
Alexandria Engineering Journal (2013) 52, 113–121

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
ORIGINAL ARTICLE
Time–cost tradeoff analysis considering funding

variability and time uncertainty

Amr Metwally El-kholy 1

Faculty of Engineering, Department of Civil Engineering, University of BeniSuef, BeniSuef, Egypt

Received 11 July 2010; accepted 28 May 2011
Available online 6 December 2012
1

of
E-

Pe

U

11

ht
KEYWORDS

Linear programming;

Time cost optimization;

Funding variability;

Time uncertainty
Faculty of Engineering, Depa

BeniSuef, BeniSuef, Egypt
mail address: amrelkholy_20

er review under responsibility

niversity.

Production an

10-0168 ª 2013 Faculty of E

tp://dx.doi.org/10.1016/j.aej.2
rtment o

12@yaho

of Facu

d hostin

ngineerin

012.07.0
Abstract This paper presents a linear programming model for solution of the time–cost tradeoff

problem. Although several analytical models have been developed for time–cost optimization

(TCO), some of them mainly focused on projects where the contract duration is fixed. The optimi-

zation objective is therefore restricted to identify the minimum total cost only. Another group have

primarily focused on project duration minimization. The model presented here considers scheduling

characteristics that were ignored simultaneously in prior research. In the new formulation, variabil-

ity of funding and uncertainty of project duration are considered simultaneously. A chance-con-

strained programming is used to incorporate the variability of funding, which is quantified by

the coefficient of variation. The financial feasibility expressed as a stochastic constraint, which

transformed into a deterministic equivalent at a pre-specified confidence level. Also, the project

duration uncertainty incorporated into the model by applying PERT in scheduling and then the

uncertainty is quantified by the coefficient of variation at a pre-specified confidence level. A system

of objective function, which is minimizing direct cost and the group of constraints are solved by

means of Lindo software. Two examples are conducted to demonstrate the model performance

and its contributions. Four scenarios were adopted in solving the example problems to reflect the

effect of each of funding variability and time uncertainty on project cost and duration. The results

revealed that with 95% confidence level: 10% variability in funding versus neglecting it, would

increase direct cost with 20% approximately for a pre-specified project deadline. Also, 10% vari-

ability in time versus neglecting it, would increase duration in range from 16.5% to 30% approx-

imately, for a pre-specified direct cost. Also, considering 10% variability in funding and time

would increase direct cost with more than 25% for a pre-specified project deadline. In parallel,

an increase in project duration, more than 30% will occur for a pre-specified direct cost.
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1. Introduction

When the contractor determines the optimal combination of
time and cost, the cost will be used as a deterministic estimate
to obtain funding to support the project. The fundamental

goal of project financing is to ensure that, during construction
there is enough funding available to compensate for the
ion and hosting by Elsevier B.V. All rights reserved.
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expenditures Yang [30]. Yet the planned funding, determined

before the project begins, it is subject to variability as the pro-
ject progresses.

In practice, it occurs frequently that available funding
deviates from the original estimate during execution. Once

the available funding is insufficient to support the costs,
the project is forced to stop. If this occurs, the owner, con-
tractors, and subcontractors would suffer from enormous

economical losses. Thus, it is evident that funding variability
is crucial in scheduling and hence should be incorporated
into the deterministic time–cost tradeoff analysis. Dealing

with this variability is one of the aims of the present
paper.

Chance-constrained programming (CCP) offers a suitable

means to incorporate funding variability into ordinary linear
programming (LP) techniques Yang [30]. To reflect the uncer-
tain nature, CCP models consider the objective function and
constraints with stochastic coefficients in lieu of deterministic

ones. The optimal solution is then determined by keeping the
probability (risk) of violating certain constraints under a pre-
scribed level a (for, example, 5%). In other words, the confi-

dence level at which the constraint is satisfied has to be at
least (1 � a) (for example, 95%). The proposed model handles
the situation when the variability of the actual funding is antic-

ipated and its impact on the time–cost tradeoff analysis needs
proper assessment. On the other hand, to reflect the uncertain
nature of project duration, Program Evaluation and Review
Technique (PERT) will be applied. PERT present statistical

information regarding the uncertainties associated with com-
pleting the different activities inherent in the project [6]. It will
be used to determine the expected time of each activity for esti-

mating the probability that the project completed at a pre-
specified deadline.

This paper presents a model for time–cost tradeoff that

consider all possible precedence relationships, funding vari-
ability and project duration uncertainty in deterministic equiv-
alent simultaneously. The paper is organized as follows. The

first section is devoted to the review of previous studies. The
second section explains chance-constrained programming as
a mathematical optimization technique. The third section pre-
sents PERT calculations. Following it, is the proposed model

formulation. An illustrative example is then presented to dem-
onstrate the performance of the proposed model. Another
example is highlighted to draw a conclusion. Analysis of the

examples helps indicate the contributions of the proposed
model. Conclusions are given in the last section.

2. Previous studies

Tradeoffs between project duration and direct cost are exten-

sively discussed in the project scheduling literature because
of its practical relevance. Since the early 1960s various analyt-
ical methods have been proposed for time cost optimization

(TCO). These methods are heuristic methods, mathematical
programming, and artificial intelligence.

A wide variety of heuristic procedure were used to solve the
time–cost tradeoff problem [10,24,29,22]. In general, these pro-

cedure provided rule -of- thumb guidelines for crashing activ-
ities with least costs but cannot guarantee optimality [16].

Mathematical programming models constitute another

group to deal with the time–cost tradeoff problem [14,11,
13,23] presented linear programming (LP) models. Meyer

and Shaffer [21] adopted integer programming (IP) to address
discrete time–cost relationships. Butcher [3] applied a dynamic
programming approach. Reda and Carr [26] presented mixed
integer programming to solve time–cost tradeoff problem. Liu

et al. [20] employed the LP/IP hybrid method to first locate
the lower bound of the project time–cost relationship using
LP and then find the exact solution by means of IP. Senouci

and Adeli [27] presented a mathematical model, which han-
dled resource-constrained scheduling, resource leveling, and
project total cost minimization simultaneously. Yang [30] ap-

plied chance constrained programming to incorporate funding
variability into ordinary linear programming (LP) techniques
without considering uncertainty nature of project activities

and hence project duration. Khalaf et al. [15] presented an ap-
proach of stretching non-critical activities to complete the
project in shortest possible duration at least cost within avail-
able maximum budgeting by crashing all activities simulta-

neously in the project network. Then, Linear Programming
(LP) technique was used to build a model to maximize the
savings from stretching non-critical activities. The non-critical

activities were stretched to their normal time until all slack in
the different non-critical paths network was used up. The
resultant savings from using of LP model were subtracted

from the initial cost of crashing all activities to obtain the final
cost of project.

Computational optimization techniques depending on arti-
ficial intelligence were also presented to solve time–cost trade-

off problems by means of genetic algorithms [9,18,12,19].
Senouci and Eldin [28] proposed a genetic algorithm model
for resource scheduling considering all precedence relation-

ships, resource leveling and resource-constrained scheduling,
time–cost tradeoff problem. Zheng et al. [31] proposed a ge-
netic algorithm-based multi objective approach for time–cost

optimization to optimize total time and total cost simulta-
neously. Zheng and Ng [32] presented stochastic time–cost
optimization model which incorporate fuzzy sets theory and

non-replaceable front. Elbeltagi et al. [7] presented a solution
for time–cost tradeoff problem by means of five evolutionary-
based optimization algorithm. These are: Genetic Algorithm,
Memtic Algorithm, Particle Swarm, Ant Colony, and Shuffled

Forg Leaping. Recently, Abbasnia et al. [1] applied Fuzzy lo-
gic theory for time–cost tradeoff. They considered affecting
uncertainties in total direct and indirect cost of a construction

project and adopted genetic algorithm as an optimizer.
The common objective function of the previous approaches

was to minimize cost (either direct or total project cost) sub-

jected to precedence constraints between activities. Other con-
straints included resource leveling and constrained-resource
scheduling [17,27,28]. Another constraint in addition to prece-

dence constraints between activities is the funding variability
Yang [30]. This paper presents a new mathematical model
for TCO by considering multiple constraints: all precedence
relationships, funding variability and uncertain nature of pro-

ject duration simultaneously.

3. Chance-constrained programming

Chance-constrained programming was proposed in the 1950s
[5,4] to provide a means to analyze the stochastic nature of or-

dinary mathematical optimization techniques. The applications
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of CCP abound for diverse fields such as structural analysis [8],

and water reservoir management [25]. Yang [30] reported that a
CCP formulation expressed in linear form is as follows:

Maximize
Xm
j¼1

cijxj ð1Þ

Subject to

Pr
Xn
i¼1

aijxj 6 bi

 !
P ai j ¼ 1; . . . ;m

ð2Þ

xj P 0 ð3Þ

where xj = decision variable; i = constraint; cij = coefficient
for the Jth variable in the ith constraint; aij = left hand side

coefficient for the Jth variable in the ith constraint; bi = right
hand side coefficient for the ith constraint; and ai = prescribed
probability level (called confidence level). Eq. (2) reads as, ‘‘the
probability to satisfy the constraint must be greater or equal to

the prescribed ai in any choice of xj’’. Since ai is a probability,
it is always between 0 and 1.

Yang [30] demonstrated that in the CCP model, If aij being

a random variable, the stochastic constraint can be converted
to a deterministic form but the problem would then become
nonlinear. When cij is a random variable, the objective is also

a random variable for any given xj. The case when bi is ran-
domly distributed will be adopted in this research. Eq. (2)
may be rewritten as follows:

Pr
Xn
i¼1

bi 6 aijxj

 !
6 ð1� aiÞ j ¼ 1; . . . ;m ð4Þ

Estimating the mean and standard deviation for bi, the
inequality inside the probability expression in Eq. (4) becomes:

ðbi �mbiÞ=rbi 6

Xm
i¼1
ðaijxj �mbiÞ=rbi j ¼ 1; . . . ;m ð5Þ

where mbi =mean of bi; and rbi = standard deviation of bi.
Assume bi is distributed normally, the right hand side of

inequality in Eq. (5) must follow the standard normal distribu-

tion with mean = 0 and standard deviation = 1. The left hand
side of Eq. (5) may be rewritten in the following form:

ðbi �mbiÞ=rbi ¼ Zai ð6Þ

where Zai = inverse of the cumulative standardized normal
distribution evaluated at probability ai.

Thus, Eq. (5) may be rewritten in the following form (Eq.

(7)). The original stochastic constaint can be converted to a
deterministic equivalent [1] (see Eq. (8)).

Zai 6

Xm
i¼1
ðaijxj �mbiÞ=rbi j ¼ 1; . . . ;m ð7Þ

Xm
i¼1
ðaijxj �mbiÞ=rbi 6 Z1�ai j ¼ 1; . . . ;m ð8Þ

where Z1�ai = inverse of the cumulative standardized normal

distribution evaluated at probability 1 � ai.

Xm
i¼1

aijxj 6 mbi þ Z1�ai � rbi j ¼ 1; . . . ;m ð9Þ
The transformation from Eqs. (2), (4)–(9), however has the

benefit of making the problem much more easier to solve.
4. Model formulation

To consider uncertain nature of project duration, the Program
Evaluation and Review Technique (PERT) is applied. In this
technique, the expected time (Te) for each activity is given

by Eq. (10) [2] the relation between the most probable comple-
tion time (Tc), and a pre-specified deadline (Ts) is given by Eq.
(11) [2]. Eq. (11) may be rewritten as in Eq. (12). The author

suggests that if we choose the coefficient of variation (CVt)
and mean (Tc) instead of standard deviation (rt), Eq. (12)
may be rewritten in the form of Eq. (13).

Te ¼ ðaþ 4mþ bÞ=6 ð10Þ

Z ¼ ½Ts� Tc�ffiffiffiffiffiffiffiffi
Rr2
p ð11Þ

Z ¼ ðTs� TcÞ=rt ð12Þ

Ts ¼ Z�ðCVt�TcÞ þ Tc ð13Þ

where a is the optimistic time; m is the most likely time; b is the
pessimistic time; Z is inverse of the cumulative standardized
normal distribution evaluated at probability level (a) or confi-
dence level at which the project duration equal to or less than a
pre-specified value; Rr2 is the summation of critical activities’
variance; and rt is the standard deviation of critical activities.

In the model formulation, funding variability and uncertain
nature of project duration are considered. In this formulation,
any relationship between activities is permissible. In other
words, activity i is allowed finish–start, start–start, start–finish,

or finish–finish precedence relationships with its preceding/suc-
ceeding activities. The activity time–cost relationship is as-
sumed to be linear for simplicity.

4.1. Objective function and constraints

The objective function of the proposed model is to minimize
the direct cost of the project

Minimize
XI
i¼1

CiðTeiÞ ð14Þ

where Ci = direct cost of activity i for a selected duration Tei,
I= number of project activities.

The objective function is subjected to four sets of con-
straints. The first set describes precedence relationships be-
tween activities. If activity j is a successor to activity i, then

a. Finish-to-Start (FS)
ESi þ Tei þ LTij 6 ESj ð15Þ

where ESi = early start of activity i; ESj = early start of

activity j; Tei = expected duration of activity i; and
LTij = lag/lead time between activities i and j.
b. Start-to-Start (SS)
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ESi þ LTij 6 ESj ð16Þ
c. Start-to-Finish (SF)
ESi þ LTij 6 ESj þ Tej ð17Þ
d. Finish-to-Finish (FF)
ESi þ LTij þ Tei 6 ESj þ Tej ð18Þ
The second set enforces the project financing feasibility or
consider the available funding (AF) in a deterministic form,
it is

XI
i¼1

Ci 6 AF ð19Þ

The available funding is usually a sum of funding from var-

ious sources, thus, it have a normal distribution Yang [30].
This assumption can be justified by the central limit theorem
that states ‘‘the distribution of the sum of random variables

will approach the normal distribution irrespective of the type
(discrete or continuous), shape (skewed or symmetric), and
number of individual distributions for contributing variables’’
[2]. Thus, the project financing constraint can be expressed as

follows:

Pr
XI
i¼1

Ci 6 AF

 !
P a ð20Þ

Adopting the same transformation process from Eqs. (4)–
(9), the deterministic equivalent of Eq. (20) is given by Eq.
(21). Yang [30] suggested that funding variability could be ex-

pressed using the coefficient of variation (CVAF) instead of the
standard deviation. Accordingly, Eq. (21) leads to Eq. (22).

XI
i¼1

Ci 6 mAF þ Z1�a1rAF ð21Þ

where mAF and rAF are the mean and standared deviation of
available funding, respectively.

XI
i¼1

Ci 6 mAF þ Z1�ai � ðCVAF �mAFÞ ð22Þ

In Eq. (22), the scheduler has to determine two variables.

First, he/she may choose a confidence level (a = 95%) (for
example) at which the financial constraint must be satisfied.
This makes Z1�a =Z(1–95)% = Z5% = �1.65. On the other

hand, suppose the scheduler anticipates a significant variability
would occur in obtaining the funding, therefore he assigns
CVAF to be 10% (for example). Eq. (22) becomes:

XI
i¼1

Ci 6 mAF þ ð�1:65Þ � ð10%�mAFÞ ð23Þ

This implies that funding variability would reduce the right
hand of Eq. (23). Consequently, the optimal project duration

would be ‘‘longer’’ while the difference can be viewed as a con-
tingency to account for funding variability.
The third set considers the uncertainty associated with pro-

ject duration, it is

Ts ¼ Z�ðCVt�TcÞ þ Tc ð24Þ

In Eq. (24), again the scheduler has to determine two vari-
ables. First, he/she may choose a confidence level (a = 95%)

(for example) at which the pre-specified project deadline is sat-
isfied. This makes Z(a=95%) = 1.65. On the other hand, sup-
pose the scheduler anticipates a significant variability would
occur in satisfying most probable project completion time

(Tc), therefore he assigns CVt to be 10% (for example). Eq.
(24) becomes:

Ts ¼ 1:65�ð10%�TcÞ þ Tc ð25Þ

This implies that the more the variation anticipated in pro-
ject duration, the longer the actual project duration (Ts). The
difference between Ts and Tc can be viewed as a contingency
to account for time uncertainty.

The fourth set of constraints defines the lower and upper
bounds of activity durations as follows:

ðTeiÞmin 6 ðTeiÞ 6 ðTeiÞmax ð26Þ

where (Tei)min = lower bound of duration for activity i; and
(Tei)max = upper bound of duration for activity i.

The fifth set of constraints provides a condition for compu-
tation of most probable project duration (Tc) corresponding to

50% probability.

Tc ¼ Esfin þ Tefin ð27Þ

where Esfin = early start of last activity; Tefin = duration of
last activity.

4.2. Solving procedure

The optimization model is solved by means of commercial
optimization software (Lindo). Four scenarios will be adopted
in solving procedure to demonstrate the effect of each of fund-

ing variability and time uncertainty as follows:

1. In the first scenario, a traditional time–direct cost trade-
off problem will be solved without considering both

funding variability and time uncertainty. In the second,
10% of CVFA for funding variability is assigned without
considering time uncertainty. In the third, 10% of CVt

for project duration uncertainty is considered without
considering funding variability. The fourth involved
both 10% variability for funding and project duration

uncertainty. Further, varying the coefficient of varia-
tion from 10% to 5% in scenarios 2, 3, 4 reflect the
effect on time and direct cost. The confidence level

adopted for scenarios 2, 3, and 4 is 95%.
2. Lindo software is used to optimize the objective func-

tion, which is minimizing the direct cost of the project
Eq. (14), under the previously fifth sets of constraints.

Then, a specific direct cost and a project duration asso-
ciates with it are obtained. Each value represents a
point on the direct cost/time curve.

3. The project duration resulted from step 2 will be
crashed time unit by time unit, and the feasibility of
the schedule is checked. If the schedule is nonfeasible

the process of crashing will be terminated, otherwise
the process will be continued.
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5. First example

A numerical example is presented in order to illustrate the per-

formance and capabilities of the proposed model. The data of
the example was obtained from [6]. Table 1 shows the prece-
dence relationships between activities for this example, which
is a construction project consists of eight activities. The three

estimates of each activity duration (a, m, and b) in normal con-
ditions and the associated direct cost, the most likely value for
activities duration in crash conditions and the associated direct

cost are given also. For the purpose of the research the author
added the optimistic and pessimistic values reasonably for
activities duration in crash condition. An indirect cost of

LE1000 weekly is assumed in this example.
The expected duration for each activity (Te) was calculated

at normal and crash conditions and shown in Table 2. For

example, activity C has expected time in normal conditions
(Tec) = (2 + 4 \ 4 + 6)/6 = 4. A simple linear regression
was performed to produce a time–direct cost relationship for
each activity depending on most likely value (m) to be used

for traditional time–cost relationship (without considering
time uncertainty). Another time–direct cost relationship for
each activity was established depending on expected duration

(Te) to be used when uncertainty in activities duration is con-
sidered. The results for direct cost–time relationship for both
cases are shown in Table 2. It must be noted that an activity

L with zero duration is assumed to terminate the network with
one activity.

5.1. Complete formulations

In summary, the complete formulation for the example when
considering time uncertainty:

Minimize
XI
i¼1

Ci ð28Þ

XI
i¼1

Ci ¼ 470; 500� 12; 000TeA � 3000TeB � 10; 000TeC

� 15; 000TeD � 4000TeF � 16; 000TeF

� 14; 000TeG � 13; 500TeH ð29Þ

Subject to:
Table 1 Data of example problem.

Act. Pred. Normal conditions

Time (weeks) Direct cost

a m b Te

A – 4 5 12 6 14

B – 3 3 3 3 9

C A 2 4 6 4 16

D B, C 3 4 11 5 11

E A 1 2 3 2 8

F D 2 4 6 4 10

G E, F 1 3 5 3 13

H D 2 5 8 5 12
1. Precedence constraints
ESA ¼ 0 ð30Þ

ESB ¼ 0 ð31Þ

ESC� ESA P TeA ð32Þ

ESD� ESB P TeB ð33Þ

ESD� ESC P TeC ð34Þ

ESE� ESA P TeA ð35Þ

ESF� ESD P TeD ð36Þ

ESG� ESE P TeE ð37Þ

ESG� ESF P TeF ð38Þ

ESH� ESD P TeD ð39Þ

ESL� ESG P TeG ð40Þ

ESL� ESH P TeH ð41Þ

where ES denotes early start of the activity.

2. Financial feasibility constraints

The financial feasibility constraint in deterministic equiva-
lent is given in Eq. (42). In this example, confidence level

at which the financial constraint must be satisfied is 95%,
whereas coefficient of variation is 10%.

XI
i�1

Ci 6 mAF þ ð�1:65Þ � ðCVAF �mAFÞ ð42Þ

3. Uncertainty associated with project duration

The project duration associated to a given probability is gi-

ven by Eq. (43). Confidence level (probability) at which the
project duration will be estimated is 95%, whereas coeffi-
cient of variation is 10%.

Ts ¼ 1:65�ðCVt�TcÞ þ Tc ð43Þ
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Crash conditions

(LE1000) Time (weeks) Direct cost (LE1000)

a m B Te

2 3 4 3 50

1 2 3 2 12

1 2 3 2 36

2 3 4 3 41

1 1 1 1 12

2 3 4 3 26

1 1 1 1 41

2 3 4 3 39



Table 2 Direct cost–time relationship neglecting versus considering time uncertainty.

Act. Traditional relationship (relationship 1) Relationship considering time uncertainty (relationship 2)

A CA= 104,000–18,000DA
/CA= 86,000–12,000TeA

B CB= 18,000–3000DB
/CB = 18,000–3000TeB

C CC= 56,000–10,000DC
/CC = 56,000–10,000TeC

D CD= 131,000–30,000DD
/CD= 86,000–15,000TeD

E CE= 16,000–4000DE
/CE = 16,000–4000TeE

F CF= 74,000–16,000DF
/CF = 74,000–16,000TeF

G CG= 55,000–14,000DG
/CG= 55,000–14,000TeG

H CH= 79,500–13,500DH
/CH= 79,500–13,500TeH

where C and /C denotes the activity direct cost for relationship 1 and 2, respectively.
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4. Upper and lower bounds of activity duration
6 P TeA P 3 ð44Þ

3 P TeB P 2 ð45Þ

4 P TeC P 2 ð46Þ

5 P TeD P 3 ð47Þ

2 P TeE P 1 ð48Þ

4 P TeF P 3 ð49Þ

3 P TeG P 1 ð50Þ

5 P TeH P 3 ð51Þ

The project duration is determined according to Eq (52).

Tc ¼ ESL ð52Þ
5.2. Solving scenarios

To demonstrate the effect of each of funding variability and
time uncertainty, four scenarios will be adopted in solving
Table 3 Time–direct cost tradeoff results.

Project dur.

(weeks)

Scenario 1 Scenario 2

Traditional time cost

relationship

Funding variabi

A b

5% 10%

Cost (LE) Cost

(LE)

Cost

(LE)

25.6 – – –

25 – – –

24 – – –

23 – – –

22 – – –

21 – – –

20 93,000 101,362 111,

19 103,000 112,262 123,

18 113,000 123,161 135,

17 127,000 138,420 152,

16 141,000 153,679 168,

15 159,000 173,297 190,

14 177,000 192,916 211,
the example problem as previously given. In scenario 1 (tradi-
tional time direct cost relationship), a project duration of

20 weeks and a direct cost of LE93000 were obtained. In sce-
nario (2b), 10% of CVFA was assigned without considering
time uncertainty, a project duration of 20 weeks and direct cost

of LE111377 were obtained. In scenario (3b), 10% of CVt was
assigned without considering funding variability, a project
duration (Ts) of 25.6 weeks and a direct cost of LE93000 were

obtained. In scenario (4b), 10% for both CVFA and CVt, was
assigned, a project duration of 25.6 weeks and a direct cost of
LE111377 were obtained. In each scenario, the project was

crashed week by week for obtaining intermediate points. It
was found that the minimum feasible project duration is
14 weeks. For the purpose of comparison, an interval for pro-
ject duration from 14 to 20 weeks was adopted when uncer-

tainty in project duration is neglected, whereas this interval
ranged from 14 to 25.6 weeks when uncertainty is considered.
Table 3 shows the results, while Fig 1 represents it graphically.

It must be noted that any duration corresponding to a pre-
specified direct cost or the vice versa could be obtained from
interpolation in Table 3 or Fig. 1.

5.3. Analysis of results

Comparison between scenarios 1, 2, 3, and 4 in Table 3 and
Fig. 1 reveals the following results:
Scenario 3 Scenario 4

lity Time uncertainty Funding variability and time

uncertainty

a b A b

5% 10% 5% 10%

Cost

(LE)

Cost

(LE)

Cost (LE) Cost (LE)

– 93,000 – 111,377

– 98,408 – 117,854

– 106,991 – 128,133

100,529 116,090 109,568 139,030

109,767 126,391 119,637 151,366

120,206 136,691 131,014 163,702

377 131,291 146,992 143,097 176,038

353 142,377 158,674 155,179 190,029

329 154,206 170,691 168,072 204,420

096 167,139 183,116 182,167 219,301

862 180,291 195,992 196,502 234,720

419 194,148 210,672 211,605 252,302

976 208,976 235,994 227,767 282,627



Figure 1 Time–direct cost curves for four adopted scenarios.
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1. Assume a direct cost is LE176038 (for example). The
project can be completed within 14.1, 15.7, 17.6, or

20 weeks for traditional time–direct cost relationship
(scenario 1), considering 10% funding variability (sce-
nario 2b), considering 10% time uncertainty (scenario
3b) or considering 10% for funding variability and time

uncertainty (scenario 4b), respectively. Thus, the per-
centages increase in duration is 11.3%, 24.8%, and
41.8% related to scenario 1, respectively. This implies

that time uncertainty has significant effect on time–
direct cost relationship when considered separately,
and the largest effect occurs when both funding variabil-

ity and time uncertainty are considered simultaneously.
2. If the project deadline is 19 weeks (for example), the

necessary direct cost to achieve it would be 103,000,

123,353, 158,674 or LE190029 for scenarios 1, 2b, 3b,
or 4b respectively. Thus, the percentages increase
related to scenario 1 are 19.8%, 54%, and 84.5%,
respectively. This reveals that for the same pre-specified

project deadline, funding variability have significant
effect on direct cost, while time uncertainty have larger
effect on direct cost than funding variability. The largest

effect occurs when both funding variability and time
uncertainty are considered simultaneously.

3. For comparing scenarios 2a and 2b corresponding to

5% and 10% funding variability respectively, assume
a direct cost is LE152096 (for example), the project
completed within 17 weeks for 10% variation instead
of 16.02 week for 5% variation. In parallel assume a

pre-specified project deadline, for instance, 15 weeks,
the necessary direct cost to achieve it would be
LE190419 instead of LE173297. This implies that

increasing variation in funding from 5% to 10% will
increase duration by 6% for the same direct cost and
increase direct cost by 10% approximately, for the same

duration.
4. For comparing scenarios 3a and 3b, i.e. when increasing

variation in time from 5% to 10% assume a direct cost

is LE158674 (for example), the project completed within
19 weeks instead of 17.6 weeks. In parallel assume a pre-
specified project deadline, for instance, 18 weeks, the
necessary direct cost to achieve it would be LE170691
instead of LE154206. This implies that increasing varia-
tion in time from 5% to 10% will increase duration by

8% for the same direct cost and increase direct cost by
11% approximately, for the same durations.

5. For comparing scenarios 4a and 4b corresponding to
5% and 10% variability in funding and time uncertainty

simultaneously, assume a direct cost is LE190029 (for
example), the project completed within 19 weeks instead
of 16.5 weeks. In parallel, assume a pre-specified project

deadline, for instance, 18 days, the necessary direct cost
to achieve it would be LE204420 instead of LE168072.
This implies that increasing variation from 5% to

10% will increase duration by 15% for the same direct
cost and increase direct cost by 22% approximately, for
the same duration.

The time–direct cost curve generated by the proposed mod-
el can be used to obtain the total cost curve by considering the
indirect costs. Fig. 2 plots five curves: direct cost and total cost

for 10% variability in funding and time (curves 1 and 2), direct
cost and total cost for traditional relationship (curves 3 and 4)
and indirect cost (curve 5). The calculation of the total cost is

shown in Table 4. The optimal project duration is 25.6 weeks
with a minimum total cost LE137377 if variability in funding
and time is considered while these values are LE113000 and

20 weeks in traditional time–direct cost relationship.

6. Second example

The purpose of this example is to use the results obtained from
it and from the first example to draw a conclusion about the
percentages increase in project direct cost or duration due to

the effect of both funding and time variability considered sep-
arately or simultaneously. This example is a construction pro-
ject consists of 12 activities, with different types of precedence

relationships; FS, SS, SF, and FF from [28]. Adopting tradi-
tional time cost relationship in solving the example, results in
a direct cost ranged from LE48140 at 21 days to LE51145 at

17 days. Applying 10% variability in funding and time, results
in a direct cost ranged from LE57656 at 25 days to LE61095 at
20 days. Analysis of the results obtained from this example are

among the remarks given in the next section.



Figure 2 Time–cost curves (direct cost, indirect cost, and total cost).

Table 4 Total project cost calculation.

Project

dur.

(weeks)

Direct cost (LE) Indirect

cost (LE)

Total cost (LE)

(Traditional time cost

relationship) Scenario

(1)

Funding and time

variability (10%)

Scenario (4b)

(Traditional time

cost relationship

Funding and time

variability (10%)

25.6 111,377 26,000 – 137,377

25 – 117,854 25,000 – 142,854

24 – 128,133 24,000 – 152,133

23 – 139,030 23,000 – 162,030

22 – 151,366 22,000 – 173,366

21 – 163,702 21,000 – 184,702

20 93,000 176,038 20,000 113,000 196,038

19 103,000 190,029 19,000 122,000 209,029

18 113,000 204,420 18,000 131,000 222,420

17 127,000 219,301 17,000 144,000 236,301

16 141,000 234,720 16,000 157,000 250,720

15 159,000 252,302 15,000 174,000 267,302

14 177,000 282,627 14,000 191,000 296,627
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7. Remarks on the results of the two examples

Depending on the results obtained from examples 1 and 2, and
relating percentages increase in project duration or cost to tra-

ditional direct cost–time relationship and adopting 95% confi-
dence level it can be concluded that:

1. For 10% variability in funding, an increase 19.8% in direct

cost will occur for a pre-specified project duration. This is
because direct cost would be less than or equal to 0.835
mean funding) (see Eq. (23)) and in turn mean funding is

larger than or equal to 1.198 cost.
2. For 10% variability in project duration, an increase in pro-

ject duration ranges from 16.5% to 30% approximately,

will occur for a pre-specified direct cost. This increase in
duration consists of two parts, the first is due to the relation
between Ts and Tc (Ts = 1.165Tc, see Eq. (25)). The sec-

ond one is due to the difference between Te for each activity
and the most likely value (m), which in turn lead to a differ-
ence between Tc and project duration for traditional
relationship.
3. Considering 10% variability in funding and time versus
neglecting them would increase direct cost with more than

25% for a pre-specified project deadline. In parallel, an
increase in project duration, more than 30% will occur
for a pre-specified direct cost at the same conditions of con-

fidence level and variability.

8. Conclusions and recommendations for future work

In this paper a time–cost tradeoff model was presented. Two

important aspects were considered simultaneously, these are
funding variability and time uncertainty. The presented linear
programming model optimizes the direct cost. The system of
objective function and constraints was solved by means of a

classic optimization technique. Two example problems were
presented to demonstrate how the model performs and its con-
tributions. In solving the two examples, four scenarios were

adopted to quantify the effect of considering funding variabil-
ity and time uncertainty separately and then simultaneously at
a specified degree of confidence 95%, and coefficient of



Time–cost tradeoff analysis considering funding variability and time uncertainty 121
variation 10%, for example. Also, coefficient of variation was

varied from 5% to 10%. A time–cost curve for each scenario
was plotted. Depending on the results obtained from the two
examples, one can draw a conclusion that: for 10% variability
in funding an increase, approximately 20% in direct cost for a

pre-specified project duration will occur. On the other hand,
for 10% variability in project duration, an increase in project
duration ranges from 16.5% to 30% approximately, will occur

for a pre-specified direct cost. Considering 10% variability in
funding and time versus neglecting them would increase direct
cost with more than 25% for a pre-specified project deadline.

In parallel, an increase in project duration, more than 30% will
occur for a pre-specified direct cost at the same conditions of
confidence level and variability.

In future research, it is recommended that, various degrees
of confidence levels for example 90%, 85%, 80%, and various
values for coefficient of variation, for example 15%, 20%, and
25% may be adopted for both funding variability and time

uncertainty to quantify the effect on both direct cost and pro-
ject duration. Then, direct cost–time curve may be drawn for
each case, such that for a pre-specified project deadline the

scheduler may obtain the corresponding direct cost. In paral-
lel, for a pre-specified direct cost he may obtain the corre-
sponding project duration.
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