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The oxidative pentose phosphate pathway (OPPP), catalyzing the oxidation of glucose-6-phosphate
to ribulose-5-phosphate is ubiquitous in eukarya and bacteria but has not yet been reported in
archaea. In haloarchaea a putative 6-phosphogluconate dehydrogenase (6PGDH) is annotated,
whereas a gene coding for glucose-6-phosphate dehydrogenase (Glc6PDH) could not be identified.
Here we report the purification and characterization of a novel type of Glc6PDH in Haloferax volcanii
that is not related to bacterial and eukaryal Glc6PDHs and the encoding gene is designated as azf
(archaeal zwischenferment). Further, recombinant H. volcanii 6PGDH was characterized. Deletion
mutant analyses indicate that both, Glc6PDH and 6PGDH, are functionally involved in pentose
phosphate formation in vivo. This is the first report on the operation of the OPPP in the domain
of archaea.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction of the Glc6PDH reaction, 6-phosphogluconolactone, is hydrolyzed
The pentose phosphate pathway (PPP) that consists of an irre-
versible oxidative part (OPPP) and a reversible non-oxidative part
is a ubiquitous pathway in bacteria and eukarya providing
NADPH for reductive biosyntheses and precursors for the genera-
tion of nucleotides and aromatic amino acids [1,2]. In the OPPP
glucose-6-phosphate is oxidized to ribulose-5-phosphate and CO2

involving two NADP+ dependent dehydrogenases – glucose-
6-phosphate dehydrogenase (Glc6PDH) [glucose-6-phosphate +
NADP+ ? 6-phosphogluconolactone + NADPH + H+] and 6-phos-
phogluconate dehydrogenase (6PGDH) [6-phosphogluconate +
NADP+ ? ribulose-5-phosphate + CO2 + NADPH + H+]. The first
enzyme, Glc6PDH, was discovered by Otto Warburg in the 1930s
while analyzing the oxidation of glucose-6-phosphate by O2 in
erythrocytes. This oxidation required NADP+ as a novel cofactor
(Co-Ferment) and two proteins, gelbes Ferment (german for ‘‘yellow
enzyme’’) and Zwischenferment (german for ‘‘intermediate
enzyme’’), now known as glucose-6-phosphate dehydrogenase

(Glc6PDH, encoded by zwf for zwischenferment) [3,4]. The product
by lactonase and the product 6-phosphogluconate is further oxi-
dized and decarboxylated to ribulose-5-phosphate (Ru5P) by
NADP+ dependent 6-phosphogluconate dehydrogenase (6PGDH)
[2]. The OPPP is well studied in many eukarya and bacteria but it
has not been demonstrated in archaea so far [5]. An alternative
route for the synthesis of pentose phosphates from hexose phos-
phates has been reported for many archaeal groups, and has been
studied in detail in Pyrococcus horikoshii, Methanocaldococcus jan-
naschii, Methanosarcina barkeri and Thermococcus kodakaraensis
[5–10]. This alternative route involves the enzymes hexulose-6-
phosphate isomerase and 3-hexulose-6-phosphate synthase of
the ribulose monophosphate pathway, converting fructose-6-
phosphate non-oxidatively to ribulose-5-phosphate and formalde-
hyde. The ribulose monophosphate pathway was first described in
methylotrophic bacteria where it is involved in formaldehyde fixa-
tion [10]. Whereas hexulose-6-phosphate isomerase and 3-hexu-
lose-6-phosphate synthase genes are widely distributed among
archaeal genomes, they are absent in haloarchaea [5]. However,
in contrast to all other archaea, a putative 6PGDH was annotated
in haloarchaea, suggesting the operation of the OPPP in these
organisms. So far, 6PGDH has not been characterized as a func-
tional enzyme in archaea and a gene coding for classical
Glc6PDH has not been found in any archaeal genome.
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In this communication, we studied enzymes of the OPPP in the
halophilic archaeon Haloferax volcanii. An NAD+ dependent
Glc6PDH was purified from H. volcanii cells and the encoding gene

(denoted azf for archaeal zwischenferment) was identified. The
enzyme was characterized as a novel type Glc6PDH that belongs

to the short-chain dehydrogenase/reductase (SDR) superfamily.
Further, the annotated 6PGDH gene was expressed and the recom-
binant enzyme was characterized as NAD+ dependent 6PGDH.
Deletion mutant analyses indicated that both, Glc6PDH and
6PGDH, were essential for pentose-phosphate synthesis in H. vol-
canii in vivo. This is the first report on the operation of the OPPP
in the domain of archaea involving a novel type of Glc6PDH.
Table 1
Purification of glucose-6-phosphate dehydrogenase from H. volcanii.

Purification step Total
protein
(mg)

Total
activity
(U)

Specific
activity
(U/mg)

Enrichment
factor

Yield
(%)

Cell-free extract 638 22.8 0.035 1 100
Phenyl sepharose 11.3 6.65 0.59 17 29
Gel filtration 0.16 2.06 12 343 9
Butyl sepharose 0.015 0.62 42 1200 2.7
2. Material and methods

2.1. Strains and growth conditions

The following strains of H. volcanii were used and/or prepared:
strain H26 (DpyrE2), azf and gndA single deletion mutants of H. vol-
canii H26 (denoted Dazf and DgndA), Dazf transformed with
pTA963-his::azf, and DgndA transformed with pTA963-his::gndA.
Growth experiments were performed aerobically at 42 �C in syn-
thetic medium [11] containing 25 mM D-glucose. Growth of H. vol-
canii H26 and of Dazf and DgndA strains was supplemented with
50 lg/ml uracil and complemented strains with functional genes
in-trans grew in the presence of up to 300 lM tryptophan.
Additionally, Dazf and DgndA strains were grown in the presence
of 5 mM uridine. For growth determination, the optical density at
600 nm was followed over time.

2.2. Purification of native Glc6PDH

Glc6PDH from H. volcanii was purified from 9,8 g wet weight
cells grown on glucose. Cells were disrupted in a French pressure
cell at 14000 lb/in2 in HIC buffer (100 mM Tris–HCl, 2 M
(NH4)2SO4, pH 8.0). The obtained cell lysate was centrifuged at
100000�g at 4 �C and the supernatant was applied to a Phenyl
Sepharose 26/10 HiLoad column (GE Healthcare), equilibrated in
HIC buffer. Bound protein was eluted by a linear gradient with
decreasing (NH4)2SO4 concentrations at 1 ml/min for 400 ml.
Highest Glc6PDH activity, which was eluted at about 800 mM
(NH4)2SO4 in 6 ml, was concentrated 7.5-fold by ultrafiltration (cut-
off 10kDa) and applied to a HiLoad 16/60 Superdex 200 column (GE
Healthcare) equilibrated with 50 mM Tris–HCl, 2 M KCl, pH 8.0.
Elution was performed in an isocratic flow at 1 ml/min. Fractions
with the highest activity were diluted 7-fold in HIC buffer to a final
volume of 20 ml and applied to a HiTrap Butyl HP Sepharose col-
umn (GE Healthcare), equilibrated in HIC buffer. Protein was eluted
for 20 ml at a flow rate of 1 ml/min with decreasing concentrations
of (NH4)2SO4. The highest Glc6PDH activity eluted at a concentra-
tion of about 550 mM (NH4)2SO4. During the purification procedure
protein concentrations were determined by the Bradford method
[12] and protein purity was analyzed by SDS–PAGE. The encoding
gene was identified by matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry of the purified
protein (32kDa band in SDS–PAGE) [13].

2.3. Homologous expression, purification and characterization of
recombinant Glc6PDH and 6PGDH

HVO_0511 (azf) and HVO_1830 (gndA) were amplified from
genomic DNA with specific primers (Supplemental Table S1). PCR
products were cloned into the plasmid pTA963 and each generated
plasmid (pTA963-his::azf and pTA963-his::gndA) was transformed
in H. volcanii H1209, followed by homologous overexpression in
complex medium, as described [14]. Each recombinant protein
was purified, using Ni–NTA and size exclusion chromatography
as described previously [15]. Enzyme activities were determined
by measuring NAD(P)H formation at 340 nm in a total volume of
200 ll at 42 �C. One unit (U) of enzyme activity is defined as the
conversion of 1 lmol substrate per min. Glc6PDH activity was
measured in an assay, containing 0.1 M Tris pH 7.5, 2 M KCl,
2 mM NAD+ or 20 mM NADP+, 20 mM glucose-6-phosphate and
up to 7 lg enzyme. The assay for the measurement of 6PGDH activ-
ity contained 0.1 M Tris–HCl pH 9.0, 1 M KCl, 3 mM NAD+ or
10 mM NADP+, 7.5 mM 6-phosphogluconate and up to 60 lg puri-
fied enzyme. For both enzymes, the salt dependence was deter-
mined with up to 3 M potassium chloride, and the optimal pH
value was measured using bis-Tris (pH 5.5–7.5), Tris (pH 7.5–9)
and glycylglycine (pH 9.0–11.5) buffer. Apparent Km and Vmax

values were calculated from linear Lineweaver–Burk plots.

2.4. Generation of knockout strains

Chromosomal knockout strains were generated using the pop-in/
pop-out strategy, as described previously [16]. Pop-out clones were
selected in complex medium [15], containing casamino acids (1%),
uracil (30 lg/ml), 5-fluoroorotic acid (50 lg/ml), adenosine, thymi-
dine, cytidine, uridine (0.5 mM, each), and guanosine (0.2 mM).
Successful deletion was verified by Southern blot analysis as
described [15]. Primers used are listed in Table S2. Probes for
Southern blotting were generated with the primer pairs HVO_
0511frgt1_s/HVO_0511P_as (50-CTATCACCAGTTCGCCGGCAC-30)
and HVO_1830P_s (50-GCGGGTGCCGCCACAATCAC-30)/HVO_1830
frgt2_as, respectively.

3. Results

The oxidative pentose phosphate pathway (OPPP) catalyzing
ribulose-5-phosphate formation from glucose-6-phosphate has
not been found in the archaeal domain so far. It is shown here that
a functional OPPP is present in H. volcanii involving a novel type of
Glc6PDH.

3.1. Identification of a novel glucose-6-phosphate dehydrogenase

Extracts of H. volcanii cells grown on glucose catalyzed the NAD+

dependent oxidation of glucose-6-phosphate with a specific activ-
ity of 35 mU/mg. The enzyme was purified 1200-fold to apparent
homogeneity by phenyl Sepharose-, gel filtration- and butyl
Sepharose chromatography (Table 1). On SDS–PAGE, a single sub-
unit with an apparent molecular mass of 32kDa was detected
(Fig. 1A). By gel filtration the molecular mass of the native enzyme
was determined at 55kDa, indicating a homodimeric structure. The
purified enzyme catalyzed the NAD+ dependent oxidation of glu-
cose-6-phosphate (Glc6P) following Michelis–Menten kinetics
with apparent Km values of 5.4 mM for Glc6P, and 0.18 mM for
NAD+. The apparent Vmax was 39 U/mg. The 32kDa protein subunit
was analyzed by peptide mass fingerprinting. Matched peptides
covered 58% of a protein, encoded by HVO_0511 in the genome
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Fig. 1. SDS–PAGE of purified native (A) and His-tagged recombinant (B) Glc6PDH of Haloferax volcanii. (A) Lane 1: molecular mass markers; lane 2: purified enzyme after
butyl Sepharose. (B) Lane 1: molecular mass markers; lane 2: purified recombinant enzyme.

4

0 20 40 60 80 100

0

1

2

3

4

G
ro

w
th

 (Δ
O

D
60

0)

Time (h)

A

B

A. Pickl, P. Schönheit / FEBS Letters 589 (2015) 1105–1111 1107
of H. volcanii. The identified gene, previously annotated as sugar

epimerase/dehydratase and now designated azf for archaeal zwis-

chenferment, consists of 789 base pairs and encodes a polypeptide
of 262 amino acids with a calculated molecular mass of 29kDa.

3.2. Characterization of Glc6PDH

To prove its catalytic function, azf was cloned into pTA963,
expressed in H. volcanii H1209 and the recombinant enzyme was
purified by Ni–NTA affinity and size exclusion chromatography.
SDS–PAGE analysis revealed one subunit at 34kDa (Fig. 1B). The
apparent molecular mass of recombinant Glc6PDH determined
by gel filtration was 59kDa, suggesting a homodimeric structure.
Glc6PDH showed the highest activity at about 3 M KCl and the
pH optimum was at 8.5. The enzyme catalyzed NAD+ dependent
oxidation of Glc6P with apparent Km values of 3.7 mM for Glc6P
and 0.43 mM for NAD+, and a Vmax value of 212 U/mg. The enzyme
also utilized NADP+ as electron acceptor with apparent Km and Vmax

values of 5.2 mM and 11 U/mg (in the presence of 20 mM Glc6P).
Thus, the catalytic efficiency of the enzyme for NAD+

(263 s�1 mM�1) was about 230-fold higher than for NADP+

(1.13 s�1 mM�1), indicating NAD+ to be the physiological electron
acceptor. The enzyme was specific for Glc6P; glucose was not oxi-
dized at significant rates.

3.3. Characterization of 6PGDH

In H. volcanii HVO_1830 is annotated as gndA gene encoding
putative 6PGDH, consisting of 299 amino acids with a calculated
molecular mass of 32kDa. The gndA gene was cloned into
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Fig. 2. SDS–PAGE of purified, His-tagged 6PGDH of Haloferax volcanii. Lane 1,
molecular mass markers; lane 2, purified recombinant enzyme.
pTA963, followed by homologous overexpression of the his-tagged
protein in H. volcanii H1209 and purification by Ni–NTA affinity
and size exclusion chromatography. Analysis on SDS–PAGE
revealed a single protein band at 37kDa (Fig. 2) and by gel filtration
a molecular mass of 143kDa was determined indicating the
enzyme to be a homotetramer. The highest activity of the enzyme
was determined at 1 M KCl and at a pH of 10.5. The enzyme
catalyzed the NAD+ dependent oxidation of 6-phosphogluconate
(6PG) with apparent Km values of 0.021 mM for 6PG and
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Fig. 3. Growth analyses of deletion mutants of genes involved in pentose phosphate
synthesis in H. volcanii. Growth of H. volcanii strains Dazf (A) and DgndA (B) on
25 mM glucose (j) compared to the wild type (d) and complementation strains
with functional genes in-trans (.). Further, growth of Dazf (A) and DgndA (B) on
25 mM glucose in the presence of 5 mM uridine is shown (N). For growth
experiments, precultures grown in complex medium containing 1% casamino acids
and nucleosides were used. Growth was measured by determining the optical
density at 600 nm (DOD600).
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0.033 mM for NAD+ and a Vmax value of 10 U/mg. The apparent Km

and Vmax values for NADP+ (in the presence of 5 mM 6PG) were
determined at 2.94 mM and 0.42 U/mg, respectively. Thus, the cat-
alytic efficiency (kcat/Km) of the enzyme for NAD+ (174 s�1 mM�1)
was about 2000-fold higher than for NADP+ (0.082 s-1 mM�1),
defining the enzyme as NAD+ specific 6PGDH.

3.4. Characterization of azf and gndA deletion mutants

To prove the functional involvement of both, Glc6PDH and
6PGDH, in pentose-phosphate formation, deletion strains of azf
and gndA were generated. Successful deletions were verified by
Southern blot analyses (Fig. S1) and growth of the deletion
Fig. 4. Multiple amino acid sequence alignment of Glc6PDH from H. volcanii with selected
lower line from P. calidifontis GalE was derived from crystal structure data [24]. In the upp
[35]). The ADH_SHORT consensus pattern (PROSITE: PDOC00060), indicative for the SDR s
members of the SDRe family [19] are numbered and indicated by bars, and the conserv
volcanii (H. volc Glc6PDH, H. volc L-AraDH and H. volc GlcD, ADE03728, YP_003533112
(3KO8) were used for the alignment. The figure was generated with ESPript [36].
mutants on glucose was analyzed. Compared to the wild type,
the Dazf and DgndA strains did not grow, but growth was fully
recovered by in-trans complementation with azf and gndA, respec-
tively (Fig. 3). Growth of the deletion mutants could also be recov-
ered by the addition of uridine to the medium (Fig. 3), suggesting
that H. volcanii can circumvent the metabolic block for pentose
phosphate formation via the OPPP by converting uridine to
ribose-5-phosphate, catalyzed by uridine phosphorylase and phos-
phopentomutase as proposed for T. kodakaraensis [8]. Together, the
analyses of knockout mutants indicate that the novel Glc6PDH and
annotated 6PGDH are essential for the biosynthesis of pentose
phosphates from glucose-6-phosphate during growth of H. volcanii
on glucose as growth substrate.
archaeal and bacterial homologs of the SDRe family. The secondary structure in the
er line, the predicted secondary structure of H. volcanii Glc6PDH is shown (PSIPRED,
uperfamily, is highlighted by a box. Seven sequence motifs that are characteristic for
ed catalytic triad (S/T-Y-K) is marked by asterisks. Amino acid sequences from H.
and ADE03524), Flavobacterium frigidimaris (Q8KZM4) and Pyrobaculum calidifontis
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4. Discussion

In the present communication we report that H. volcanii utilizes
the OPPP for the formation of pentose phosphates from glucose 6-
phosphate involving a novel type of Glc6PDH and annotated
6PGDH. This is the first report on the operation of an OPPP in the
archaeal domain.
4.1. Glucose-6-phosphate dehydrogenase from H. volcanii belongs to
the SDRe family and represents the archaeal Zwischenferment

Glc6PDH was purified and characterized as a homodimeric
enzyme of 32kDa subunits, catalyzing the NAD+ specific oxidation
of Glc6P. The encoding gene was identified as HVO_0511 (desig-

nated as azf, archaeal zwischenferment). Conserved domain search
classifies the novel H. volcanii Glc6PDH as a member of the

extended short-chain dehydrogenase/reductase (SDRe) family
[17]. The SDRe family belongs to the SDR superfamily that com-
prises functionally diverse enzymes such as NAD(P)(H) dependent
oxidoreductases with a broad substrate spectrum. SDR proteins
show a low overall sequence identity of 20–30%, but share a com-
mon a/b fold and contain the ADH_SHORT consensus pattern
(PROSITE:PDOC00060), indicative for the SDR superfamily.
Further, SDR enzymes have a common catalytic mechanism,
involving a highly conserved triad of Ser/Thr-Tyr-Lys residues
[18]. Based on conserved sequence motifs the majority of SDR pro-
teins can be classified as ‘‘classical’’ and ‘‘extended’’ type [19] and
Fig. 5. Phylogenetic relationships of SDRe proteins, including haloarchaeal glucose-6
threonine dehydrogenase (L-ThrDH), GDP-D-mannose-4,6-dehydratase (D-ManD), dTDP-g
synthase (L-FucS). The numbers at the nodes are bootstrapping values according to neighb
enzymes are marked by asterisks. Accession numbers and references: Glc6PDH: Haloq
volcanii ADE03728, Natronococcus jeotgali WP_008421663, Haloterrigena turkmenica
paucihalophilus WP_007982414, Haloterrigena turkmenica WP_012943574, Natrinema
WP_013361834 [37], Psychroflexus torquis WP_015024260, Flavobacterium frigidimaris
ETW61934 [38], Helicobacter pylori NP_206845 [39], Methanosarcina mazei NP_632683
volcanii ADE03524 [23], Methanococcus aeolicus WP_011973099; GalE: Trypanosoma br
Haloferax volcanii ADE04757, Pyrobaculum calidifontis 3KO8 [24]; L-FucS: Human AAC50
[39], Methanosarcina barkeri WP_011305081.
at least four minor types can be defined [20]. An amino acid
sequence alignment of H. volcanii Glc6PDH with the characterized
SDRe members L-arabinose dehydrogenase (L-AraDH) from
H. volcanii [21], L-threonine dehydrogenase (L-ThrDH) from
Flavobacterium frigidimaris [22], dTDP-glucose-4,6-dehydratase
(GlcD) from H. volcanii [23] and UDP-galactose-4-epimerase
(GalE) from Pyrobaculum calidifontis [24] is shown in Fig. 4. All
sequences, including H. volcanii Glc6PDH, contain – with few
deviations – the seven sequence motifs characteristic for the
SDRe family [19], the catalytic conserved Ser/Thr-Tyr-Lys triad
and the ADH_SHORT consensus motif. Also, the predicted sec-
ondary structural elements of H. volcanii Glc6PDH are in accor-
dance with the structure of GalE from P. calidifontis [24],
indicating a high degree of structural similarity to other SDR pro-
teins. Together, the data indicate that H. volcanii is a member of
the SDRe family.

The phylogenetic relationship of Glc6PDH from H. volcanii and
haloarchaeal homologs, and other selected characterized SDRe
members and their corresponding homologs, are shown in Fig. 5.
The SDRe proteins cluster in distinct phylogenetic groups which
are in accordance with their specific catalytic function. E.g.
separate clusters are formed by L-AraDH involved in L-arabinose
degradation, L-ThrDH involved in threonine degradation, GDP-

D-mannose-4,6-dehydratase (D-ManD) and GDP-L-fucose synthase
(L-FucS), both involved in L-fucose synthesis, GlcD involved in
dTDP-rhamnose biosynthesis, and GalE involved in galactose cata-
bolism. Glc6PDH from H. volcanii and haloarchaeal homologs form
a novel distinct cluster that is closely related to the L-AraDH cluster
-phosphate dehydrogenase (Glc6PDH), L-arabinose dehydrogenase (L-AraDH), L-
lucose-4,6-dehydratase (GlcD), UDP-galactose-4-epimerase (GalE) and GDP-L-fucose
or-joining. H. volcanii Glc6PDH is highlighted by bold letters and other characterized
uadratum walsbyi (WP_021049862), Haloarcula marismortui YP_136835, Haloferax
WP_012941655; L-AraDH: Haloferax volcanii YP_003533112 [21], Haladaptatus

pallidum WP_006184508; L-ThrDH: Mus musculus Q8K3F7, Clostridium sticklandii
Q8KZM4 [22]; D-ManD: Entamoeba histolytica EMH75851, Plasmodium falciparum
; GlcD: Escherichia coli EDV64919 [40], Clostridium sp. WP_022441977, Haloferax
ucei 2CNB [41], Homo sapiens GALE_HUMAN [42], Escherichia coli EDV64919 [43],
786 [44], Plasmodium falciparum XP_001347422 [38], Helicobacter pylori ACX98429
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from Haloarchaea. The close phylogenetic proximity suggests that
both dehydrogenase clusters evolved and functionally diversified
from a common SDRe ancestor.

Glc6PDH from H. volcanii is the first identified Glc6PDH in the
archaeal domain. The enzyme differs from the classical Glc6PDH
involved in OPPP in bacteria and eukarya in various aspects. The
haloarchaeal Glc6PDH is an NAD+ specific, 60kDa homodimeric
SDRe protein, whereas the classical bacterial/eukaryal Glc6PDHs
are NADP+ dependent 50–60kDa proteins of different oligomeric
states that all belong to the glucose-6-phosphate dehydrogenase
superfamily (TIGR00871: zwf). It should be noted that
Mycobacterium and Nocardia species contain, in addition to classi-
cal NADP+ dependent Glc6PDH, a deazaflavin F420 dependent
Glc6PDH that is not part of the OPPP [25]. This enzyme is not
related to classical pyridine nucleotide dependent enzymes and
to archaeal Glc6PDH from H. volcanii [26].

4.2. 6-Phosphogluconate dehydrogenase from H. volcanii is related to
NAD+ dependent bacterial 6PGDH

6PGDH from H. volcanii was characterized as homotetramer of
37kDa subunits, oxidizing 6-phosphogluconate with a high speci-
ficity for NAD+ as electron acceptor. The enzyme shows a high degree
of sequence identity (33–42%) to NAD+ dependent 6PGDHs from
bacteria, e.g. Bradyrhizobium sp. [27], Gluconobacter oxydans [28]
and Leuconostoc lactis [29], that also constitute homotetrameric pro-
teins of �36kDa subunits. A significant lower sequence identity
(620%) to H. volcanii 6PGDH was found to NADP+ dependent
6PGDHs from bacteria and eukarya, e.g. Saccharomyces cerevisiae
[30], Bacillus subtilis [31], Lactococcus lactis [32] and Escherichia coli
[33]. Classical NADP+ dependent 6PGDHs constitute homodimeric
proteins of about 50kDa subunits. A phylogram of H. volcanii
6PGDH and 6PGDHs from bacteria and eukarya indicate that NAD+

and NADP+ dependent enzymes form distinct clusters (Fig. S2). The
H. volcanii enzyme clusters within the NAD+ dependent enzymes,
which is in accordance with its properties being an NAD+ specific
homotetrameric protein of 37kDa subunits. Thus, the haloarchaeal
6PGDH is likely derived from bacterial NAD+ dependent homologs
via a lateral gene transfer.

In summary, we report here that H. volcanii utilizes the OPPP for
the synthesis for pentose phosphates from glucose-6-phosphate
involving a novel type of Glc6PDH and bacterial type of 6PGDH.
The first Glc6PDH in archaea belongs to the SDRe family and is
not related to the classical Glc6PDH of the OPPP in bacteria and
eukarya and thus is the result of a convergent enzyme evolution
within the haloarchaea. 85 years after the discovery of the classical
Glc6PDH, the Zwischenferment by Otto Warburg, we designate the
first Glc6PDH in archaea as archaeal Zwischenferment, encoded by
azf. In contrast, 6PGDH of H. volcanii is related to NAD+ dependent
bacterial 6PGDHs and has likely been acquired by a lateral gene
transfer event.

Close homologs of both, Glc6PDH and 6PGDH, (>35% sequence
identity) are present in almost all sequenced haloarchaea, but were
not found in other archaeal groups, suggesting a functional OPPP to
be restricted to haloarchaea. So far, a 6-phosphogluconolactonase
in H. volcanii has not been analyzed. The OPPP in Haloarchaea, in
contrast to the OPPP in bacteria and eukarya involves two NAD+

dependent dehydrogenases. Thus, the organisms have to generate
NADPH for reductive biosyntheses by different reactions, e.g. by
the NADP+ dependent isocitrate dehydrogenase [34].
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