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a b s t r a c t

In this paper we give an analytical treatment of a wave equation for a vibrating string in
the presence of a fractional friction with power-law memory kernel. The exact solution is
obtained in terms of the Mittag-Leffler type functions and a generalized integral operator
containing a four parameterMittag-Leffler function in the kernel. Themethod of separation
of the variables, Laplace transform method and Sturm–Liouville problem are used to
solve the equation analytically. The asymptotic behaviors of the solution of a special case
fractional differential equation are obtained directly from the analytical solution of the
equation and by using the Tauberian theorems. The proposed model may be used for
describing processes where the memory effects of complex media could not be neglected.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years fractional calculus has attracted remarkable attention, especially in the investigations of time
fractional relaxation and oscillation processes, time fractional diffusive andwave processes [1–3], generalized Langevin and
fractional Fokker–Planck equations [4–8], protein relaxation dynamics [6], atom-field interaction in photonic crystals [9],
electrochemistry [10–13], finance [14,15], medicine [16], etc. It represents a useful tool for modeling different physical
processes where the memory effects of the complex or viscoelastic media should be taken into consideration. Many
authors [17–22] have investigated time fractional wave equations in a bounded domain where instead of the integer order
differential operator ∂

2u(x,t)
∂t2

the time fractional differential operators in the Riemann–Liouville or Caputo sense are used.
In this paper we investigate the following wave equation for a vibrating string

∂2u(x, t)
∂t2

= a2
∂2u(x, t)
∂x2

− b
∫ t

0
γ (t − τ) ·

∂u(x, τ )
∂τ

dτ + f (x, t), (1)

with boundary conditions

u(x, t)|x=0 = h1(t), u(x, t)|x=l = h2(t), (2)

and initial conditions

u(x, t)|t=0+ = ϕ(x),
∂u(x, t)
∂t


t=0+

= ψ(x), (3)
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where t > 0, 0 < α < 1, 0 ≤ x ≤ l, γ (t) =
1

Γ (1−α) t
−α is the frictional power-law memory kernel, f (x, t), h1(t), h2(t), ϕ(x)

and ψ(x) are given sufficiently well-behaved functions, a and b > 0 are constants. For simplicity we use a = 1. It can be
easily concluded that the friction with the power-law memory kernel represents a time fractional derivative of order α in
the Caputo sense defined as [23]

Dα
∗
f (t) =


1

Γ (m − α)

∫ t

0

f (m)(τ )
(t − τ)α+1−m

dτ , m − 1 < α < m,

dmf (t)
dtm

, α = m,
(4)

where m is a positive integer. So the friction with power-law memory kernel has a form Dα
∗
u(x, t), where 0 < α < 1 and

the wave equation (1) becomes [24]

∂2u(x, t)
∂t2

=
∂2u(x, t)
∂x2

− bDα
∗
u(x, t)+ f (x, t). (5)

The constant b > 0 represents the generalized friction constant and the function f (x, t) represents an external force. From
definition (4) it can be obtained that as α → 1 the proposed friction becomes the classical one −b ∂u(x,t)

∂t , and when α → 0
the friction becomes −b[u(x, t)− u(x, 0)]. So the solution of Eq. (1) describes the behavior of the function u(x, t) between
these two limits.

The solution of this problem will be obtained in a bounded domain x ∈ [0, l] and in the space of Lebesgue integrable
functions with respect to t:

L(0,∞) =


f : ‖f ‖1 =

∫
∞

0
|f (t)|dt < ∞


. (6)

The Laplace transform for the Caputo time fractional differential operator (4) is given by the following formula [25]:

L[Dγ
∗
f (t)](s) =

∫
∞

0
e−stDγ

∗
f (t)dt = sγ F(s)−

m−1−
k=0

f (k)(0+)sγ−1−k, (7)

where (m − 1 < γ < m), and F(s) is the Laplace transform of the function f (t). It can be easily shown that Dγ∗ 1 ≡ 0
for γ > 0.

This paper is organized as follows. In Section 2 we present the mathematical background related to the fractional
integration, definitions and some basic properties of theMittag-Leffler functions. Proofs of lemmas that are of importance to
solve the proposed fractional differential equation are given in Section 3. In Section 4, the analytical solution of Eq. (5) with
the boundary conditions (2) and initial conditions (3) is obtained. A special case of Eq. (5) is considered and its asymptotic
behaviors are found. The conclusion is given in Section 5.

2. Mathematical background

2.1. The Mittag-Leffler functions

Mittag-Leffler introduced [26] the following function:

Eα(z) =

∞−
k=0

zk

Γ (αk + 1)
, (8)

where z ∈ C , ℜ[α] > 0. Latter Wiman [27], Agarwal [28], Humbert [29], Humbert and Agarwal [30], etc introduced and
investigated more general Mittag-Leffler function defined by the following series:

Eα,β(z) =

∞−
k=0

zk

Γ (αk + β)
, (9)

where z, β ∈ C ,ℜ[α] > 0. TheMittag-Leffler functions (8) and (9) are entire functions of orderρ = 1/ℜ[α] and type 1. From
the definitions (8) and (9) one obtains Eα,1(z) = Eα(z). The Mittag-Leffler functions are generalizations of the exponential,
hyperbolic and trigonometric functions since E1,1(z) = ez , E2,1(z2) = cosh(z), E2,1(−z2) = cos(z) and E2,2(−z2) = sin(z)/z.

Prabhakar [31] introduced the following three parameter Mittag-Leffler functions:

Eγα,β(z) =

∞−
n=0

(γ )n

Γ (αn + β)
·
zn

n!
, (10)

where β, γ , z ∈ C, ℜ[α] > 0, (γ )ν = Γ (γ + ν)/Γ (γ ) is the Pochhammer symbol ((γ )0 = 1 for γ ∈ C \ {0},
(γ )ν = γ (γ + 1) · · · (γ + k − 1) for ν = k ∈ N, γ ∈ C). It is an entire function of order ρ = 1/ℜ(α).
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It may be directly proved that the usual derivatives of Eα,β(z) are expressed in terms of the generalized Mittag-Leffler
functions (10) by (see [32, p. 42])

d
dz

n

Eα,β(z) = n!En+1
α,β+αn(z), n ∈ N. (11)

The asymptotic behavior of the three parametric Mittag-Leffler functions (10) can be obtained from [33]

Eγα,β(z) =
(−z)−γ

Γ (γ )

∞−
n=0

Γ (γ + n)
Γ (β − α(γ + n))

(−z)−n

n!
, |z| > 1. (12)

Thus, for large z one obtains

Eγα,β(z) ∼ O(|z|−γ ), |z| > 1. (13)

The Laplace transform of the Mittag-Leffler function (10) is given by the following formula [31,34]

L[tβ−1Eγα,β(ωt
α)](s) =

sαγ−β

(sα − ω)γ
, (14)

where |ω/sα| < 1.

2.2. Fractional integral operator

The fractional integral of order γ > 0 is defined as [35,36,32]:

Jγ f (t) =
1

Γ (γ )

∫ t

0
(t − τ)γ−1f (τ )dτ , t > 0, (15)

where Jγ is the so-called fractional integral operator. The relation between the Caputo time fractional differential operator
(4) and the Riemann–Liouville fractional integral operator (15) is given by:

Dγ
∗
f (t) = Jm−γ f (m)(t), (16)

where m = [γ ] + 1, and f (m) is the m-order derivative. To complete the definition (15) it is used that J0f (t) = f (t). From
the definition of the fractional integral (15) one obtains [35,36,32]:

Jγ Jδ = Jγ+δ
= Jδ Jγ , (semi-group property) (17)

Jγ ts =
Γ (s + 1)

Γ (s + 1 + γ )
ts+γ , γ ≥ 0, s > −1, t > 0. (18)

Srivastava and Tomovski introduced an integral operator E
ω;γ ,κ

a+;α,βϕ defined as [37]:

(E
ω;γ ,κ

a+;α,βϕ)(x) =

∫ x

a
(x − t)β−1Eγ ,κα,β (ω(x − t)α)ϕ(t)dt, (19)

where Eγ ,κα,β (z) is the generalized Mittag-Leffler function [37] which has the following form:

Eγ ,κα,β (z) =

∞−
n=0

(γ )κn

Γ (αn + β)
·
zn

n!
. (20)

z, β, γ , ω ∈ C , ℜ[α] > max{0,ℜ[κ] − 1}, ℜ[κ] > 0 and (γ )κn is a notation of the Pochhammer symbol. Note that in the
case whenω = 0 and a = 0 the integral operator (19) would correspond to the integral operator (15). From definitions (10)
and (20) it follows Eγ ,1α,β(z) = Eγα,β(z).

3. Lemmas

To solve the proposed fractional differential equation (5) the following lemmas are of interest.

Lemma 1. The inverse Laplace transform of the function

g(s) =
s + bsα−1

+ w

s2 + bsα + λn
, (s, b, α, λn ∈ R+, w ∈ R)

0 <
λn

s2 + bsα
< 1, 0 <

b
s2−α

< 1


(21)

is given by
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L−1g


(t) = L−1 [g(s)] (t) =

∞−
k=0

(−b)kt(2−α)kEk+1
2,(2−α)k+1


−λnt2


+ b

∞−
k=0

(−b)kt(2−α)(k+1)Ek+1
2,(2−α)(k+1)+1


−λnt2


+ w

∞−
k=0

(−b)kt(2−α)k+1Ek+1
2,(2−α)k+2


−λnt2


. (22)

Proof. Since 0 < λn
s2+bsα

< 1 we get

g(s) =

s + bsα−1

+ w

·

s−α

s2−α + b
·

1

1 +
λns−α

s2−α+b

=

∞−
j=0

(−λn)
j


s−α(j+1)+1
s2−α + b

j+1 + b
s−αj−1

s2−α + b
j+1 + w

s−α(j+1)
s2−α + b

j+1


. (23)

By using relation (14) it follows that

L−1 [g(s)] (t) =

∞−
j=0

(−λn)
jt2jE j+1

2−α,2j+1(−bt2−α)+ b
∞−
j=0

(−λn)
j t2(j+1)−αE j+1

2−α,2(j+1)−α+1(−bt2−α)

+w

∞−
j=0

(−λn)
j t2j+1E j+1

2−α,2j+2(−bt2−α)

=

∞−
j=0

∞−
k=0

(−b)kt(2−α)k
(k + 1)j

Γ (2j + (2 − α)k + 1)
(−λnt2)j

j!

+ b
∞−
j=0

∞−
k=0

(−b)kt(2−α)(k+1) (k + 1)j
Γ (2j + (2 − α)(k + 1)+ 1)

(−λnt2)j

j!

+w

∞−
j=0

∞−
k=0

(−b)kt(2−α)k+1 (k + 1)j
Γ (2j + (2 − α)k + 2)

(−λnt2)j

j!

=

∞−
k=0

(−b)kt(2−α)kEk+1
2,(2−α)k+1


−λnt2


+ b

∞−
k=0

(−b)kt(2−α)(k+1)Ek+1
2,(2−α)(k+1)+1


−λnt2


+w

∞−
k=0

(−b)kt(2−α)k+1Ek+1
2,(2−α)k+2


−λnt2


. (24)

Thus we finish the proof of Lemma 1. �

Lemma 2. Let s, b, α, λn ∈ R+. Then the following relation holds true

L−1
[

1
s2 + bsα + λn

L[fn(t)](s)] (t) =

∞−
k=0

(−b)k

E

−λn;k+1,1
0+;2,(2−α)k+2 f̃n


(t),


0 <

λn

s2 + bsα
< 1, 0 <

b
s2−α

< 1


(25)

where E
−λn;k+1,1
0+;2,(2−α)k+2 f̃n is the integral operator (19) and f̃n(t) is a given function.

Proof. Following the procedure from Lemma 1 and by using relation (14) one obtains

1
s2 + bsα + λn

L

f̃n(t)


(s) =

s−α

s2−α + b
·

1

1 +
λns−α

s2−α+b

L

f̃n(t)


(s)

=

∞−
j=0

(−λn)
j s−α(j+1)

s2−α + b
j+1 L


f̃n(t)


(s)
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= L


∞−
j=0

(−λn)
j t2j+1E j+1

2−α,2j+2


−bt2−α


(s)L


f̃n(t)


(s)

= L


∞−
k=0

(−b)k t(2−α)k+1Ek+1
2,(2−α)k+2


−λnt2


(s)L


f̃n(t)


(s). (26)

By applying the convolutional property of the Laplace transform it follows the proof of Lemma 2. �

4. Solution of the problem

The main results from this paper are contained in the following theorem.

Theorem 1. Eq. (5)with boundary conditions (2) and initial conditions (3), under conditions of Lemmas 1 and 2, has a summable
solution u(x, t) = U1(x, t)+U2(x, t)+v(x, t) in a bounded domain x ∈ [0, l], and in the space L(0,∞)with respect to t, where

U1(x, t) =

∞−
n=1


∞−
k=0

(−b)kt(2−α)kEk+1
2,(2−α)k+1


−λnt2


+ b

∞−
k=0

(−b)kt(2−α)(k+1)Ek+1
2,(2−α)(k+1)+1


−λnt2


+ w

∞−
k=0

(−b)kt(2−α)k+1Ek+1
2,(2−α)k+2


−λnt2


T (0)n (0+) sin

nπx
l


, (27)

U2(x, t) =

∞−
k=0

(−b)k

E

−λn;k+1,1
0+;2,(2−α)k+2 f̃n


(t) sin

nπx
l


, (28)

v(x, t) = h1(t)+
x
l
[h2(t)− h1(t)], (29)

fn(t) =
2
l

∫ l

0

f (x, t) sin nπx
l


dx (30)

f (x, t) = f (x, t)+
∂2v(x, t)
∂x2

−
∂2v(x, t)
∂t2

− bDα
∗
v(x, t), (31)

where λn =
n2π2

l2
are eigenvalues of the problem, w = T (1)n (0+)/T (0)n (0+), T (0)n (0+) =

2
l

 l
0 ϕ̃(x) sin(

nπx
l )dx, T

(1)
n (0+) =

2
l

 l
0 ψ̃(x) sin(

nπx
l )dx are Fourier coefficients,ϕ(x) = ϕ(x)− v(x, t)|t=0+, and ψ(x) = ψ(x)−

∂v(x,t)
∂t


t=0+

.

Proof. To solve Eq. (5) with the boundary conditions (2) and initial conditions (3) we represent the function u(x, t) in the
form

u(x, t) = U(x, t)+ v(x, t). (32)

The function v(x, t) is chosen to satisfy the boundary conditions (2) of the Eq. (1)

v(x, t)|x=0 = h1(t), v(x, t)|x=l = h2(t). (33)

It can be easily obtained that the function v(x, t) can be expressed by (29).
From relations (29) and (32) for the function U(x, t) one obtains

U(x, t)|x=0 = 0, U(x, t)|x=l = 0. (34)

From the initial conditions (3) and relation (32) it can be obtained that

U(x, t)|t=0+ = ϕ(x)− v(x, t)|t=0+ =ϕ(x),
∂U(x, t)
∂t


t=0+

= ψ(x)−
∂v(x, t)
∂t


t=0+

= ψ(x). (35)

By using the substitution

U(x, t) = U1(x, t)+ U2(x, t) (36)

from relations (5) and (32), it follows that

∂2[U1(x, t)+ U2(x, t)]
∂t2

=
∂2

∂x2
[U1(x, t)+ U2(x, t)] − bDα

∗
[U1(x, t)+ U2(x, t)] +f (x, t), (37)

wheref (x, t) is given by (31).
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One can separate the functions in relation (37) in the following way:

∂2U1(x, t)
∂t2

=
∂2U1(x, t)
∂x2

− bDα
∗
U1(x, t), (38)

U1(x, t)|x=0 = 0, U1(x, t)|x=l = 0, (39)

U1(x, t)|t=0+ =ϕ(x), ∂U1(x, t)
∂t


t=0+

= ψ(x) (40)

and

∂2U2(x, t)
∂t2

=
∂2U2(x, t)
∂x2

− bDα
∗
U2(x, t)+f (x, t), (41)

U2(x, t)|x=0 = 0, U2(x, t)|x=l = 0, (42)

U2(x, t)|t=0+ = 0,
∂U2(x, t)
∂t


t=0+

= 0. (43)

Themethod of separation of variables can be applied to solve the Eq. (38). Representing the function U1(x, t) as a product
of two functions U1(x, t) = X(x)T (t), we obtain the following differential equations:

d2T (t)
dt2

+ bDα
∗
T (t)+ λT (t) = 0, (44)

d2X(x)
dx2

+ λX(x) = 0, (45)

where λ is a separation constant. Therefore the function X(x) is a solution of the Sturm–Liouville problem:

X(x)|x=0 = 0, X(x)|x=l = 0. (46)

From relations (45) and (46), it follows that the eigenfunctions of the problem have the following form Xn(x) = sin(
√
λnx),

where λn =
n2π2

l2
, (0 < λ1 < λ2 < · · · < λn . . .). For the eigenfunctions the following relation is satisfied:∫ l

0
X2
n (x)dx = ‖Xn(x)‖2δnm, (47)

where ‖Xn‖
2

=
l
2 is the norm of the eigenfunction and δnm is the Kronecker delta.

Eq. (44) in the space L(0,∞) can be solved by using the Laplace transform of the Caputo time fractional differential
operator given by (7). Thus, we obtain

s2L[Tn(t)](s)− sT (0)n (0+)− T (1)n (0+)+ b{sαL[Tn(t)](s)− sα−1T (0)n (0+)} + λnL[Tn(t)](s) = 0. (48)

From relation (48) it follows that

L[Tn(t)](s) = T (0)n (0+)
s + bsα−1

+ w

s2 + bsα + λn
. (49)

By using relation (22) of Lemma 1, from (49) we get

Tn(t) = T (0)n (0+)


∞−
k=0

(−b)kt(2−α)kEk+1
2,(2−α)k+1


−λnt2


+ b

∞−
k=0

(−b)kt(2−α)(k+1)Ek+1
2,(2−α)(k+1)+1


−λnt2


+w

∞−
k=0

(−b)kt(2−α)k+1Ek+1
2,(2−α)k+2


−λnt2


. (50)

Substituting the eigenfunctions Xn(x) and Tn(t) given by (50) inU1(x, t) =
∑

∞

n=1 Tn(t)Xn(x)we get (27). This sum represents
the solution of thewave equation for a vibrating string in the presence of a fractional frictionwith power-lawmemory kernel,
and with non-zero initial conditions. It is a Fourier expansion of the function U1(x, t) by using the set of eigenfunctions
sin( nπxl ) as a basis.

The solution of the Eq. (41) can be found by using the Fourier expansions:

U2(x, t) =

∞−
n=1

un(t) sin
nπx

l


, (51)



1560 Ž. Tomovski, T. Sandev / Computers and Mathematics with Applications 62 (2011) 1554–1561

f (x, t) =

∞−
n=1

fn(t) sin nπxl 
, (52)

wherefn(t) is given by (30). By using relations (51), (52) and (41), we obtain

∞−
n=1

[ün(t)+ bDα
∗
un(t)+ λnun(t)−fn(t)] sin nπxl 

= 0, (53)

which is satisfied if

ün(t)+ bDα
∗
un(t)+ λnun(t)−fn(t) = 0 (54)

for all n ∈ N.
By applying the Laplace transform method (7) to Eq. (54) we obtain

s2L[un(t)](s)− sun(0+)− u̇n(0+)+ b{sαL[un(t)](s)− sα−1un(0+)} + λnL[un(t)](s)− L[fn(t)](s) = 0. (55)

From conditions (43) it follows that ∂kun(x,t)
∂tk


t=0+

= 0 for k = 0, 1. From (55) it is obtained that

L[un(t)](s) =
1

s2 + bsα + λn
L[fn(t)](s). (56)

The inverse Laplace transform of relation (56) follows from the result of Lemma 2. Hence, it is obtained that the function
un(t) is given by (25). Replacing the function un(t) in (51) we obtain (28), which is a solution of the problem (41)–(43). This
sum represents the solution of thewave equation for a vibrating string in the presence of a fractional frictionwith power-law
memory kernel and an external force, and zero initial conditions. This completes the proof of Theorem 1. �

Example. If we take in Theorem 1 α = 1/2, b = 1, l = 1, h1(t) = h2(t) = 0, ϕ(x) = x(1 − x), ψ(x) = 0, λn = n2π2,
T (0)n (0+) = 2

 1
0 x(1 − x) sin(nπx)dx = 4 1−(−1)n

n3π3 , T (1)n (0+) = 0, w = 0, f (x, t) = 0, the following fractional differential
equation

∂2u(x, t)
∂t2

=
∂2u(x, t)
∂x2

− Dα
∗
u(x, t), (57)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=1 = 0, (58)

and initial conditions

u(x, t)|t=0+ = x(1 − x),
∂u(x, t)
∂t


t=0+

= 0, (59)

where t > 0, 0 ≤ x ≤ 1, has a solution of the form

u(x, t) =
8
π3

∞−
n=1

1
(2n − 1)3


∞−
k=0

(−1)kt
3
2 kEk+1

2, 32 k+1


−(2n − 1)2π2t2


+

∞−
k=0

(−1)kt
3
2 (k+1)Ek+1

2, 32 (k+1)+1


−(2n − 1)2π2t2


sin (nπx) . (60)

Proposition 1. The asymptotic behavior of the solution (60) is given by

u(x, t) ≃
8
π3

∞−
n=1

1
(2n − 1)3


1 + (2n − 1)2π2


−

t2

2
+

t
7
2

Γ
 9
2

 sin[(2n − 1)πx] (61)

for t → 0, and

u(x, t) ≃
8

π5
√
π t

∞−
n=1

sin[(2n − 1)πx]
(2n − 1)5

(62)

for t → ∞.

Proof. By using the first three terms in the expansion of solution (60) for t → 0 we obtain relation (61). By using the
asymptotic expansion (12) of the Mittag-Leffler function (10) for t → ∞ we obtain relation (62).
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Another possible way of finding the asymptotic behavior is by application of the Tauberian theorems [38] to the relation

C(s) =
s+s−

1
2

s2+s
1
2 +λn

, which appears in relation (49) by substitution α = 1/2, w = 0. Analyzing the behavior of C(s) for

s → ∞ and s → 0, and finding the inverse Laplace transform, we obtain C(t) ≃ 1 −
λn
Γ (3) t

2
+

λn

Γ


9
2

 t 7
2 for t → 0, and

C(t) ≃
1

λnΓ (
1
2 )
t−

1
2 for t → ∞, respectively, where the functions C(t) and C(s) are Laplace pairs (C(t) = L−1

[C(s)]). Thus

we finish the proof of Proposition 1. �

5. Conclusion

In this paperwe obtained an exact solution of awave equation for a vibrating string in the presence of a fractional friction
with power-law memory kernel. The problem is solved by using the method of separation of variables and the Laplace
transformmethod. The solution is expressed in terms of the Mittag-Leffler type functions as well as the integral operator of
Srivastava and Tomovski (19). This problem (1) is far more complicated than the standard problem of a wave equation for
a vibrating string in the presence of a standard friction ∂u(x,t)

∂t , which can be solved simply by using the theory of poles. The
asymptotic behaviors of the solution of a given fractional wave equation are also found directly from the solution and by
using the Tauberian theorems.
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