Cyclic Reduction of Central Embedding Problems

HANS OPOLKA

TU Braunschweig, Institut für Algebra und Zahlentheorie, Pockelsstrasse 14, D-W-3300 Braunschweig, Germany

Communicated by Walter Feit

Received October 14, 1991

It is shown that every central embedding problem E for the absolute Galois group $\mathscr G$ of a number field has a so-called cyclic reduction E'; this is a central embedding problem for $\mathscr G$ with a cyclic quotient group J of $\mathscr G$ such that E is solvable if and only if E' is solvable. Some information about the minimal order of J is also provided. © 1993 Academic Press, Inc.

Let \mathscr{G} be a profinite group, let p be a prime number, and for every natural number n put $C_n := (1/p^n) Z/Z$. Let G be a finite quotient group of \mathscr{G} which acts trivially on C_n and for a cocycle class $(\varepsilon) \in H^2(G, C_n)$ denote by $G(\varepsilon)$ the central group extension of G with kernel C_n , which corresponds to ε . The central embedding problem $E_n = E(G, C_n, \varepsilon)$ for \mathscr{G} is said to be solvable if there is a homomorphism $\phi: \mathscr{G} \to G(\varepsilon)$ such that ϕ composed with the natural projection $G(\varepsilon) \to G$ is the given epimorphism $\mathscr{G} \to G$; every such ϕ is called a solution of E_n . Our first result is as follows.

(1) PROPOSITION. Assume that $H^2(\mathcal{G}, \mathbb{Q}_p/\mathbb{Z}_p) = 0$. Let $E_n = E(G, C_n, \varepsilon)$ be a central embedding problem for \mathcal{G} as above. Then there is a cyclic quotient group J of \mathcal{G} and some $(c) \in H^2(J, C_n)$ such that the corresponding central embedding problem $E(J, C_n, c)$ for \mathcal{G} is solvable if and only if E_n is solvable. $E(J, C_n, c)$ is called a cyclic reduction of E_n .

Proof. The exact sequence

$$0 \longrightarrow C_n \longrightarrow \mathbb{Q}_p/\mathbb{Z}_p \xrightarrow{p^n} \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow 0$$

yields the exact sequence of cohomology groups

$$\cdots \longrightarrow \operatorname{Hom}(\mathscr{G}, \mathbb{Q}_p/\mathbb{Z}_p) \xrightarrow{\delta} H^2(\mathscr{G}, C_n) \longrightarrow H^2(\mathscr{G}, \mathbb{Q}_p/\mathbb{Z}_p) = 0.$$

0021-8693/93 \$5.00

Hence there is a homomorphism $\chi: \mathcal{G} \to \mathbb{Q}_p/\mathbb{Z}_p$ such that the image of $(\varepsilon) \in H^2(G, C_n)$ under the inflation map inf: $H^2(G, C_n) \to H^2(\mathcal{G}, C_n)$ satisfies

$$\inf((\varepsilon)) = (\delta \chi).$$

Put $J := \mathcal{G}/\text{Ker}(\chi)$. Then by construction $(\delta \chi)$ is the image of some element $(c) \in H^2(J, C_n)$ under the inflation map inf: $H^2(J, C_n) \to H^2(\mathcal{G}, C_n)$:

$$\inf((\varepsilon)) = (\delta \chi) = \inf((c)).$$

This equation implies the assertion, in view of the following criterion [H, 1.1].

(2) A central embedding problem $E_n = E(G, C_n, \varepsilon)$ for \mathscr{G} is solvable if and only if (ε) belongs to the kernel of the inflation map inf: $H^2(G, C_n) \to H^2(\mathscr{G}, C_n)$.

It is known that $H^2(\mathcal{G}, \mathbb{Q}_p/\mathbb{Z}_p) = 0$ if \mathcal{G} is the absolute Galois group of a number field; see, e.g., [S, Sect. 6]. In this case we can estimate the order of J in a cyclic reduction as follows.

(3) THEOREM. Let k be a number field and let S be a finite set of places of k. Assume that the extension k^{∞}/k which is generated over k by all roots of unity of p-power order in an algebraic closure of k is cyclic. Then there is a natural number f = f(k, S), depending only on k and S, such that the following holds: Every central embedding problem $E_n = E(G, C_n, \varepsilon)$ for the absolute Galois group of k which is unramified outside S, i.e., the finite Galois extension K/k with Galois group G = G(K/k) is unramified outside S, has a cyclic reduction $E(J, C_n, \varepsilon)$ with the property $|J| \leq p^f$.

Let k be a field of characteristic 0, let \bar{k} be an algebraic closure and denote by $G_k = G(\bar{k}/k)$ the absolute Galois group of k. Let E_n be a central embedding problem for G_k which corresponds to a finite Galois subextension K/k of \bar{k}/k with Galois group G = G(K/k), to C_n and to some $(\varepsilon) \in H^2(G, C_n)$. Denote by μ_n the G_k -module of all roots of unity in \bar{k} of order dividing p^n . Furthermore, if k is a number field and if v is a place of k we denote by k_v the completion of k at v and by G_{k_v} its absolute Galois group.

Proof of (3). Since we have assumed that k^{∞}/k is syclic, the localization map

$$H^{2}(G_{k}, C_{n}) \xrightarrow{l_{n}} \prod_{v} H^{2}(G_{k_{v}}, C_{n})$$

$$\tag{4}$$

is injective for every n; see, e.g., [H, Sect. 6]. For $\tilde{n} \ge n$ denote by $j_{n,\tilde{n}}: H^2(-,C_n) \to H^2(-,C_{\tilde{n}})$ the homomorphism which is induced by the canonical injection $C_n \subseteq C_{\tilde{n}}, a/p^n \to a \cdot p^{\tilde{n}-n}/p^{\tilde{n}}$. Clearly, $j_{n,\tilde{n}}$ commutes with the inflation map and with the localization map (4). If v is a place of k which is unramified in K/k then the v-local component of $l_n(\inf((\varepsilon)))$ is trivial, because H^2 of the Galois group of the maximal unramified extension of k_v with respect to C_n is trivial. For a place v of k such that $k_v \neq \mathbb{C}$ define

(5)
$$p^{f_v} := p\text{-part of the order of the group of roots of unity in } k_v$$
$$f := \max \left\{ f_v | \mu_{f_v} \leqslant k_v^*, \ v \in S, \ k_v \neq \mathbb{C} \right\}$$
$$m := n + f.$$

Then we claim that $(I_m(j_{n,m}(\inf(\varepsilon))))$ is trivial. To see this we apply the local duality theorem [P]. It shows that $H^2(G_{k_v}, C_m)$ is dual to $H^0(G_{k_v}, \mu_m) \cong \mu_m \cap k_v^*$ and that the map $j_{n,m}$ dualizes the map $\mu_m \cap k_v^* \mapsto \mu_n \cap k_v^*$, $x \mapsto x^{p^j}$, which, by the definition of f, is trivial provided $k_v \neq \mathbb{C}$. Since l_m is injective we see that $j_{n,m}(\inf((\varepsilon)))$ is trivial. This implies that $j_{n,m}(\varepsilon)$ is contained in the kernel of the inflation map $H^2(G, C_m) \to H^2(G_k, C_m)$. Consider the following commutative diagram with exact rows—these being induced by the exact sequence $0 \to C_n \to C_m \xrightarrow{p^n} C_f \to 0$:

$$\cdots \longrightarrow \operatorname{Hom}(G_k, C_f) \xrightarrow{\delta} H^2(G_k, C_n) \xrightarrow{j_{n,m}} H^2(G_k, C_m) \longrightarrow \cdots$$

$$\inf \left(\inf \right) \qquad \inf \left(\inf \right)$$

$$\cdots \longrightarrow \operatorname{Hom}(G, C_f) \xrightarrow{\delta} H^2(G, C_n) \xrightarrow{j_{n,m}} H^2(G, C_m) \longrightarrow \cdots$$

It shows that $\inf((\varepsilon))$ in $H^2(G_k, C_n)$ is the image of some $\chi \in \operatorname{Hom}(G_k, C_f)$ under the coboundary map δ . Put $J := G_k/\operatorname{Ker}(\chi)$. Obviously $|J| \leq p^f$, and in view of (2) the equation

$$\inf((\varepsilon)) = (\delta \chi)$$
 (6)

shows that $E(J, C_n, (\delta \chi))$ is a cyclic reduction of $E(G, C_n, \varepsilon)$.

From Eq. (6) we deduce

(7) COROLLARY. Under the assumptions of (3) we have: If $E_n = E(G, C_n, \varepsilon)$ is any central embedding problem for G_k which is unramified outside S then the central embedding problem $E(G, C_n, p^f \cdot \varepsilon)$, where f is the natural number defined under (5), is solvable.

So we may call f = f(k, S) a universal embedding exponent with respect to k, p, and S.

In special cases one can also give information about the ramification set of a cyclic reduction of a central embedding problem; namely we prove

(8) THEOREM. Let $k = \mathbb{Q}$ or $k = \mathbb{Q}(\mu_{p^j})$ for some $j \ge 0$, where p is assumed to be odd and regular. Let S be a finite set of places of k which contains all places above p and ∞ . Then there is a natural number f = f(k, S), depending only on k and S, such that the following holds: Every central embedding problem E_n for G_k which is unramified outside S has a cyclic reduction $E(J, C_n, c)$ which is unramified outside S and such that $|J| \le p^f$.

Proof of (8). Let f be defined as in (5). Then it was shown in the proof of (3) that the central embedding problem $E_n^m := E(G, C_n, j_{n,m}(\varepsilon)),$ m = n + f, is solvable. It is solvable as an embedding problem for $G_k(S)$, the Galois group of the maximal subextension of \bar{k}/k which is unramified outside S, if and only if $\inf((j_{n,m}(\varepsilon))) \in H^2(G_k(S), C_m)$ is trivial; see (2). Since E_n^m is solvable the element $\inf((j_{n,m}(\varepsilon)))$ belongs to the kernel of the localization map

$$H^2(G_k(S),\ C_m)\to\coprod_{v\in S}H^2(G_{k_v},\ C_m).$$

This kernel is trivial if the class number of $k(\mu_m)$ is prime to m or if $k = \mathbb{Q}$; see [N, (8.1) ff., (8.2)] and of course [SF]. But these conditions are satisfied by our assumptions and [I].

Question. Let k be a number field, let p be a prime number, and let S be a finite set of places of k which contains all places above p and ∞ . Is there a natural number f = f(k, S), depending only on k and S, such that the following holds: If $E_n = E(G, C_n, \varepsilon)$ is a central embedding problem for $G_k(S)$ then $E(G, C_n, \varepsilon^f)$ has a solution which is unramified outside S? Even if one assumes the p-adic Leopoldt conjecture or $H^2(G_k(S), \mathbb{Q}_p/\mathbb{Z}_p) = 0$ the answer is not known to me.

REFERENCES

- [H] K. HOECHSMANN, Zum Einbettungsproblem, J. Reine Angew. Math. 229 (1968), 81-106.
- [I] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
- [N] J. NEUKIRCH, Über das Einbettungsproblem der algebraischen Zahlentheorie, Invent. Math. 21 (1973), 59-116.
- [P] G. Portou, "Cohomologie Galoisienne des modules finis," Dunod, Paris, 1967.
- [S] J. P. Serre, Modular forms of weight one and Galois representations, in "Algebraic Number Fields" (A. Fröhlich, Ed.), pp. 193–268, Academic Press, London, 1977.
- [SF] I. R. SHAFAREVIC, Extensions with given ramification points, Inst. Hautes Études Sci. Publ. Math. 18 (1964), 295-319; Amer. Math. Soc. Transl. Ser. 2 59 (1966), 128-149.