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Abstract

We show how it is possible to integrate out chiral matter fields inN = 1 supersymmetric theories and in this way derive i
simple diagrammatic way theNf S logS − S log detX part of the Veneziano–Yankielowicz–Taylor superpotential.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

The recent renewed interest in the calculation
the glueball superpotential via matrix models [1] h
led to an understanding of how to extract the n
logarithmic part of these superpotentials by ordin
diagrammatic methods [2]. Just as the matrix mod
in the applications to non-critical strings and
quantum gravity were convenient tools for solvi
specific combinatorial problems: the summation o
all “triangulated” worldsheets with given weight
we understand now that the matrix model in t
Dijkgraaf–Vafa (DV) context is an effective way o
summing a set of ordinary Feynman graphs which
the magic of supersymmetry can be combined in s
a way that they have no space–time dependence.

However, we are still left without a simple diagram
matic derivation of the logarithmic part of the glu
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ball superpotential, the so-called Veneziano–Yankie
wicz–Taylor superpotential. This effective Lagrang
was originally derived for a pureN = 1 U(Nc) gauge
theory by Veneziano and Yankielowicz [3] by anom
aly matching and, by the same method, generalize
a U(Nc) theory withNf flavors in the fundamenta
representation by Taylor, Veneziano and Yankielow
[4]. It is given by

(1)WVYT
eff (S,X) =WVY

eff (S)+Wmatter
eff (S,X),

whereWVY
eff (S) is the pure gauge part

(2)WVY
eff (S) = −NcS log

S

Λ3

whileWmatter
eff (S,X) denotes the part coming fromNf

flavors in the fundamental representation:

(3)Wmatter
eff (S,X) = Nf S log

S

Λ3 − S log
detX

Λ2 .

In the above formulasS denotes the composite chir
superfieldW2

α/32π2 andX = Q̃Q is the (Nf × Nf )
mesonic superfield,Q being the chiral matter field
nse.
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In (2) and (3)Λ is an UV cut-off. Usually this UV cut-
off is replaced by a renormalization group invaria
scale ΛM by use of the one-loop renormalizatio
group:

(4)ΛM =Λe−8π2/((3Nc−Nf )g
2).

The beautiful derivation of (1)–(3) by anoma
matching has always been somewhat antagoni
since a clear diagrammatic understanding is missin
is summarized in the following citation from [5]: “It
(i.e., (1)–(4)) only raison d’etre is the explicit realiz
tion of the anomalous and non-anomalous symme
of SUSY gluodynamics. . .”.

In this Letter we point out that there exists
simple diagrammatic derivation of (3). The derivati
is inspired by diagrammatic techniques used in [2] a
the observation that the DV-matrix models techniq
could be extended to cover the case of superpoten
depending on mesonic superfields by considering
constrained (Wishart) matrix integrals [6]∫

DQDQ̃δ(Q̃Q−X)

(5)= (2π)N(N+1)/2∏N
j=N−Nf +1(j − 1)! (detX)N−Nf

and taking the largeN limit.

2. Perturbative considerations

The matter contribution to the effective superpot
tial was shown in [2] to arise from the path integral

(6)

∫
DQDQ̃e

∫
d4x d2θ

(− 1
2Q̃(✷−iWα∂α)Q+Wtree(Q̃,Q)

)
,

whereWα is an external field and∂α ≡ ∂
∂θα

. If the
quarks are massive (Wtree = mQ̃Q) then the above
path integral reduces to a functional determin
which can be easily evaluated using the Schwin
representation:

1

2

∞∫
1/Λ

ds

s

∫
d4p

(2π)4

∫
d2πα

(7)× exp
(−s

(
p2 +Wαπα +m

))
,

where we introduced an UV cut-offΛ. Due to fermi-
onic integrations the result is

(8)
W2

32π2

∞∫
1/Λ

ds

s
e−ms

which reduces for largeΛ to

(9)S log

(
m

Λ

)
.

At this stage one could integrate-inX to obtain (3).
However, as “integrating-in” is in fact an assumpti
and we would like to obtain the desired result pert
batively, or more precisely: diagrammatically. To th
end we impose thesuperspace constraint

(10)X = Q̃Q

at the level of the path integral (6). This is done
introducing a Lagrange multiplier chiral superfieldα.
Since the antichiral sector does not influence the ch
superpotentials, we will perform a trick analogous
[2] and introduce an antichiral partnerᾱ with a tree
level potentialMᾱ2. Thus we have

(11)
∫

d4x d4θ ᾱα +
∫

d4x d2θ Mᾱ2.

The path integral w.r.t.ᾱ is Gaussian and yield
(c.f. [2])

(12)− 1

2M

∫
d4x d2θ α✷α.

The final path integral is∫
DαDQ̃DQ

(13)
× e

∫
d4x d2θ

(− 1
2Q̃(✷−iWα∂α)Q− 1

2α✷α−αX+αQ̃Q
)
,

where we also tookWtree= 0 and fixed the auxiliary
massM = 1 (it will be clear from the arguments belo
that the result is independent ofM).

This is no longer a free field theory, but neverthel
there are significant simplifications if we only wa
to extract the trW2 dependence. This implies th
we must have twoW insertions perQ̃Q loop. The
integrals over the fermionic momenta thus force
graphs which contain anα-line in a loop to vanish
Thus we are left with graphs coming from (13) whi
have the structure of̃QQ loops connected by at mo



J. Ambjørn, R.A. Janik / Physics Letters B 569 (2003) 81–84 83
(a) (b) (c)

Fig. 1. Only tree level graphs survive, i.e., we are left with the graphs shown in (c).
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Fig. 2. The Schwinger–Dyson equation forF .

oneα propagator, andα propagators connected to th
external fieldX as shown in Fig. 1.

Moreover, if the fieldX contains a zero momentu
component, which will generically be the case,
integrals will be dominated by this constant mo
which forces theα propagators to be evaluated at ze
momentum. Consequently we have to introduce an
cut-offΛIR. Each 0-momentumα propagator will then
just contribute a factor of 1/ΛIR. Thanks to the abov
property we may find the full̃QQ propagator in terms
of theα 1-point function which we will denote byF :

(14)
1

p2 +Wαπα + F
,

and the effective action will be given by the fo
mula (7) withm substituted byF :

(15)S logdet
F

Λ
.

It remains to determineF . The Schwinger–Dyso
equation forF is (see Fig. 2)

(16)F = − 1

ΛIR
X + 1

ΛIR

S

F
,

where we used

(17)

∞∫
0

ds

∫
d4p

(2π)4

∫
d2πα e−s(p2+Wαπα+F) = S

F
.

Eq. (16) is quadratic and has 2 solutions. Since
final result has to be IR finite, we will take the solutio
which has a finite limit asΛIR → 0. Therefore

(18)F = S
X

and by substituting this back in (15) one obtains
desired result

(19)S logdet
SX−1

Λ
,

or, in the case ofNf flavors

(20)Nf S log
S

Λ3
− S logdet

X

Λ2
.

3. Further examples

Exactly the same technique can be adapted to
theories studied in [7] where the matter effect
superpotentials in terms of only mesonic fields
quite complex (see Eq. (1.1) in [7]) and follo
from quite intricate physical analysis. However,
noted in [7] the superpotentials with both glueb
fields and matter fields are simpler. The pure ma
superpotentials can then be obtained by integrating
the glueball fieldsSi .

The simplest case considered in [7] is a gauge
ory with gauge groupSU(2)1 × SU(2)2, with a bifun-
damental matter fieldQ in the (2,2) representation
The natural gauge invariant matter superfield is

(21)X =Q2 ≡ 1

2
QabQcdε

acεbd ,

and the matter part of the superpotentialWeff(S,X) is
(Eq. (4.19) in [7]):

(22)(S1 + S2) log
S1 + S2

XΛ
.

We will now show that the expression (22) also follo
from a diagrammatic reasoning.

Since for SU(2) the fundamental and antifund
mental representations are equivalent throughQ̃a ≡
Qa′εa

′a the Lagrangian for the bifundamental fiel
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takes the form:

(23)Qa′b′εa
′aεb

′b(✷ − iW (1)α
ac ∂α − iW(2)α

bd ∂α
)
Qcd.

Again we introduce a Lagrange multiplier superfieldα

enforcing the above constraint. We thus have

(24)

Q(C ⊗ C)

(
✷ −W(1)α ⊗ 1πα

− 1 ⊗W(2)απα + 1

2
α

)
Q− αX,

whereCab ≡ εab.
The analogue of formula (15) will then be

(25)
1

2
2(S1 + S2) log

(
F

2Λ

)
,

where the 1/2 comes from the fact that we are deali
with a real representation, while the 2 comes fr
performing the trace over the trivial factor in(W (1) ⊗
1)2. The Schwinger–Dyson equation forF will then
have the form

(26)F = − 1

ΛIR
X + 1

ΛIR

1

2

2(S1 + S2)

F/2

hence

(27)F = 2(S1 + S2)

X
.

InsertingF into (25) reproduces precisely the nontr
ial result (22).

Another example studied in [7] for the gau
group SU(2)1 × SU(2)2 is matterL± in the (1,2)
representation. The classical D-flat direction is labe
by Y = Lα+Lβ−εαβ and the matter contribution t
WVYT

eff was found in [7] to be

(28)S2 log
S2

YΛ
.

We can also reproduce this expression1 by computing
diagrammatically the contribution from theL± fields,
starting with the Lagrangian

(29)
L(C ⊗ 1)

(✷ −W(2)α ⊗ 1πα + α1 ⊗ C
)
L− αY,

where the second component in the tensor produ
the flavor space.

1 Up to a trivial rescaling ofΛ. Note that in our approach
the definition of the UV cut-offΛ (see, e.g., (8)) is a matter o
convention and may be modified.
4. Discussion

We have shown that it is possible to obtain the m
ter part of some generalizedWVYT

eff (X,S) potentials
by simple diagrammatic reasoning. It would be int
esting to generalize the diagrammatic derivation to
gauge part of the Taylor–Veneziano–Yankielowicz
perpotential. That would complete the diagramma
derivation of the glueball superpotential.
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