$ that appear in the decomposition of $\mathrm{HH}^{n+1}(A)$.

Lemma 4.10. We have that
(i) If n is even then $q(n, h(n))=q(n+1, h(n+1))$.
(ii) If $n \geqslant 2$ then $q(n, l)+q(n, l+1)=q(n+1, l+1)$.

Proof. For the first equality, we verify by a direct computation for $n=2$ and $n=4$. For $n \geqslant 6$, we use that if n is even then we have that

$$
\binom{n+1}{n / 2}=\binom{n+1}{n / 2+1} .
$$

For the second equality, we verify by a direct computation for $l=0$ and $l=1$. For $l \geqslant 2$, we use the Pascal triangle's rule:

$$
\binom{n}{l}+\binom{n}{l+1}=\binom{n+1}{l+1}
$$

Remark. The algorithm is justify by the above lemma. Moreover, we have that

$$
q(n, 2)=\binom{n-1}{2}
$$

This is the reason why we have a section of the Pascal triangle in the above table.

Finally, once we have the decomposition of $\mathrm{HH}^{n}(A)$ into direct sum of irreducible modules over $s l_{2} \mathbb{C}$, we return to study $\mathrm{HH}^{n}(A)$ as a $\mathrm{HH}^{1}(A)$-module.

Corollary 4.11. We have that

$$
\mathrm{HH}^{n}(A) \cong \bigoplus_{l=0}^{h(n)} V(n+1-2 l)^{q(n, l)} \otimes \mathbb{C}
$$

as Lie modules over $\mathrm{HH}^{1}(A)$.
Proof. Notice that

$$
\text { I. }\left(\gamma^{n}, x\right)=\left(1-a\left(\gamma^{n}\right)-b\left(\gamma^{n}\right)\right)\left(\gamma^{n}, x\right)=(1-n)\left(\gamma^{n}, x\right) .
$$

Acknowledgments

This work will be part of my PhD thesis at the University of Montpellier 2. I am indebted to my advisor, Professor Claude Cibils, not only for valuable discussions about the subject and his helpful remarks on this paper, but also for his encouragement. I would like to thank the referee for helpful suggestions in improving this paper.

References

[Alv02] Mariano Suarez Alvarez, Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group, J. Algebra 248 (1) (2002) 291-306.
[BH06] Murray R. Bremner, Irvin R. Hentzel, Alternating triple systems with simple Lie algebras of derivations, in: Nonassociative Algebra and Its Applications, in: Lect. Notes Pure Appl. Math., vol. 246, Chapman \& Hall/CRC, Boca Raton, FL, 2006, pp. 55-82.
[Bus06] Juan Carlos Bustamante, The cohomology structure of string algebras, J. Pure Appl. Algebra 204 (3) (2006) 616-626.
[Cib90] Claude Cibils, Rigidity of truncated quiver algebras, Adv. Math. 79 (1) (1990) 18-42.
[Cib98] Claude Cibils, Hochschild cohomology algebra of radical square zero algebras, in: Algebras and Modules, II, Geiranger, 1996, in: CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 93-101.
[CS97] C. Cibils, A. Solotar, Hochschild cohomology algebra of abelian groups, Arch. Math. (Basel) 68 (1) (1997) 17-21.
[EH99] Karin Erdmann, Thorsten Holm, Twisted bimodules and Hochschild cohomology for self-injective algebras of class A_{n}, Forum Math. 11 (2) (1999) 177-201.
[EHSO2] Karin Erdmann, Thorsten Holm, Nicole Snashall, Twisted bimodules and Hochschild cohomology for self-injective algebras of class A_{n}. II, Algebr. Represent. Theory 5 (5) (2002) 457-482.
[ES98] Karin Erdmann, Nicole Snashall, On Hochschild cohomology of preprojective algebras. I, J. Algebra 205 (2) (1998) 391412, II, J. Algebra 205 (2) (1998) 413-434.
[Eu07a] Ching-Hwa Eu, The calculus structure of the Hochschild homology/cohomology of preprojective algebras of Dynkin quivers, arXiv: 0706.2418v2 [math.RT], 2007.
[Eu07b] Ching-Hwa Eu, The product in the Hochschild cohomology ring of preprojective algebras of Dynkin quivers, arXiv: math/0703568v2 [math.RT], 2007.
[EW06] Karin Erdmann, Mark J. Wildon, Introduction to Lie Algebras, Springer Undergrad. Math. Ser., Springer-Verlag London Ltd., London, 2006.
[FH91] William Fulton, Joe Harris, Representation Theory, Grad. Texts in Math., vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.
[FX06] Jinmei Fan, Yunge Xu, On Hochschild cohomology rings of Fibonacci algebras, Front. Math. China 1 (4) (2006) 526-537.
[GA08] P. Tirao G. Ames, L. Cagliero, Comparison morphisms and the Hochschild cohomology ring of truncated quiver algebras, arXiv: math/0603056v2 [math.KT], 2008.
[GAS99] Francisco Guil-Asensio, Manuel Saorín, The group of outer automorphisms and the Picard group of an algebra, Algebr. Represent. Theory 2 (4) (1999) 313-330.
[Ger63] Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963) 267-288.
[GS06] Edward L. Green, Nicole Snashall, The Hochschild cohomology ring modulo nilpotence of a stacked monomial algebra, Colloq. Math. 105 (2) (2006) 233-258.
[GSS03] Edward L. Green, Nicole Snashall, Øyvind Solberg, The Hochschild cohomology ring of a selfinjective algebra of finite representation type, Proc. Amer. Math. Soc. 131 (11) (2003) 3387-3393 (electronic).
[GSS06] Edward L. Green, Nicole Snashall, Øyvind Solberg, The Hochschild cohomology ring modulo nilpotence of a monomial algebra, J. Algebra Appl. 5 (2) (2006) 153-192.
[Hap89] Dieter Happel, Hochschild cohomology of finite-dimensional algebras, in: Séminaire d'Algèbre Paul Dubreil et MariePaul Malliavin, 39ème Année, Paris, 1987/1988, in: Lecture Notes in Math., vol. 1404, Springer-Verlag, Berlin, 1989, pp. 108-126.
[Hol96] Thorsten Holm, The Hochschild cohomology ring of a modular group algebra: The commutative case, Comm. Algebra 24 (6) (1996) 1957-1969.
[Kel04] Bernhard Keller, Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra 190 (1-3) (2004) 177-196.
[Ric91] Jeremy Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1) (1991) 37-48.
[Str06] Claudia Strametz, The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra, J. Algebra Appl. 5 (3) (2006) 245-270.
[SW00] Stephen F. Siegel, Sarah J. Witherspoon, The Hochschild cohomology ring of a cyclic block, Proc. Amer. Math. Soc. 128 (5) (2000) 1263-1268.

[^0]: E-mail address: sanchez@math.univ-montp2.fr.
 0021-8693/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2008.08.027

