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Abstract

A strict 2-group is a 2-category with one object in which all morphisms and all 2-morphisms have in-
verses. 2-Groups have been studied in the context of homotopy theory, higher gauge theory and Topological
Quantum Field Theory (TQFT). In the present article, we develop the notions of trialgebra and cotrialgebra,
generalizations of Hopf algebras with two multiplications and one comultiplication or vice versa, and the
notion of Hopf categories, generalizations of monoidal categories with an additional functorial comultipli-
cation. We show that each strict 2-group has a ‘group algebra’ which is a cocommutative trialgebra, and that
each strict finite 2-group has a ‘function algebra’ which is a commutative cotrialgebra. Each such commuta-
tive cotrialgebra gives rise to a symmetric Hopf category of corepresentations. In the semisimple case, this
Hopf category is a 2-vector space according to Kapranov and Voevodsky. We also show that strict compact
topological 2-groups are characterized by their C∗-cotrialgebras of ‘complex-valued functions’, generaliz-
ing the Gel’fand representation, and that commutative cotrialgebras are characterized by their symmetric
Hopf categories of corepresentations, generalizing Tannaka–Kreı̌n reconstruction. Technically, all these re-
sults are obtained using ideas from functorial semantics, by studying models of the essentially algebraic
theory of categories in various base categories of familiar algebraic structures and the functors that describe
the relationships between them.
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1. Introduction

A strict 2-group is an internal category in the category of groups. Strict 2-groups can also be
characterized as 2-categories with one object in which all morphisms and all 2-morphisms have
inverses, i.e. as (strict) 2-groupoids with one object. The notion of a strict 2-group can therefore
be viewed as a higher-dimensional generalization of the notion of a group because the set of
2-morphisms of a 2-group has got two multiplication operations, a horizontal one and a vertical
one.1 Strict 2-groups can be constructed from Whitehead’s crossed modules, and so there exist
plenty of examples.

Starting from the theory of groups, one can develop the notion of cocommutative Hopf al-
gebras which arise as group algebras, the notion of commutative Hopf algebras which appear
as algebras of functions on groups, and the notion of symmetric monoidal categories which
arise as the representation categories of groups. Compact topological groups are characterized
by their commutative Hopf C∗-algebras of continuous complex-valued functions (Gel’fand rep-
resentation). Commutative Hopf algebras are characterized by their rigid symmetric monoidal
categories of finite-dimensional comodules (Tannaka–Kreı̌n reconstruction). This ‘commutative’
theory forms the basic framework that is required before one can develop the theory of quantum
groups.

What is the analogue of the preceding paragraph if one systematically replaces the word
‘group’ by ‘strict 2-group’? In particular, what is a good definition of ‘group algebra’, ‘function
algebra’ and ‘representation category’ for a strict 2-group? The sought-after definitions can be
considered successful if they allow us to retain analogues of the most important theorems that are
familiar from groups. It is the purpose of the present article to present concise definitions of the
relevant structures and to establish generalizations from groups to strict 2-groups of the theorems
mentioned above, namely on Gel’fand representation and on Tannaka–Kreı̌n reconstruction. We
hope that our definitions and results will prove useful in order to investigate whether there exist
structures that can play the role of ‘quantum 2-groups’, but this question lies beyond the scope
of the present article.

1.1. Higher-dimensional algebra

With the step from groups to strict 2-groups, we enter the realm of higher-dimensional al-
gebra. Higher-dimensional algebraic structures have appeared in various areas of mathematics
and mathematical physics. A prime example is the higher-dimensional group theory programme
of Brown [12], generalizing groups and groupoids to double groupoids and further on, in or-
der to obtain a hierarchy of algebraic structures. The construction of these algebraic structures
is inspired by problems in homotopy theory where algebraic structures at a some level of the
hierarchy are related to topological features that appear in the corresponding dimension.

In order to construct topological quantum field theories (TQFTs), Crane has introduced the
concept of categorification, see, for example [3,15]. Categorification can be viewed as a system-
atic replacement of familiar algebraic structures that are modelled on sets by analogues that are
rather modelled on categories, 2-categories, and so on. Categorification often serves as a guiding
principle in order to find suitable definitions of algebraic structures at some higher level starting
from the known definitions at a lower level.

1 The prefix ‘2-’ obviously refers to the higher-dimensional nature rather than to the order of the group.
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Some examples of higher-dimensional algebraic structures that are relevant in the context of
the present article, are the following.

• Three-dimensional TQFTs can be constructed from Hopf algebras [14,33]. In order to find
four-dimensional TQFTs, Crane and Frenkel [15] have introduced the notion of a Hopf cate-
gory, a categorification of the notion of a Hopf algebra. Roughly speaking, this is a monoidal
category with an additional functorial comultiplication.

• Crane and Frenkel [15] have also speculated about trialgebras, vector spaces with three mu-
tually compatible linear operations: two multiplications and one comultiplication or vice
versa. Hopf categories are thought to appear as the representation categories of these trial-
gebras in analogy to monoidal categories which appear as the representation categories of
Hopf algebras.

• Kapranov and Voevodsky [30,31] have introduced braided monoidal 2-categories and 2-
vector spaces, a categorified notion of vector spaces, and shown that they are related to the
Zamolodchikov tetrahedron equation. In the context of integrable systems in mathematical
physics, this equation is thought to be the generalization of the integrability condition to
three dimensions. In two dimensions, the integrability condition is the famous Yang–Baxter
equation.

• Grosse and Schlesinger have constructed examples of trialgebras [26,27] in the spirit of
Crane–Frenkel and explained how they are related to integrability in 2 + 1 dimensions [28].

• Baez, Lauda, Crans, Bartels, Schreiber and the author [1,2,4,5,10,39] have used 2-groups
in order to find generalizations of fibre bundles and of gauge theory. Yetter [44] has used
2-groups in order to construct novel TQFTs, generalizing the TQFTs that are constructed
from the gauge theories of flat connections on a principal G-bundle where G is an (ordi-
nary) group. One can verify that [44] is a special application of the generalized gauge theory
of [39].

All these constructions have a common underlying theme: the procedure of categorification on
the algebraic side and an increase in dimension on the topological side. Although it is plausible
to conjecture that all these higher-dimensional algebraic structures are related, the developments
mentioned above have so far been largely independent. The present article with its programme
of finding the ‘group algebras’, ‘function algebras’ and ‘representation categories’ of strict 2-
groups provides relationships between these structures. In the remainder of the introduction, we
sketch our main results and explain how these can be seen in the context of the existing literature.

1.2. 2-Groups

A strict 2-group (G0,G1, s, t, ı,◦) is an internal category in the category of groups. It
therefore consists of groups G0 (group of objects) and G1 (group of morphisms) and of
group homomorphisms s :G1 → G0 (source), t :G1 → G0 (target), ı :G0 → G1 (identity) and
◦ :G1 ×G0 G1 → G1 (composition) where G1 ×G0 G1 = {(g, g′) ∈ G1 × G1: t (g) = s(g′)} de-
notes the group of composable morphisms, subject to conditions which are given in detail in
Section 2.2.

1.3. 2-Groups, trialgebras and cotrialgebras

Passing from a group G to its group algebra k[G] is described by a functor k[−] from the
category of groups to the category of cocommutative Hopf algebras over some field k. Ap-
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plying this functor systematically to all groups and group homomorphisms in the definition
of a strict 2-group yields a structure (H0,H1, s

′, t ′, ı′,◦′) = (k[G0], k[G1], k[s], k[t], k[ı], k[◦])
which consists of cocommutative Hopf algebras H0 and H1 and bialgebra homomorphisms s′,
t ′, ı′ and ◦′. What sort of algebraic structure is this?

Since the functor k[−] preserves all finite limits, (H0,H1, s
′, t ′, ı′,◦′) is an internal category

in the category of cocommutative Hopf algebras over k (Section 3.1). Unfolding this definition
(Section 3.3), we see that H1 = k[G1] is a k-vector space with three mutually compatible linear
operations: two multiplications and one comultiplication. We thus call (H0,H1, s

′, t ′, ı′,◦′) a co-
commutative trialgebra. This yields a concise definition for the structure conjectured by Crane
and Frenkel [15] as an internal category in the category of cocommutative Hopf algebras and
allows us to find a large class of examples.

Similarly to k[−], there is a functor k(−) from the category of finite groups to the category of
commutative Hopf algebras which sends every finite group G to the algebra of k-valued functions
on G. By a procedure similar to that for k[−], we arrive at the definition of a commutative co-
trialgebra and a method for constructing examples from strict finite 2-groups (Section 4.2). We
generalize Gel’fand representation theory to 2-groups and prove that any strict compact topo-
logical 2-group gives rise to a commutative C∗-cotrialgebra and, conversely, that the compact
topological 2-group can be reconstructed from this C∗-cotrialgebra (Section 4.3).

1.4. Cotrialgebras and Hopf categories

For the relationship with Hopf categories and 2-vector spaces, we refer to the scenario of
Crane and Frenkel [15] in greater detail.

When one tries to construct topological invariants or TQFTs for combinatorial manifolds, one
defines so-called state sums [9,14,25,33,43]. It turns out that for every dimension of the mani-
folds, there exist preferred algebraic structures that guarantee the consistency and triangulation
independence of these state sums.

Whereas (1 + 1)-dimensional TQFTs can be constructed from suitable associative alge-
bras [25], there are two alternative algebraic structures in order to construct (2 + 1)-dimensional
TQFTs: suitable Hopf algebras [14,33] or suitable monoidal categories [9,43]. Both types of
structure are related [8]: the category of corepresentations of a Hopf algebra is a monoidal
category and, conversely, under some conditions, the Hopf algebra can be Tannaka–Kreı̌n re-
constructed from this category.

According to Crane and Frenkel [15], there ought to be three alternative algebraic structures
in order to construct (3 + 1)-dimensional TQFTs. These have been suggestively termed trial-
gebras, Hopf categories and monoidal 2-categories. All three types of structures are thought to
be related: representing one product of a trialgebra should yield a Hopf category as the cate-
gory of representations of the trialgebra, and then representing the second product should give a
monoidal 2-category as the 2-category of representations of the Hopf category. Combining both
steps, i.e. representing both products at once, should give a monoidal 2-category as the category
of representations of the trialgebra.

Some aspects of the Crane–Frenkel scenario have already been analyzed in greater detail.

• Mackaay [35] has given a precise definition of suitable monoidal 2-categories and has shown
that one can define an invariant of combinatorial 4-manifolds from it. So far, only few exam-
ples of these monoidal 2-categories have been constructed all of which are thought to give
homotopy invariants.
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• Neuchl [38] has studied Hopf categories and their representations on certain monoidal
2-categories. So far, it is open whether one can find a good class of Hopf categories and
the corresponding monoidal 2-categories in such a way that both structures are related by a
generalization of Tannaka–Kreı̌n duality.

• Crane and Frenkel [15] have presented examples of Hopf categories and proposed a
4-manifold invariant based on Hopf categories. Carter, Kauffman and Saito [13] have stud-
ied this invariant for some Hopf categories. Again, with the rather limited set of examples of
Hopf categories, all invariants studied so far, are homotopy invariants.

In the present article, we extend the study of the Crane–Frenkel scenario and show in addition
that the corepresentations of a commutative cotrialgebra form a symmetric Hopf category and,
conversely, we prove a generalization of Tannaka–Kreı̌n duality in order to recover the cotrialge-
bra from its Hopf category of corepresentations.

Combining this with the result sketched in Section 1.3 that each strict compact topologi-
cal 2-group gives rise to a commutative cotrialgebra, this shows that each compact topological
2-group has got a symmetric Hopf category of finite-dimensional continuous unitary representa-
tions and that the 2-group can be Tannaka–Kreı̌n reconstructed from this Hopf category.

In order to make these theorems possible, our definition of a symmetric Hopf category devi-
ates from those used in the literature by Crane–Frenkel and by Neuchl [15,38] in a subtle way
(Section 5), in particular: (1) the functorial comultiplication maps into a pushout rather than into
the external tensor product; (2) the comultiplication is already uniquely specified as soon as cer-
tain other data are given; (3) it automatically possesses a functorial antipode. Our definition is
designed in such a way that Tannaka–Kreı̌n reconstruction generalizes to 2-groups and that there
is the notion of the representation category of a strict 2-group which forms a symmetric Hopf
category. In future work on TQFTs, it may be useful to employ a generalization of our definition
of a Hopf category as opposed to one in which the comultiplication maps into the external tensor
product. Imagine one tried to invent the concept of a monoidal category, but one was unlucky
and proposed a definition that did not include the appropriate representation categories of groups
as examples.

Our Hopf categories of corepresentations of cotrialgebras form a special case of 2-vector
spaces according to Kapranov and Voevodsky [30] as soon as the cotrialgebra is cosemisimple.
This includes in particular the cotrialgebras of complex-valued representative functions of strict
compact topological 2-groups and provides us with a generalization of the Peter–Weyl decom-
position from compact topological groups to strict compact topological 2-groups.

Other authors have explored alternative strategies for representing 2-groups on 2-vector
spaces. Barrett and Mackaay [7] and Elgueta [21], for example, employ the 2-vector spaces
of Kapranov and Voevodsky [30] (semisimple Abelian categories), Crane and Yetter [17,45] use
a measure theoretic refinement of these in order to include more interesting examples, whereas
Forrester-Barker [23] uses the 2-vector spaces of Baez and Crans [2] (internal categories in the
category of vector spaces or, equivalently, 2-term chain complexes of vector spaces). All these
authors exploit the fact that one can associate with each 2-group a 2-category with one object,
just as one can associate with each group a category with one object. A representation of the
2-group is then defined to be a 2-functor from this 2-category to the 2-category of 2-vector
spaces, generalizing the fact that a representation of an ordinary group is a functor from the corre-
sponding category with one object to the category of vector spaces. Whereas the key construction
of these approaches is a 2-functor from a single 2-group to the 2-category of 2-vector spaces, in
the present article we employ a 2-functor from the 2-category of all 2-groups to the 2-category
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of 2-vector spaces (in fact Hopf categories). In our case, the Hopf category therefore plays the
role of the representation category of the 2-group rather than that of an individual representation.
Our result on Tannaka–Kreı̌n reconstruction confirms that this is a useful approach, too.

1.5. Category theoretic techniques

In Section 1.3, we have sketched how to apply the finite-limit preserving functors k[−] and
k(−) to all objects and morphisms in the definition of a 2-group in order to obtain the definitions
of cocommutative trialgebras and commutative cotrialgebras. The application of such finite-limit
preserving functors is the main theme of the present article.

In the more sophisticated language of functorial semantics [34], the key technique exploited
in the present article is the study of models of the essentially algebraic theory of categories in
various interesting base categories of familiar algebraic structures such as groups, compact topo-
logical groups, commutative or cocommutative Hopf algebras or symmetric monoidal categories
and to develop their relationships.

1.6. Limitations

It is beyond the scope of the present work to find the ‘most generic’ examples of these novel
structures or to attempt a classification. Since we use only an abstract machinery in order to con-
struct higher-dimensional algebraic structures from conventional ones and since it is natural to
expect that the higher-dimensional structures are substantially richer than the conventional ones,
our tools are not sufficient in order to survey the entire new territory. What we can achieve is to
find a first path through the new structures that includes the strict and the commutative or sym-
metric special cases. We expect two sorts of generalizations beyond the present work. Firstly,
the use of weak 2-groups [4] rather than strict ones and a similar weakening of the notions of
trialgebra and Hopf category. Weak 2-groups are modelled on bicategories whereas strict ones
are modelled on 2-categories. Secondly, classical constructions starting from ordinary groups
alone yield only commutative or cocommutative Hopf algebras, but not actual quantum groups.
Quantum groups rather involve a novel idea beyond the classical machinery such as Drinfeld’s
quantum double construction. At the higher-dimensional level, we expect (at least) the same
limitations. We can construct infinite families of examples of cocommutative trialgebras, of com-
mutative cotrialgebras and of symmetric Hopf categories in a systematic way, but our method
does not deliver any actual ‘quantum 2-groups’ yet.

Ultimately, one will need applications of the novel structures in topology and in mathematical
physics in order to confirm whether sufficiently generic examples of ‘quantum 2-groups’ have
been found. Test cases are firstly the systematic construction of non-trivial integrable systems in
three dimensions (as opposed to the usual two dimensions); secondly the construction of four-
dimensional TQFTs which give rise to invariants of differentiable four-manifolds that are finer
than just homotopy invariants; thirdly to overcome problems in the spin foam approach to the
quantization of general relativity, see, for example [16].

1.7. Outline

This article is structured as follows. Section 2 fixes the notation. We summarize the definition
of internal categories in finitely complete base categories and the definition of strict 2-groups
and some important examples of these. We define and construct examples of cocommutative
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trialgebras in Section 3. Commutative cotrialgebras are defined and constructed in Section 4.
We introduce symmetric Hopf categories in Section 5 and develop the corepresentation theory
of cotrialgebras and the representation theory of compact topological 2-groups. More generic
trialgebras and Hopf categories are briefly mentioned in Section 6.

2. Preliminaries

In this section, we fix some notation, we briefly review the technique of internalization in order
to construct the 2-categories of internal categories in familiar base categories, and we recall the
definition of strict 2-groups as internal categories in the category of groups.

2.1. Notation

We fix a field k. Our notation for some standard categories is as follows: Set (sets and
maps), compHaus (compact Hausdorff spaces and continuous maps), comUnC∗Alg (commu-
tative unital C∗-algebras with unital ∗-homomorphisms), Grp (groups and group homomor-
phisms), compTopGrp (compact topological groups), Vectk (k-vector spaces with k-linear
maps), fdVectk (finite-dimensional k-vector spaces with k-linear maps), Algk (associative unital
algebras over k and their homomorphisms), CoAlgk (coalgebras over k and their homomor-
phisms), BiAlgk (bialgebras) and HopfAlgk (Hopf algebras). We use the prefix f for ‘finite’, fd
for ‘finite-dimensional’, com for ‘commutative’ and coc for ‘cocommutative’.

Let C be some category. For each object A of C, we denote its identity morphism by
idA :A → A. Composition of morphisms f :A → B and g :B → C in C is denoted by juxta-
position fg :A → C and is read from left to right.

For objects A and B of C, we denote their product (if it exists) by A�B and by p1 :A�B →
A and p2 :A�B → B the associated morphisms of its limiting cone. Similarly, the coproduct (if
it exists) is called A�B , and ı1 :A → A�B and ı2 :B → A�B the morphisms of its colimiting
cone.

Let s :A → C and t :B → C be morphisms of C. We denote by

A s�t B := lim←−(A
s−→ C t←− B), (2.1)

the pullback object (if it exists) and by p1 :A s�t B → A and p2 :A s�t B → B its limiting cone,
i.e.,

A s�t B
p2

p1

B

t

A
s

C.

(2.2)

For morphisms σ :C → A and τ :C → B of C, the pushout (if it exists) is denoted by

A σ�τ B := lim−→(A σ←− C
τ−→ B), (2.3)

i.e.
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C
τ

σ

B

ı2

A
ı1

A σ�τ B.

(2.4)

If for some object A of C, the product A � A exists, we denote the diagonal morphism by
δ :A → A�A. It is uniquely characterized by the condition δp1 = idA = δp2. Dually, we denote
the codiagonal by δop :A � A → A for which ı1δ

op = idA = ı2δ
op.

Let A, B , A′ and B ′ be objects of C such that the products A � B and A′ � B ′ exist, and
let fA :A → A′ and fB :B → B ′ be morphisms of C. Then there exists a unique morphism
(fA;fB) :A � B → A′ � B ′ such that (fA;fB)p′

1 = p1fA and (fA;fB)p′
2 = p2fB .

For pullbacks, there is the following refinement of this construction. Let s :A → C, t :B → C

and s′ :A′ → C′, t ′ :B ′ → C′ be morphisms of C such that both pullbacks As�t B and A′
s′�t ′ B ′

exist. Let fA :A → A′, fB :B → B ′ and fC :C → C′ be morphisms such that fAs′ = sfC and
fBt ′ = tfC ,

A s�t B
p2

p1

(fA;fB)fC

B

t

fB

A′
s′�t ′ B ′

p′
2

p′
1

B ′

t ′A
s

fA

C
fC

A′
s′ C′.

(2.5)

Then there exists a unique morphism (fA;fB)fC
:A s�t B → A′

s′�t ′ B ′ with the property that
(fA;fB)fC

p′
1 = p1fA and (fA;fB)fC

p′
2 = p2fB .

Dually, for objects A, B , A′ and B ′ of C for which the coproducts A�B and A′ �B ′ exist and
for morphisms fA :A → A′ and fB :B → B ′, there exists a unique morphism [fA;fB ] :A�B →
A′ � B ′ such that ı1[fA;fB ] = fAı′1 and ı2[fA;fB ] = fBı′2.

For pushouts, we have the following refinement. For morphisms σ :C → A, τ :C → B and
σ ′ :C′ → A′, τ ′ :C′ → B ′ for which the pushouts A σ�τ B and A′

σ ′�τ ′ B ′ exist, and morphisms
fA :A → A′, fB :B → B ′ and fC :C → C′ that satisfy σ ′fA = fCσ and τ ′fB = fCτ , there
is a unique morphism [fA;fB ]fC

:A σ�τ B → A′
σ ′�τ ′ B ′ such that ı1[fA;fB ]fC

= fAı′1 and
ı2[fA;fB ]fC

= fBı2.
Notice that for suitable morphisms, the object (if it exists),

A s�t B u�v E := lim←−(A
s−→ C t←− B

u−→ D v←− E), (2.6)

is naturally isomorphic to both (A s�t B)p2u�v E and As�p1t (B u�v E), where in the first case,
p2 is the second projection associated with the pullback in parentheses, and in the second case,
p1 is the first projection from the pullback in parentheses. Dually, the object,
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A σ�τ B ϕ�χ E := lim−→(A σ←− C
τ−→ B

ϕ←− D
χ−→ E), (2.7)

(if it exists) is naturally isomorphic to both
(
A σ�τ B) ϕı2�χ E and A σ�τ ı1 (B ϕ�χ E).

We use the term ‘2-category’ for a strict 2-category as opposed to a bicategory. Our terminol-
ogy for 2-categories, 2-functors, 2-natural transformations, 2-equivalences and 2-adjunctions is
the same as in [11].

2.2. Internal categories

Many 2-categories that appear in this article, can be constructed by internalization. The con-
cept of internalization goes back to Ehresmann [20]. Here we summarize the key definitions and
results. For more details and proofs, see, for example [11].

Definition 2.1. Let C be a finitely complete category.

1. An internal category C = (C0,C1, s, t, ı,◦) in C consists of objects C0 and C1 of C with
morphisms s, t :C1 → C0, ı :C0 → C1 and ◦ :C1 s�t C1 → C1 of C such that the following
diagrams commute,

C0
ı

idC0

C1

s

C0,

C0
ı

idC0

C1

t

C0,

(2.8)

C1 s�t C1
◦

p2

C1

t

C1
t

C0,

C1 s�t C1
◦

p1

C1

s

C1 s
C0,

(2.9)

C1 s�t C1 s�t C1

(◦;idC1 )
idC0

(idC1 ;◦)
idC0

C1 s�t C1

◦

C1 s�t C1 ◦ C1,

(2.10)

C0 idC0
�t C1

(ı;idC1 )
idC0

p2

C1 s�t C1

◦

C1 s�idC0
C0

(idC1 ;ı)
idC0

p1

C1.

(2.11)
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2. Let C = (C0,C1, s, t, ı,◦) and C′ = (C′
0,C

′
1, s

′, t ′, ı′,◦′) be internal categories in C. An
internal functor F = (F0,F1) :C → C′ in C consists of morphisms F0 :C0 → C′

0 and
F1 :C1 → C′

1 of C such that the following diagrams commute,

C1
s

F1

C0

F0

C′
1

s′ C′
0,

C1
t

F1

C0

F0

C′
1

t ′
C′

0,

(2.12)

C0
ı

F0

C1

F1

C′
0

ı′
C′

1,

C1 s�t C1
◦

(F1;F1)F0

C1

F1

C′
1 s′�t ′ C′

1 ◦′ C′
1.

(2.13)

3. Let C = (C0,C1, s, t, ı,◦), C′ = (C′
0,C

′
1, s

′, t ′, ı′,◦′) and C′′ = (C′′
0 ,C′′

1 , s′′, t ′′, ı′′,◦′′) be
internal categories in C and F :C → C′ and G :C′ → C′′ be internal functors. The compo-
sition of F and G is the internal functor FG :C → C′′ which is defined by (FG)0 := F0G0
and (FG)1 := F1G1.

4. Let C be an internal category in C. The identity internal functor idC :C → C is defined by
(idC)0 := idC0 and (idC)1 := idC1 .

5. Let F, F̃ :C → C′ be internal functors between internal categories C = (C0,C1, s, t, ı,◦)

and C′ = (C′
0,C

′
1, s

′, t ′, ı′,◦′) in C. An internal natural transformation η :F ⇒ F̃ is a mor-
phism η :C0 → C′

1 of C such that the following diagrams commute,

C0
η

F0

C′
1

s′

C′
0,

C0
η

F̃0

C′
1

t ′

C′
0,

(2.14)

C1

δ(tη;F̃1)tF̃0

δ(F1;sη)sF0

C′
1 s′�t ′ C′

1

◦′

C′
1 s′�t ′ C′

1 ◦′ C′
1.

(2.15)
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6. Let η :F ⇒ F̃ and ϑ : F̃ ⇒ F̂ be internal natural transformations between internal functors
F, F̃ , F̂ :C → C′. The vertical composition (or just composition) of η and ϑ is the internal
natural transformation ϑ ◦ η :F ⇒ F̂ defined by the following composition,

C0
δ−→ C0 idC0

�idC0
C0

(η;ϑ)F̃0−−−−→ C′
1 s′�t ′ C

′
1

◦′−→ C′
1. (2.16)

Note that the vertical composition ‘◦’ is read from right to left.2

7. Let F :C → C′ be an internal functor in C. The identity internal natural transformation
idF :F ⇒ F is defined by idF := F0ı

′ or by ıF1.
8. Let η :F ⇒ F̃ and τ :G ⇒ G̃ be internal natural transformations between internal functors

F, F̃ :C → C′ and G,G̃ :C′ → C′′. The horizontal composition (or Godement product) of η

and τ is the internal natural transformation η · τ :FG ⇒ F̃ G̃ defined by the composition,

C0
δ−→ C0 idC0

�idC0
C0

(F0;η)F0−−−−−→ C′
0 idC′

0
�t ′ C

′
1

(τ ;G̃1)G̃0−−−−−→ C′′
1 s′′�t ′′ C

′′
1

◦′′−→ C′′
1 , (2.17)

or equivalently by,

C0
δ−→ C0 idC0

�idC0
C0

(η;F̃0)F̃0−−−−−→ C′
1 s′�idC′

0
C′

0

(G1;τ)G0−−−−−→ C′′
1 s′′�t ′′ C

′′
1

◦′′−→ C′′
1 . (2.18)

Theorem 2.2. Let C be a finitely complete category. There is a 2-category Cat(C) whose objects
are internal categories in C, whose morphisms are internal functors and whose 2-morphisms are
internal natural transformations.

The following example is the motivation for the precise details of the definition of Cat(C)

presented above.

Example 2.3. The category Set is finitely complete. Cat(Set) is the 2-category Cat of small
categories with functors and natural transformations.

Remark 2.4. For a technical subtlety that arises because limit objects are specified only up to
(unique) isomorphism, we refer to Remark A.9 in Appendix A.

For generic finitely complete C, the 1-category underlying Cat(C) is studied in the con-
text of essentially algebraic theories [24], going back to the work of Lawvere on functo-
rial semantics [34]. For more details and references, see, for example [6]. The theory of
categories Th(Cat) is the smallest finitely complete category that contains objects C0, C1
and morphisms s, t :C1 → C0, ı :C1 → C0 and ◦ :C1 s�t C1 → C1 such that the relations
(2.8)–(2.11) hold. A model of Th(Cat) is a finite-limit preserving functor F : Th(Cat) → C into
some finitely complete category C. If one denotes by Mod(Th(Cat),C) := Lex(Th(Cat),C)

the category of finite-limit preserving (left exact) functors Th(Cat) → C with their natural
transformations, then Mod(Th(Cat),C) 
 Cat(C) are equivalent as 1-categories, in particular
Mod(Th(Cat),Set) 
 Cat, which justifies the terminology theory of categories for Th(Cat).

2 This is a deviation from [39] which, however, will turn out to be more natural in a future work.
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Usually, these techniques are used in order to study various algebraic or essentially algebraic
theories. One defines, for example, Th(Grp) such that Mod(Th(Grp),Set) 
 Grp, etc. The
framework of internalization is also used in topos theory in order to replace the category Set by
more general finitely complete categories.

In the following, we are in addition interested in the 2-categorical structure of Cat(C) which
cannot be directly seen from Mod(Th(Cat),C), and we vary the base category C over familiar
categories of algebraic structures more special than Set, for example, C = Grp. Then Cat(C)

forms a 2-category whose objects turn out to be (usually the strict versions of) novel higher-
dimensional algebraic structures. Their higher-dimensional nature is directly related to the fact
that Cat(C) forms a 2-category and thus exhibits one more level of structure than the 1-catego-
ry C which we have initially supplied.

We can perform the construction Cat(C) for various finitely complete base categories C. The
following propositions show what happens if these different base categories are related by finite-
limit preserving functors and by their natural transformations.

Proposition 2.5. Let C and D be finitely complete categories and T :C → D be a functor that
preserves finite limits. Then there is a 2-functor Cat(T ) : Cat(C) → Cat(D) given as follows.

1. Cat(T ) associates with each internal category C = (C0,C1, s, t, ı,◦) in C, the internal cat-
egory Cat(T )[C] := (T C0, T C1, T s, T t, T ı, T ◦) in D.

2. Let C and C′ be internal categories in C. Cat(T ) associates with each internal functor
F = (F0,F1) :C → C′ in C, the internal functor Cat(T )[F ] : Cat(T )[C] → Cat(T )[C′] in
D which is given by the following morphisms of D,

(
Cat(T )[F ])0 = T F0 :T C0 → T C′

0, (2.19)
(
Cat(T )[F ])1 = T F1 :T C1 → T C′

1. (2.20)

3. Let C and C′ be internal categories and F,F ′ :C → C′ be internal functors in C. Cat(T )

associates with each internal natural transformation η :F ⇒ F ′, the internal natural trans-
formation Cat(T )[η] : Cat(T )[F ] ⇒ Cat(T )[F ′] in D which is defined by the following
morphism of D,

Cat(T )[η] = T η :T C0 → T C′
1. (2.21)

Proposition 2.6. Let C and D be finitely complete categories, T , T̃ :C → D be functors that
preserve finite limits and α :T ⇒ T̃ a natural transformation. Then there is a 2-natural transfor-
mation Cat(α) : Cat(T ) ⇒ Cat(T̃ ) given as follows.

Cat(η) associates with each internal category C = (C0,C1, s, t, ı,◦) in C, the internal functor
Cat(α)C : Cat(T )[C] → Cat(T̃ )[C] in D which is given by the following morphisms of D,

(
Cat(α)C

)
0 = αC0 :T C0 → T̃ C0, (2.22)

(
Cat(α)C

)
1 = αC1 :T C1 → T̃ C1. (2.23)
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Theorem 2.7. Let Lex denote the 2-category of finitely complete small categories, finite-limit pre-
serving functors and natural transformations. Let 2Cat be the 2-category of small 2-categories,
2-functors and 2-natural transformations. Then Cat(−) forms a 2-functor,3

Cat(−) : Lex → 2Cat. (2.24)

Corollary 2.8. Let C 
 D be an equivalence of finitely complete categories provided by the
functors F :C → D and G :D → C with natural isomorphisms η : 1C ⇒ FG and ε :GF ⇒ 1D .
Then there is a 2-equivalence of the 2-categories Cat(C) 
 Cat(D) given by the 2-functors
Cat(F ) : Cat(C) → Cat(D) and Cat(G) : Cat(D) → Cat(C) with the 2-natural isomorphisms
Cat(η) : 1Cat(C) ⇒ Cat(F )Cat(G) and Cat(ε) : Cat(G)Cat(F ) ⇒ 1Cat(D).

We can now consider any diagram in Lex, in particular any diagram involving finitely com-
plete categories of familiar algebraic structures, finite-limit preserving functors and their natural
transformations. Theorem 2.7 guarantees that the Cat(−)-image of any such diagram is a valid
diagram of 2-categories, 2-functors and 2-natural transformations. This idea is the key to the
present article and provides us with the desired 2-functors between our 2-categories of higher-
dimensional algebraic structures.

The study of contravariant functors, i.e. functors that can be written covariantly as T :D →
Cop, leads to the following concept dual to the notion of internal categories.

Definition 2.9. Let C be a finitely cocomplete category. An internal cocategory in C is an internal
category in Cop. Internal cofunctors and internal conatural transformations are internal functors
and internal natural transformations in Cop. We denote by CoCat(C) := Cat(Cop) the 2-category
of internal cocategories, cofunctors and conatural transformations in C.

More explicitly, an internal cocategory C = (C0,C1, σ, τ, ε,Δ) in C consists of objects C0

and C1 of C and morphisms σ, τ :C0 → C1, ε :C1 → C0 and Δ :C1 → C1 σ�τ C1 of C such
that the diagrams dual to (2.8)–(2.11) commute if all the morphisms are relabelled as follows:
s �→ σ ; t �→ τ ; ı �→ ε and ◦ �→ Δ. Notice that all arrows involved in the universal constructions
have to be reversed, too, for example, pullbacks have to be replaced by pushouts and diagonal
morphisms by codiagonal ones.

Given internal cocategories C and C′ in C, an internal cofunctor F = (F0,F1) :C → C′ con-
sists of morphisms F0 :C′

0 → C0 and F1 :C′
1 → C1 of C such that the diagrams dual to (2.12)

and (2.13) commute.
Given internal cofunctors F, F̃ :C → C′ in C, an internal conatural transformation is a mor-

phism η :C′
1 → C0 such that the diagrams dual to (2.14) and (2.15) commute.

Notice the counter-intuitive direction of the morphisms F0, F1 and η which is a consequence
of our definition of CoCat(−). We finally remark that we have never called Cat(−) a categori-
fication since it is not clear in which sense it can be reversed and whether this would correspond
to a form of decategorification [3].

3 It is known [6] that Cat(−) is a functor Lex → Lex, but we do note make use of this fact here.
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2.3. Strict 2-groups

Strict 2-groups form one of the simplest examples of higher-dimensional algebraic structures.
Just as a group can be viewed as a groupoid with one object, every strict 2-group gives rise
to a 2-groupoid with one object. 2-Groups have appeared in the literature in various contexts
and under different names (categorical group, gr-category, cat1-group, etc.). For an overview
and a comprehensive list of references, we refer to [4]. Strict 2-groups can be defined in sev-
eral different ways. In the present article, we define a strict 2-group as an internal category in
the category of groups so that the techniques of Section 2.2 are available. Alternatively, strict
2-groups are group objects in the category of small categories, see, for example [22].

In order to make the presentation self-contained, let us first recall the construction of finite
limits in the finitely complete category Grp of groups. The terminal object is the trivial group
{e} with the trivial group homomorphisms G → {e}; the binary product of groups G and H is
the direct product, G � H = G × H , with the projections p1 :G × H → G,(g,h) �→ g and
p2 :G × H → H,(g,h) �→ h; and for group homomorphisms f1, f2 :G → H , their equalizer is
a subgroup of G,

eq(f1, f2) = {
g ∈ G: f1(g) = f2(g)

} ⊆ G, (2.25)

with its inclusion e = (idG)|eq(f1,f2) : eq(f1, f2) → G.
For group homomorphisms t :G → K and t :H → K , we therefore obtain the pullback,

G s�t H = G ×K H = {
(g,h) ∈ G × H : s(g) = t (h)

} ⊆ G × H, (2.26)

with the projections p1 :G ×K H → G, (g,h) �→ g and p2 :G ×K H → H , (g,h) �→ h.

Definition 2.10. The objects, morphisms and 2-morphisms of 2Grp := Cat(Grp) are called
strict 2-groups, homomorphisms and 2-homomorphisms of strict 2-groups, respectively. The ob-
jects of f2Grp := Cat(fGrp) are called strict finite 2-groups.

Examples of strict 2-groups, their homomorphisms and 2-homomorphisms can be constructed
from Whitehead’s crossed modules as follows [40].

Definition 2.11.

1. A crossed module (G,H,�, ∂) consists of groups G and H and group homomorphisms
∂ :H → G and G → AutH,g �→ (h �→ g � h) that satisfy for all g ∈ G, h,h′ ∈ H ,

∂(g � h) = g∂(h)g−1, (2.27)

∂(h) � h′ = hh′h−1. (2.28)

2. A homomorphism F = (FG,FH ) : (G,H,�, ∂) → (G′,H ′,�′, ∂ ′) of crossed modules con-
sists of group homomorphisms FG :G → G′ and FH :H → H ′ such that,
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H
∂

FH

G

FG

H ′
∂ ′ G′

(2.29)

commutes and such that for all g ∈ G, h ∈ H ,

FH (g � h) = FG(g) �′ FH (h). (2.30)

3. Let F, F̃ : (G,H,�, ∂) → (G′,H ′,�′, ∂ ′) be homomorphisms of crossed modules. A 2-ho-
momorphism η :F ⇒ F̃ is a map ηH :G → H ′ such that for all g,g1, g2 ∈ G, h ∈ H ,

ηH (e) = e, (2.31)

ηH (g1g2) = ηH (g1)
(
FG(g1) �′ ηH (g2)

)
, (2.32)

∂ ′(η(g)
) = F̃G(g)FG(g)−1, (2.33)

ηH

(
∂(h)

) = F̃H (h)FH (h)−1. (2.34)

Example 2.12.

1. Let H be a finite group and G = AutH its group of automorphisms. Choose ∂ :H → G,h �→
(h′ �→ hh′h−1), and g � h := g(h) for g ∈ AutH and h ∈ H . Then (G,H,�, ∂) forms a
crossed module.

2. Let G be a finite group and (V ,ρ) be a finite-dimensional representation of G, i.e. V is a
k-vector space and ρ :G → GLk(V ) a homomorphism of groups. Choose H := (V ,+,0) to
be the additive group underlying the vector space, g � h := ρ(g)[h] for g ∈ G, h ∈ H , and
∂ :H → G,h �→ e. Then (G,H,�, ∂) forms a crossed module.

3. More examples are given in [4,23].

Theorem 2.13.

1. There is a 2-category XMod whose objects are crossed modules, whose morphisms are ho-
momorphisms of crossed modules and whose 2-morphisms are 2-homomorphisms of crossed
modules.

2. The 2-categories 2Grp and XMod are 2-equivalent.

In order to obtain examples of strict 2-groups from crossed modules, we need the explicit
form of one of the 2-functors involved in this 2-equivalence, T : XMod → 2Grp.

1. T associates with each crossed module (G,H,�, ∂) the strict 2-group (G0,G1, s, t, ı,◦)

defined as follows. The groups are G0 := G and G1 := H � G where the semidirect
product uses the multiplication (h1, g1) · (h2, g2) := (h1(g1 � h2), g1g2). The group ho-
momorphisms are given by s :H � G → G,(h,g) �→ g; t :H � G → G,(h,g) �→ ∂(h)g;
ı :G → H � G,g �→ (e, g) and ◦ : (H � G) × (H � G) → H � G,((h1, g1), (h2, g2)) �→
(h1, g1) ◦ (h2, g2) := (h1h2, g1), defined whenever g1 = s(h1, g1) = t (h2, g2) = ∂(h2)g2.
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2. For each homomorphism F = (FG,FH ) : (G,H,�, ∂) → (G′,H ′,�′, ∂ ′) of crossed mod-
ules, there is a homomorphism of strict 2-groups T F = (F0,F1) given by F0 := FG :G0 →
G′

0 and F1 := FH × FG :H � G → H ′
� G′.

3. Let F, F̃ : (G,H,�, ∂) → (G′,H ′,�′, ∂ ′) be homomorphisms of crossed modules. For each
2-homomorphism η :F ⇒ F̃ , there is a 2-homomorphism T η :T F ⇒ T F̃ of strict 2-groups
given by T η :G0 → G′

1 = H ′
� G′, g �→ (ηH (g),FG(g)).

From the proof of Theorem 2.13 (see, for example [22,23]), one sees that in any internal
category (G0,G1, s, t, ı,◦) in Grp, the group homomorphism ◦ :G1 s�t G1 → G1 is already
uniquely determined by s, t, ı and by the group structures of G0 and G1 and, moreover, that each
element g ∈ G1 has a unique inverse g× ∈ G1 with respect to ‘◦’. In other words, an internal
category in Grp is actually an internal groupoid in Grp.

This result holds not only for internal categories in Grp, but for internal categories in the cat-
egory Grp(C) of group objects in any category C that has all finite products (cf. Appendix A.2).
This result can be stated as follows.

Proposition 2.14. Let C be a category with finite products and (G0,G1, s, t, ı,◦) be an internal
category4 in Grp(C).

1. The morphism ◦ :G1 s�t G1 → G1 is of the form

g ◦ g̃ = g
(
ı
(
s(g)

))−1
g̃, (2.35)

for all g, g̃ ∈ G1 that satisfy s(g) = t (g̃). Conversely, given only the data (G0,G1, s, t, ı),
Eq. (2.35) defines a morphism ◦ :G1 s�t G1 → G1 that satisfies (2.9) to (2.11).
In order to simplify the notation in (2.35), we have pretended that C is a subcategory of Set
and so we can write down this equation for elements.

2. There is a morphism ξ :G1 → G1, g �→ g× such that

t (g×) = s(g), (2.36)

s(g×) = t (g), (2.37)

g× ◦ g = ı
(
s(g)

)
, (2.38)

g ◦ g× = ı
(
t (g)

)
. (2.39)

It is given by ξ(g) = ı(s(g))g−1ı(t (g)) and satisfies

ξ(g ◦ g̃) = ξ(g̃) ◦ ξ(g), (2.40)

for all g, g̃ ∈ G1 for which s(g) = t (g̃). Again, we have pretended that C is a subcategory
of Set.

4 This includes the assumption that the required pullbacks exist in Grp(C). A sufficient condition is that C is finitely
complete.
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The map ξ :G1 → G1 which associates with each element g ∈ G1 its inverse g× with re-
spect to the vertical composition ‘◦’ and the contravariant counterpart of this map (Remark 4.20
below), are responsible for the functorial antipode in the Hopf category of representations of
the 2-group (G0,G1, s, t, ı,◦). This is shown in Proposition 5.14 and further illustrated in Sec-
tion 5.6 below.

3. Cocommutative trialgebras

Given some group G, its group algebra k[G] forms a cocommutative Hopf algebra. In this
section, we use the technique of internalization in order to construct the analogue of the group al-
gebra for strict 2-groups. This gives rise to a novel higher-dimensional algebraic structure which
is defined as an internal category in the category of cocommutative Hopf algebras. We call this
a cocommutative trialgebra for reasons that are explained below. For general background on
coalgebras, bialgebras and Hopf algebras, we refer to [36].

Definition 3.1. The functor k[−] : Grp → cocHopfAlgk is defined as follows. It associates with
each group G its group algebra k[G]. This is the free vector space over the set G equipped
with the structure of a cocommutative Hopf algebra (k[G],μ,η,Δ, ε,S) using the multiplication
μ : k[G] ⊗ k[G] → k[G], defined on basis elements g,h ∈ G by g ⊗ h �→ gh (group multipli-
cation), the unit η : k → k[G], 1 �→ e (group unit), comultiplication Δ : k[G] → k[G] ⊗ k[G],
g �→ g ⊗ g (group-like), counit ε : k[G] → k, g �→ 1, and antipode S : k[G] → k[G], g �→ g−1

(group inverse). The functor k[−] associates with each group homomorphism f :G → H the
bialgebra homomorphism k[f ] : k[G] → k[H ] which is the k-linear extension of f .

Given some strict 2-group (G0,G1, s, t, ı,◦), the idea is to apply k[−] to G0 and G1 and to
all maps s, t, ı,◦. The result is a structure (H0,H1, ŝ, t̂ , ı̂, ◦̂) consisting of cocommutative Hopf
algebras H0 and H1 with various bialgebra homomorphisms. In the following, we show that such
a structure can alternatively be defined as an internal category in the category of cocommutative
Hopf algebras. Definition 2.1 refers to several universal constructions such as pullbacks and
diagonal morphisms which are all constructed from finite limits. It is therefore sufficient to show
that k[−] preserves all finite limits (cf. Theorem 2.7).

3.1. Finite limits in the category of cocommutative Hopf algebras

We first recall the construction of finite limits in the category cocHopfAlgk . The proofs of the
following propositions are elementary.

Proposition 3.2. The terminal object in any of the categories HopfAlgk , cocHopfAlgk ,
cocBiAlgk and cocCoAlgk is given by k itself. For each object C, the unique morphism C → k

is the counit operation εC :C → k.

Proposition 3.3. The binary product in the category cocHopfAlgk is the tensor product of Hopf
algebras, i.e. for cocommutative Hopf algebras A and B ,

A � B = A ⊗ B, (3.1)

with the Hopf algebra homomorphisms p1 = idA ⊗ εB :A ⊗ B → A and p2 = εA ⊗ idB :
A⊗B → B . For convenience, we have suppressed the isomorphisms A⊗ k ∼= A and k ⊗B ∼= B .
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For each cocommutative Hopf algebra D with homomorphisms f1 :D → A and f2 :D → B ,
there is a unique Hopf algebra homomorphism ϕ :D → A⊗B such that ϕp1 = f1 and ϕp2 = f2.
It is given by ϕ := ΔD(f1 ⊗ f2) ( first ΔD , then f1 ⊗ f2).

Remark 3.4. The binary product in the categories cocBiAlgk and cocCoAlgk is given precisely
by the same construction: the tensor product of bialgebras or coalgebras, respectively. In the cat-
egory HopfAlgk of all (not necessarily cocommutative) Hopf algebras, the product is in general
not the tensor product of Hopf algebras. Cocommutativity is essential in Proposition 3.3 in order
to show that ϕ :D → A ⊗ B is indeed a homomorphism of coalgebras.

Proposition 3.5. The equalizer of a pair of morphisms (binary equalizer) in the category
HopfAlgk is given by the coalgebra cogenerated by the equalizer in Vectk , i.e. for Hopf al-
gebras D, C with homomorphisms f1, f2 :D → C, the equalizer of f1 and f2 is the largest
subcoalgebra eq(f1, f2) of D that is contained in the linear subspace ker(f1 − f2) ⊆ D, with
its inclusion e := (idD)|eq(f1,f2) : eq(f1, f2) → D. The coalgebra eq(f1, f2) turns out to be a
sub-Hopf algebra of D and e a homomorphism of Hopf algebras.

For each Hopf algebra H with a homomorphism ψ :H → D such that ψf1 = ψf2, the im-
age ψ(H) forms a coalgebra which is contained in ker(f1 − f2) so that ψ(H) ⊆ eq(f1, f2).
Then there is a unique Hopf algebra homomorphism ϕ :H → eq(f1, f2) such that ψ = ϕe. It is
obtained by simply restricting the codomain of ψ to eq(f1, f2).

Remark 3.6. The equalizer in cocHopfAlgk , cocBiAlgk and cocCoAlgk is given precisely by
the same construction.

Corollary 3.7. The pullback in the category cocHopfAlgk is constructed as follows. Let A, B , C

be cocommutative Hopf algebras with homomorphisms s :A → C and t :B → C. The pullback
A s�t B is the largest subcoalgebra of A ⊗ B that is contained in the linear subspace kerΦ ⊆
A ⊗ B . Here Φ denotes the linear map Φ = (s ⊗ εB − εA ⊗ t) :A ⊗ B → C. The limiting
cone is given by the Hopf algebra homomorphisms p1 = (idA ⊗ εB)|As�tB :A s�t B → A and
p2 = (εA ⊗ idB)|As�tB :A s�t B → B .

3.2. Finite-limit preservation of the group algebra functor

Theorem 3.8. The group algebra functor k[−] : Grp → cocHopfAlgk preserves finite limits.

Proof. We verify in a direct calculation that k[−] preserves the terminal object, binary products
and binary equalizers.

1. For the terminal object, we note that k[{e}] ∼= k are isomorphic as Hopf algebras.
2. In order to see that k[−] preserves binary products, consider groups G and H . We recall that

there is an isomorphism of Hopf algebras,

k[G × H ] → k[G] ⊗ k[H ], (g,h) �→ g ⊗ h, (3.2)

which shows that k[−] maps the product object G � H = G × H in Grp to the product
object k[G]�k[H ] = k[G]⊗k[H ] in cocHopfAlgk . Let p1 :G×H → G,(g,h) �→ g be the
first projection, then k[p1] : k[G] ⊗ k[H ] → k[G], g ⊗ h �→ g is precisely the map k[p1] =
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idk[G] ⊗εk[H ]. An analogous result holds for p2 :G×H → H,(g,h) �→ h. Therefore, K[−]
maps the limiting cone in Grp to the limiting cone in cocHopfAlgk .

3. For equalizers, consider group homomorphisms f1, f2 :G → H and denote their equalizer
in Grp by eq(f1, f2) ⊆ G. We show that

k
[
eq(f1, f2)

] = ker
(
k[f1] − k[f2]

) ⊆ k[G], (3.3)

i.e. the kernel of the difference which is the equalizer in Vectk , already forms a coalgebra,
namely k[eq(f1, f2)] itself. In order to see this, choose the standard basis G of k[G]. Then
g ∈ ker(k[f1] − k[f2]) if and only if f1(g) − f2(g) = 0 in k[H ] which holds if and only if
g ∈ eq(f1, f2). �

Corollary 3.9. The group algebra functor k[−] : Grp → cocHopfAlgk preserves pullbacks. In
particular, for groups G, H and K and group homomorphisms s :G → K and t :H → K , there
is an isomorphism of Hopf algebras,

k[G ×K H ] ∼= k[G] k[s]�k[t] k[H ] = kerΦ ⊆ k[G] ⊗ k[H ], (3.4)

where Φ = (k[s] ⊗ εk[H ] − εk[G] ⊗ k[t]) : k[G] ⊗ k[H ] → k[K].

Remark 3.10. If the group algebra functor is viewed as a functor k[−] : Grp → HopfAlgk into
the category of all (not necessarily cocommutative) Hopf algebras, it does not preserve all pull-
backs. In fact, it does not even preserve all binary products. This can be blamed on the inclusion
functor cocHopfAlgk → HopfAlgk which does not preserve all binary products.

3.3. Definition of cocommutative trialgebras

Definition 3.11. The objects, morphisms and 2-morphisms of the 2-category

cocTriAlgk := Cat(cocHopfAlgk) (3.5)

are called strict cocommutative trialgebras, their homomorphisms and 2-homomorphisms, re-
spectively.

Proposition 3.12. The functor k[−] : Grp → cocHopfAlgk gives rise to a 2-functor,

Cat
(
k[−]) : 2Grp → cocTriAlgk. (3.6)

This is the main consequence of the preceding section. In particular, we can use this 2-functor
in order to obtain examples of strict cocommutative trialgebras from strict 2-groups and thereby
from Whitehead’s crossed modules.

Let us finally unfold the definition of a strict cocommutative trialgebra in more detail.

Proposition 3.13. A strict cocommutative trialgebra H = (H0,H1, s, t, ı,◦) consists of co-
commutative Hopf algebras H0 and H1 over k and bialgebra homomorphisms s :H1 → H0,
t :H1 → H0, ı :H0 → H1 and ◦ :H1 s�t H1 → H1 such that (2.8)–(2.11) hold (with Cj replaced
by Hj ).



H. Pfeiffer / Advances in Mathematics 212 (2007) 62–108 81
Remark 3.14. The terminology trialgebra for such an internal category H in cocHopfAlgk

originates from the observation that the vector space H1 is equipped with three linear operations.
There is a multiplication and a comultiplication since H1 forms a Hopf algebra. In addition,
there is another, partially defined, multiplication ◦ :H1 s�t H1 → H1. From the construction of
the pullback (Corollary 3.7), we see that for h,h′ ∈ H1, the multiplication h ◦ h′ is defined only
if h ⊗ h′ lies in the largest subcoalgebra of H1 ⊗ H1 that is contained in the linear subspace,

ker(s ⊗ εH1 − εH1 ⊗ t) ⊆ H1 ⊗ H1. (3.7)

Whenever the multiplication ‘◦’ is defined, (2.10) implies that it is associative.
The purpose of the Hopf algebra H0 and of the homomorphisms s, t :H1 → H0 which feature

in the pullback H1 s�t H1, is to keep track of precisely when the multiplication ‘◦’ is defined.
This is completely analogous to the partially defined multiplication ◦ :G1 ×G0 G1 → G1 in a
strict 2-group (G0,G1, s, t, ı,◦) where a pair of elements (g, g′) ∈ G1 × G1 is ‘◦’-composable
if and only if the source of g agrees with the target of g′, i.e. s(g) = t (g′).

In the cocommutative trialgebra H , the partially defined multiplication ‘◦’ has got local units.
The homomorphism ı :H0 → H1 yields the units, and (2.11) implies the following unit law: the
element ı(t (h)) is (up to a factor) a left-unit for h ∈ H1, i.e. ◦(ı(t (h)) ⊗ h) = ε(h)h, and ı(s(h))

is a right-unit, i.e. ◦(h ⊗ ı(s(h))) = hε(h). Note that this sort of units can depend on s(h) and
t (h), just as the identity morphisms in a small category which form the left- or right-units of a
given morphism, depend on the source and target object of that morphism.

All three operations on H1 are compatible in the following way. The multiplication and co-
multiplication of H1 are compatible with each other because H1 forms a bialgebra. The partially
defined multiplication ‘◦’ and the local unit map ‘ı’ are both homomorphisms of bialgebras
which expresses their compatibility with the Hopf algebra operations of H0 and H1.

In particular, the fact that ‘◦’ forms a homomorphism of algebras, implies that both mul-
tiplications, the globally defined multiplication ‘·’ of the algebra H1 and the partially defined
multiplication ‘◦’ are compatible and satisfy an interchange law,

(h1 · h2) ◦ (
h′

1 · h′
2

) = (
h1 ◦ h′

1

) · (h2 ◦ h′
2

)
, (3.8)

for h1, h2, h
′
1, h

′
2 ∈ H1, whenever the partial multiplication ‘◦’ is defined. A possible Eckmann–

Hilton argument [19] which would render both multiplications commutative and equal, is side-
stepped by the same mechanism as in strict 2-groups: both multiplications can in general have
different units.

A special case in which the Eckmann–Hilton argument is effective, is any example in which
H0 ∼= k. In this case, s = t = εH1 :H1 → k; ı = ηH1 : k → H1; H1 s�t H1 = H1 ⊗ H1, and the
multiplication ‘◦’ is defined for all pairs of elements of H1. Furthermore, ı(1) ∈ H1 is a two-sided
unit for ‘◦’, i.e.

◦(
ı(1) ⊗ h

) = h = ◦(
h ⊗ ı(1)

)
, (3.9)

for all h ∈ H1. The Eckmann–Hilton argument then implies that for all h,h′ ∈ H1,

◦(h ⊗ h′) = ◦(h′ ⊗ h) = hh′ = h′h. (3.10)

Obviously, H1 needs to be not only cocommutative, but also commutative in order to admit such
an example.
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We can finally apply Proposition 2.14 to C = cocCoAlgk in order to express the operation
‘◦’ of any cocommutative trialgebra (H0,H1, s, t, ı,◦) in terms of the other data and in order to
show the existence of a bialgebra homomorphism ξ :H1 → H1. We include the details only in
the dual situation in Remark 4.20 below.

4. Commutative cotrialgebras

In this section, we develop the concept dual to cocommutative trialgebras. This construction
is based on the functor k(−) : fGrp → comHopfAlgop

k which assigns to each finite group G its
commutative Hopf algebra (k(G),μ,η,Δ, ε,S) of functions k(G) = {f :G → k}. This forms an
associative unital algebra (k(G),μ,η) under pointwise operations in k and a Hopf algebra using
the operations inherited from the group structure of G. The functor k(−) associates with each
group homomorphism ϕ :G → H the bialgebra homomorphism k(ϕ) : k(H) → k(G), f �→ ϕf

(first ϕ, then f ).
By internalization, we obtain a 2-functor Cat(k(−)) which associates with each finite 2-group

G an internal cocategory in the category of commutative Hopf algebras. We call such a structure
a commutative cotrialgebra.

4.1. Finite colimits in the category of commutative Hopf algebras

We first recall the construction of finite colimits in the category comHopfAlgk . The proofs of
the following propositions are again elementary.

Proposition 4.1. The initial object in any of the categories HopfAlgk , comHopfAlgk , comBiAlgk

and comAlgk is given by k itself. For each object A, the unique morphism k → A is the unit op-
eration η : k → A of the underlying algebra.

Proposition 4.2. The binary coproduct in the category comHopfAlgk is the tensor product of
Hopf algebras, i.e. for commutative Hopf algebras A and B ,

A � B = A ⊗ B, (4.1)

with the Hopf algebra homomorphisms ı1 = idA ⊗ ηB :A → A ⊗ B and ı2 = ηA ⊗ idB :B →
A ⊗ B . Here we have again suppressed the isomorphisms A ⊗ k ∼= A and k ⊗ B ∼= B .

For each commutative Hopf algebra D with homomorphisms f1 :A → D and f2 :B → D,
there is a unique Hopf algebra homomorphism ϕ :A ⊗ B → D such that ı1ϕ = f1 and ı2ϕ = f2.
It is given by ϕ := (f1 ⊗ f2)μ.

Remark 4.3. The binary coproduct in the categories comBiAlgk and comAlgk is given precisely
by the same construction: the tensor product of bialgebras or coalgebras, respectively. In the cat-
egory HopfAlgk of all (not necessarily commutative) Hopf algebras, the coproduct is in general
not the tensor product of Hopf algebras. Commutativity is essential in Proposition 4.2 in order to
show that ϕ :A ⊗ B → D is indeed a homomorphism of algebras.

Proposition 4.4. The binary coequalizer in the category HopfAlgk is given by a quotient algebra.
For Hopf algebras C, D with homomorphisms f1, f2 :C → D, the coequalizer of f1 and f2 is
the quotient algebra D/I where I is the two-sided (algebra) ideal generated by (f1 − f2)(C),
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i.e. by all elements of the form f1(c) − f2(c), c ∈ C. The associated colimiting cone is the
canonical projection π :D → D/I . I turns out to be a Hopf ideal, and π a homomorphism of
Hopf algebras.

For each Hopf algebra H with a homomorphism ψ :D → H such that f1ψ = f2ψ , ψ van-
ishes on I ⊆ D so that it descends to the quotient D/I and gives rise to a Hopf algebra
homomorphism ϕ :D/I → H . This ϕ is the unique Hopf algebra homomorphism for which
ψ = πϕ.

Remark 4.5. The coequalizer in comHopfAlgk , comBiAlgk and comAlgk is given precisely by
the same construction.

Corollary 4.6. The pushout in the category comHopfAlgk is constructed as follows. Let A, B ,
C be commutative Hopf algebras with homomorphisms σ :C → A and τ :C → B . The pushout
A σ�τ B is the quotient (A ⊗ B)/I where I is the two-sided (algebra) ideal generated by Φ(C).
Here Φ denotes the linear map Φ = (σ ⊗ηB −ηA⊗τ) :C → A⊗B . The colimiting cone is given
by the Hopf algebra homomorphisms ı1 = idA ⊗ ηB :A → A σ�τ B and ı2 = ηA ⊗ idA :B →
A σ�τ B .

Theorem 4.7. The function algebra functor k(−) : fGrp → comHopfAlgop
k preserves finite

limits.

Corollary 4.8. The function algebra functor k(−) : fGrp → comHopfAlgop
k preserves pullbacks.

In particular, for groups G, H and K and group homomorphisms s :G → K and t :H → K ,
there is an isomorphism of Hopf algebras,

k(G ×K H) ∼= k(G) k(s)�k(t) k(H) = (
k(G) ⊗ k(H)

)
/I, (4.2)

where I is the (algebra) ideal generated by all elements of the form σ(f )⊗ηk(H) −ηk(G) ⊗ τ(f )

for f ∈ k(K) where we have written σ = k(s), τ = k(t).

Remark 4.9. If the function algebra is viewed as a functor k(−) : fGrp → HopfAlgop
k into the

category of all (not necessarily commutative) Hopf algebras, it does not preserve pullbacks. In
fact, it does not even preserve binary products. This can again be blamed on the inclusion functor
comHopfAlgk → HopfAlgk which does not preserve binary coproducts.

4.2. Definition of commutative cotrialgebras

Definition 4.10. The objects, morphisms and 2-morphisms of the 2-category

comCoTriAlgk := CoCat(comHopfAlgk) (4.3)

are called strict commutative cotrialgebras, their homomorphisms and 2-homomorphisms, re-
spectively.

The main consequence of the preceding section is the existence of the following 2-functor
which can be used in order to construct examples of commutative cotrialgebras from strict finite
2-groups and from finite crossed modules.



84 H. Pfeiffer / Advances in Mathematics 212 (2007) 62–108
Proposition 4.11. The functor k(−) : fGrp → comHopfAlgk gives rise to a 2-functor,

Cat
(
k(−)

)
: f2Grp → comCoTriAlgk. (4.4)

Let us finally unfold the definition of a strict commutative cotrialgebra.

Proposition 4.12. A strict commutative cotrialgebra H = (H0,H1, σ, τ, ε,Δ) consists of com-
mutative Hopf algebras H0 and H1 over k and of bialgebra homomorphisms σ, τ :H0 → H1,
ε :H1 → H0 and Δ :H1 → H1 σ�τ H1 such that the diagrams dual to (2.8)–(2.11) hold, renam-
ing Cj �→ Hh; s �→ σ , t �→ τ ; ı �→ ε and ◦ �→ Δ.

Remark 4.13. The terminology cotrialgebra originates from the three operations that are defined
on the vector space H1. Here we have again the multiplication and the comultiplication of the
Hopf algebra H1, but with an additional, partially defined comultiplication,

Δ :H1 → H1 σ�τ H1. (4.5)

The notion of a partially defined comultiplication is precisely dual to that of the partially defined
multiplication in a trialgebra (Remark 3.14). The Hopf algebra homomorphism does not map
into H1 ⊗ H1, but rather into a suitable quotient of this algebra which is given by the pushout
(Corollary 4.6). Similarly, the partially defined comultiplication has a local counit,

ε :H1 → H0. (4.6)

In particular, the diagram dual to (2.10) states the coassociativity for the partially defined comul-
tiplication while the diagram dual to (2.11) states its counit property.

4.3. Compact topological 2-groups and commutative C∗-cotrialgebras

Whereas the definition of the group algebra k[G] (Section 3) is available for any group G, we
have to refine the definition of the function algebra k(G) (Section 4) if G is supposed to be more
general than a finite group.5

One possibility is to restrict the function algebra to the algebraic, i.e. polynomial functions.
If G is a compact topological group, however, a good choice of function algebra is the C∗-
algebra C(G) of continuous complex-valued functions on G. The resulting theory is particularly
powerful because the C∗-algebra C(G) contains the full information in order to reconstruct G

using Gel’fand representation theory. This fact can be expressed as an equivalence between the
category of compact topological groups and a suitable category of C∗-algebras. In Appendix A,
we review the construction of these categories and how to derive their equivalence from Gel’fand
representation theory. In the following, we just summarize the relevant results and generalize the
preceding subsection, in particular Proposition 4.11, to the case of compact topological groups.

5 This is because we want to provide k(G) with a comultiplication Δ :k(G) → k(G) ⊗ k(G) which is induced by the
group multiplication G×G → G, i.e. we need an isomorphism k(G×G) ∼= k(G)⊗ k(G). The algebraic tensor product,
however, may be insufficient for this.
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Definition 4.14.

1. A compact topological group (G,μ,η, ζ ) is a compact Hausdorff space G with continuous
maps,

μ :G × G → G (multiplication), (4.7)

η : {e} → G (unit), (4.8)

ζ :G → G (inversion), (4.9)

such that (μ × idG)μ = (idG × μ)μ, (η × idG)μ = p2, (idG × η)μ = p1, δ(idG × ζ )μ = tη

and δ(ζ × idG)μ = tη. Here p1 :G × G → G,(g1, g2) �→ g1 is the projection onto the first
factor, similarly p2 onto the second factor; δ :G → G × G, g �→ (g, g) is the diagonal map,
and t :G → {e}, g → e.

2. Let (G,μ,η, ζ ) and (G′,μ′, η′, ζ ′) be compact topological groups. A homomorphism of
compact topological groups f :G → G′ is a continuous map for which μf = (f × f )μ′,
ηf = η′ and ζf = f ζ ′.

3. There is a category compTopGrp whose objects are compact topological groups and whose
morphisms are homomorphisms of compact topological groups.

Definition 4.15.

1. A commutative Hopf C∗-algebra (H,Δ,ε,S) is a commutative unital C∗-algebra H with
unital ∗-homomorphisms,

Δ :H → H ⊗∗ H (comultiplication), (4.10)

ε :H → C (counit), (4.11)

S :H → H (antipode), (4.12)

such that Δ(Δ ⊗ idH ) = Δ(idH ⊗ Δ), Δ(idH ⊗ ε) = idH ⊗ 1H , Δ(ε ⊗ idH ) = 1H ⊗ idH ,
Δ(S ⊗ idH )μ = εη and Δ(idH ⊗S)μ = εη (composition is read from left to right). Here 1H

is the unit of H , η : C → H , 1 �→ 1H , and μ :H ⊗∗ H → H denotes multiplication in H . The
notation ⊗∗ refers to the unique completion of the algebraic tensor product to a C∗-algebra
(see Appendix A).

2. Let (H,Δ,ε,S) and (H ′,Δ′, ε′, S′) be commutative Hopf C∗-algebras. A homomorphism
of commutative Hopf C∗-algebras is a unital ∗-homomorphism f :H → H ′ for which
Δ(f ⊗ f ) = f Δ′, ε = f ε′ and Sf = f S′.

3. There is a category comHopfC∗Alg whose objects are commutative Hopf C∗-algebras and
whose morphisms are homomorphisms of commutative Hopf C∗-algebras.

Remark 4.16.

1. In a generic Hopf algebra, one usually defines the antipode S :H → H as a linear map with
the property that Δ(S ⊗ idH )μ = εη and Δ(idH ⊗ S)μ = εη. It then turns out that S is
an algebra anti-homomorphism. Definition 4.15 looks a bit strange because it defines S as
an algebra homomorphism (which is here, of course, the same as an anti-homomorphism
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since H is commutative). The reason for this choice is our derivation of Theorem 4.17 in
Appendix A.

2. Note that the terminology comultiplication is used by some authors only if Δ maps into the
algebraic tensor product H ⊗ H . Our comultiplication which maps into a completion of the
tensor product would then be called a topological comultiplication.

There is a functor C(−) : compTopGrp → comHopfC∗Algop which assigns to each com-
pact topological group G the commutative unital C∗-algebra C(G) of continuous complex-
valued functions on G. Using the group operations of G, this C∗-algebra is equipped with the
structure of a Hopf C∗-algebra by setting (Δf )[g1, g2] := f (μ(g1, g2)), εf := f (η(1)) and
(Sf )[g] := f (ζ(g)). There is also a functor σ(−) : comHopfC∗Algop → compTopGrp which
assigns to each commutative Hopf C∗-algebra H its Gel’fand spectrum σ(H) which is a compact
topological group using the coalgebra structure of H . For more details, we refer to Appendix A
in which we also review how to derive the following theorem.

Theorem 4.17. There is an equivalence of categories compTopGrp 
 comHopfC∗Algop pro-
vided by the functors

C(−) : compTopGrp → comHopfC∗Algop (4.13)

and

σ(−) : comHopfC∗Algop → compTopGrp. (4.14)

The category compTopGrp is finitely complete. In particular, the terminal object is the trivial
group {e}, the binary product G � H = G × H of two compact topological groups G and H

is the direct product with the product topology and the usual projections, and the equalizer of a
pair of homomorphisms of compact topological groups f1, f2 :G → H is the (closed) subgroup
E = {g ∈ G: f1(g) = f2(g)} ⊆ G with the induced topology and the canonical inclusion map.

Since the functors C(−) and σ(−) form an equivalence of categories, they both preserve finite
limits and finite colimits, and comHopfC∗Alg is finitely cocomplete.

Definition 4.18. The objects of the 2-category

compTop2Grp := Cat(compTopGrp) (4.15)

are called strict compact topological 2-groups and the objects of the 2-category

comC∗CoTriAlg := CoCat(comHopfC∗Alg) (4.16)

strict commutative C∗-cotrialgebras.

We can immediately employ the general theory and invoke Corollary 2.8 in order to obtain the
following result which generalizes Proposition 4.11 without the need to verify limit preservation
of the functors by hand.
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Theorem 4.19. There is a 2-equivalence between the 2-categories

compTop2Grp 
 comC∗CoTriAlg (4.17)

provided by the functors

Cat
(
C(−)

)
: compTop2Grp → comC∗CoTriAlg (4.18)

and

Cat
(
σ(−)

)
: comC∗CoTriAlg → compTop2Grp. (4.19)

We can use the 2-functor Cat(C(−)) in order to construct a strict commutative C∗-cotri-
algebra H := Cat(C(−))[G] from each strict compact topological 2-group G. Conversely, we
can recover the strict compact topological 2-group G from the strict commutative C∗-cotri-
algebra H up to isomorphism as G ∼= Cat(σ (−))[H ]. The 2-functor Cat(σ (−)) is therefore the
appropriate generalization of the Gel’fand spectrum to the case of commutative C∗-cotrialgebras
and Theorem 4.19 the desired generalization of Gel’fand representation theory.

The general remarks of Sections 4.1 to 4.2 generalize from finite groups to compact topolog-
ical groups if we replace the algebra k(G) by C(G).

Remark 4.20. Applying Proposition 2.14 to any of the categories C = comAlgop
k or C =

comUnC∗Algop, we see that in any strict commutative [C∗-]cotrialgebra (H0,H1, σ, τ, ε,Δ),
the homomorphism of Hopf [C∗-]algebras Δ :H1 → H1 σ�τ H1 is uniquely determined by

Δ(h) =
∑

h(1)σ
(
ε
(
S
(
h(2)

))) ⊗ h(3), (4.20)

for all h ∈ H1, where we denote by Δ(h) = ∑
h(1) ⊗ h(2) the comultiplication of H1. There is a

homomorphism of Hopf [C∗-]algebras,

S :H1 → H1, h �→
∑

σ
(
ε
(
h(1)

))
S
(
h(2)

)
τ
(
ε
(
h(3)

))
, (4.21)

such that,

τS = σ, (4.22)

σS = τ, (4.23)

Δ(S ⊗ idH1)μH1 = εσ, (4.24)

Δ(idH1 ⊗ S)μH1 = ετ, (4.25)

Δ(S ⊗ S) = S Δop, (4.26)

where composition is read from left to right.
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5. Symmetric Hopf categories

5.1. Tannaka–Kreı̌n duality for commutative Hopf algebras

In order to define and study symmetric Hopf categories, we proceed in close analogy to our
treatment of Gel’fand representation theory in Section 4.3. We start from the notion of a strict
commutative cotrialgebra (Section 4.2) which is defined as an internal cocategory in the category
of commutative Hopf algebras over some field k. We then exploit the equivalence of the category
of commutative Hopf algebras with a suitably chosen category whose objects are symmetric
monoidal categories. This result is known as Tannaka–Kreı̌n duality and allows us to reconstruct
the commutative Hopf algebra from its category of finite-dimensional comodules. Both functors
involved in the equivalence preserve colimits. We can therefore make use of the 2-functor Cat(−)

in order to define symmetric Hopf categories and to establish a generalization of Tannaka–Kreı̌n
duality between commutative cotrialgebras and symmetric Hopf categories.

Standard references on Tannaka–Kreı̌n duality are [18,29,41]. We are aiming for an equiva-
lence of categories, and it is difficult to find such a result explicitly stated in the literature. We
follow the presentation of [42] which comes closest to our goal. In Appendix B, we summa-
rize how the results of [42] can be employed in order to establish the desired equivalence of
categories. In the present section, we just state the relevant definitions and results. We use the
term ‘symmetric monoidal category’ for a tensor category and ‘braided monoidal category’ for a
quasi-tensor category following [36].

Definition 5.1. Let V be a category.

1. A category over V is a pair (C,ω) of a category C and a functor ω :C → V .
2. Let (C,ω) and (C′,ω′) be categories over V . A functor over V is an equivalence class [F, ζ ]

of pairs (F, ζ ) where F :C → C′ is a functor and ζ :ω ⇒ F · ω′ is a natural isomorphism.
Two such pairs (F, ζ ) and (F̃ , ζ̃ ) are considered equivalent if and only if there is a natural
isomorphism ϕ :F ⇒ F̃ such that

ζ̃ = (ϕ · idω′) ◦ ζ. (5.1)

Recall that vertical ‘◦’ composition of natural transformations is read from right to left, but
horizontal ‘·’ composition from left to right.

3. For each category (C,ω) over V , we define the identity functor id(C,ω) := [1C, idω] over V .
4. Let (C,ω), (C′,ω′) and (C′′,ω′′) be categories over V and [F, ζ ] : (C,ω) → (C′,ω′) and

[G,ϑ] : (C′,ω′) → (C′′,ω′′) be functors over V . Then their composition is defined as

[F, ζ ] · [G,ϑ] := [
F · G,(idF · ϑ) ◦ ζ

]
. (5.2)

Definition 5.2. Let V be a monoidal category.

1. A monoidal category over V is a category (C,ω) over V such that C is a monoidal category
and ω :C → V a monoidal functor.

2. Let (C,ω) and (C′,ω′) be monoidal categories over V . A monoidal functor over V is a
functor [F, ζ ] : (C,ω) → (C′,ω′) over V such that F :C → C′ is a monoidal functor and ζ is
a monoidal natural isomorphism.
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Definition 5.3. Let V be a rigid monoidal category.

1. A rigid monoidal category over V is a monoidal category (C,ω) over V such that C is a rigid
monoidal category (i.e. every object has got a left-dual).

2. Let (C,ω) and (C′,ω′) be rigid monoidal categories over V . A rigid monoidal functor over
V is a monoidal functor [F, ζ ] : (C,ω) → (C′,ω′) over V such that the functor F :C → C′
preserves left-duals.

Definition 5.4. Let V be a symmetric monoidal category.

1. A symmetric monoidal category over V is a monoidal category (C,ω) over V such that C is
a symmetric monoidal category and ω is a symmetric monoidal functor.

2. Let (C,ω) and (C′,ω′) be symmetric monoidal categories over V . A symmetric monoidal
functor over V is a monoidal functor [F, ζ ] : (C,ω) → (C′,ω′) over V such that for all objects
X,Y of C the following diagram commutes,

ω′(F(X) ⊗ F(Y )
) ω′(ξX,Y )

ω′(σ ′
F(X),F (Y )

)

ω′(F(X ⊗ Y)
)

ω′(F (σX,Y ))

ω′(F(Y ) ⊗ F(X)
)

ω′(ξY,X)
ω′(F(Y ⊗ X)

)
.

(5.3)

Here σ−,− denotes the (symmetric) braiding of C, σ ′−,− the (symmetric) braiding of C′,
and ξ−,− the natural equivalence that determines the monoidal structure of the functor
F :C → C′. The diagram (5.3) is the image under the functor ω′ :C′ → V of the condition
that F be a symmetric monoidal functor.

Proposition 5.5. Let V be a rigid monoidal category, (C,ω) and (C′,ω′) be rigid monoidal
categories over V and

[F, ζ ] : (C,ω) → (C′,ω′) (5.4)

be a monoidal functor over V . Then [F, ζ ] is a rigid monoidal functor over V .

Proof. Standard, see, for example [18]. �
Proposition 5.6. Let V be a symmetric monoidal category, (C,ω) and (C′,ω′) be symmetric
monoidal categories over V and [F, ζ ] : (C,ω) → (C′,ω′) be a monoidal functor over V . Then
[F, ζ ] is a symmetric monoidal functor over V .

Proof. The proof involves a huge commutative diagram, but is otherwise an immediate conse-
quence of the definitions. �
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Definition 5.7. Let k be a field. A reconstructible category over Vectk is a rigid symmetric
monoidal category (C,ω) over Vectk such that C is a k-linear Abelian essentially small category
and ω :C → Vectk is an exact faithful k-linear functor into fdVectk . Recall that k-linearity re-
quires the tensor product of C to be k-bilinear and the braiding to be k-linear. A reconstructible
functor over Vectk is any monoidal functor over Vectk . C

⊗,∗,s
k,rec denotes the category whose ob-

jects are reconstructible categories over Vectk and whose morphisms are reconstructible functors
over Vectk .

The following theorem states the Tannaka–Kreı̌n duality between commutative Hopf algebras
over k and reconstructible categories over Vectk . For more details, see Appendix B.

Theorem 5.8. There is an equivalence of categories,

C
⊗,∗,s
k,rec 
 comHopfAlgk, (5.5)

given by the functors

coend(−) :C⊗,∗,s
k,rec → comHopfAlgk (5.6)

and

comod(−) : comHopfAlgk → C
⊗,∗,s
k,rec . (5.7)

The functor coend(−) associates with each reconstructible category over Vectk the coendo-
morphism coalgebra over k which can be shown to form a commutative Hopf algebra. The
functor comod(−) associates with each commutative Hopf algebra H over k the category
(MH ,ωH ) over Vectk where MH is the category of finite-dimensional right-H -comodules and
ωH :MH → Vectk is the forgetful functor. This category over Vectk can be shown to be recon-
structible.

From the equivalence (5.5), it follows that both functors coend(−) and comod(−) preserve
colimits. Since the category comHopfAlgk is finitely cocomplete (Section 4.1), the same holds
for the category C

⊗,∗,s
k,rec .

5.2. Definition of symmetric Hopf categories

Definition 5.9. The objects of the 2-category symHopfCatk := CoCat(C⊗,∗,s
k,rec ) are called strict

symmetric Hopf categories over k.

This definition deviates from similar definitions used in the literature [15,38] in a subtle way.
First, we have restricted ourselves to the symmetric case. Otherwise, it would not be possible
to use the techniques of internalization. Second, in this definition which we unfold in the sub-
sequent proposition and remark, we have a comultiplication functor which maps not into the
external tensor product, but rather into a pushout. Third, as we show in Proposition 5.14 below,
a functorial antipode is always present. We therefore use the term Hopf category rather than
bialgebra category, bimonoidal category or bitensor category.
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Proposition 5.10. A strict symmetric Hopf category C = (C0,C1, σ, τ, ε,Δ) consists of re-
constructible categories C0 and C1 over Vectk and of reconstructible functors σ, τ :C0 → C1,
ε :C1 → C0 and Δ :C1 → C1 σ�τ C1 such that the diagrams dual to (2.8)–(2.11) hold (with the
obvious renamings).

Remark 5.11. The reason for calling this structure a strict symmetric Hopf category are the
properties of the category C1. It is a symmetric monoidal category over VectK , and so C1 has a
symmetric tensor product which defines a functor

⊗̂ :C1 � C1 → C1, (5.8)

which forms the categorical analogue of a multiplication operation (functorial antipode). Here
C � D denotes the external tensor product of two k-linear Abelian categories C and D over
Vectk . The k-linear Abelian category C � D over Vectk together with the k-bilinear functor
� :C × D → C � D over Vectk is determined by the universal property that every k-bilinear
functor F :C × D → E over Vectk factors though � with unique F̂ (unique as a morphism of
C

⊗,∗,s
k,rec ), i.e.

C ×D �

F

C �D

F̂

E .

(5.9)

In particular, the tensor product ⊗ :C1 ×C1 → C1 is a k-bilinear functor and therefore defines the
functor (5.8) by

C1 × C1
�

⊗

C1 � C1

⊗̂

C1.

(5.10)

In addition to (5.8), there is the functorial comultiplication,

Δ :C1 → C1 σ�τ C1. (5.11)

The compatibility of Δ with ⊗̂ is encoded in the requirement that Δ be a reconstructible functor
over Vectk , i.e. in particular a monoidal functor over Vectk . If the functor Δ mapped into the co-
product of the category C

⊗,∗,s
k,rec (which is the external tensor product) rather than into the pushout,

the category C1 would have precisely the structure expected from a categorification of the notion
of a commutative bialgebra, namely (5.8) and a functor over Vectk ,

Δ :C1 → C1 � C1. (5.12)
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In the terminology of Neuchl [38], such a category C1 would be called a bimonoidal category
or 2-bialgebra. In contrast to Neuchl’s definition, however, our functor Δ of (5.11) does not
map into the coproduct, but rather into a pushout. This is in complete analogy to the situation for
2-groups and (co-)trialgebras where one of the operations is always partially defined, which helps
avoid the Eckmann–Hilton argument.

5.3. Tannaka–Kreı̌n reconstruction of commutative cotrialgebras

Similarly to our treatment of commutative cotrialgebras, we can employ the general theory
and invoke Corollary 2.8 in order to obtain the generalization of Tannaka–Kreı̌n duality to com-
mutative cotrialgebras.

Theorem 5.12. There is a 2-equivalence between the 2-categories

comCoTriAlgk 
 symHopfCatk (5.13)

provided by the functors

Cat
(
comod(−)

)
: comCoTriAlgk → symHopfCatk (5.14)

and

Cat
(
coend(−)

)
: symHopfCatk → comCoTriAlgk. (5.15)

Remark 5.13. We can therefore use the 2-functor Cat(comod(−)) in order to construct a strict
symmetric Hopf category from each strict commutative cotrialgebra. Conversely, the 2-functor
Cat(coend(−)) allows us to reconstruct the cotrialgebra from the Hopf category up to isomor-
phism.

Our definition of strict symmetric Hopf categories is engineered in such a way that Tannaka–
Kreı̌n duality can be generalized and that we obtain a large family of examples from strict
2-groups. Comparing our definition with the literature [15,38], there is one major discrepancy.
Our functorial comultiplication (5.11) maps into a pushout rather than into the external tensor
product. This immediately raises the question of how Neuchl’s work [38] can be extended to
include our notion of Hopf categories.

A further question concerns the categorical analogue of an antipode. The work of Crane and
Frenkel [15] and of Carter, Kauffman and Saito [13] which aims for a categorification of Kuper-
berg’s invariant [33], raises the question of whether there exists such a functorial antipode, i.e.
a suitable functor S :C1 → C1 over Vectk .

The existence of such a functor follows from the equivalence (5.5) and from the existence
of the homomorphism of Hopf algebras S of (4.21), i.e. from Proposition 2.14 applied to C =
comAlgop

k .

Proposition 5.14. Let C = (C0,C1, σ, τ, ε,Δ) be a strict symmetric Hopf category according to
Definition 5.9. Here we have used some abbreviations and written just C0 for a category (C0,ω0)

over Vectk and so on. There exists a functor S :C1 → C1 over Vectk that satisfies,
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τS = σ, (5.16)

σS = τ, (5.17)

Δ[S; idC1]idC0
⊗̂ = εσ, (5.18)

Δ[idC1;S]idC0
⊗̂ = ετ, (5.19)

where composition of functors is read from left to right.

Proof. Consider the commutative cotrialgebra H = Cat(coend(−))[C] = (H0,H1, σ̃ , τ̃ , ı,◦)

for which H1 = coend(C1). By Remark 4.20, there is a homomorphism of Hopf alge-
bras S :H1 → H1 as in (4.21). Then the functor comod(S) : comod(H1) → comod(H1)

over Vectk yields the desired functor S upon choosing an isomorphism C1 ∼= comod(H1) =
comod(coend(C1)) in C

⊗,∗,s
k,rec . By Lemma 2.1.3 of [42], such an isomorphism is just an equiva-

lence of categories. �
In order to understand the functorial antipode better than just from this abstract existence argu-

ment, we sketch the situation for the Hopf category of representations of a 2-group in Section 5.6
below.

5.4. Semisimplicity

Consider a strict symmetric Hopf category C = (C0,C1, σ, τ, ε,Δ). The category C1 over
Vectk is what other authors would call the Hopf category (Remark 5.11). There is the follow-
ing notion of semisimplicity for symmetric Hopf categories.

Definition 5.15.

1. A k-linear Abelian category C is called semisimple if there is a set C0 of objects of C such
that,
(a) any object X ∈ C0 is simple, i.e. any non-zero monomorphism f :Y → X is an isomor-

phism and any non-zero epimorphism g :X → W is an isomorphism,
(b) any object Z of C is isomorphic to an object of the form

Z =
n⊕

j=1

Xj , (5.20)

where n ∈ N and Xj ∈ C0 for all j ,
(c) any object X ∈ C0 satisfies dimk Hom(X,X) = 1.
The category C is called finitely semisimple (or Artinian semisimple) if the set C0 is finite.

2. A reconstructible category (C,ω) over Vectk is called [finitely] semisimple if the k-linear
Abelian category C is [finitely] semisimple.

3. A strict symmetric Hopf category C = (C0,C1, σ, τ, ε,Δ) is called [finitely] semisimple if
both C0 and C1 are [finitely] semisimple.
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Definition 5.16. A 2-vector space of Kapranov–Voevodsky type6 is a semisimple k-linear
Abelian category. A finite-dimensional 2-vector space is a finitely semisimple k-linear Abelian
category.

Corollary 5.17. Let C = (C0,C1, σ, τ, ε,Δ) be a [finitely] semisimple strict symmetric Hopf cat-
egory. Then the category C in C1 = (C,ω) is a [finite-dimensional] 2-vector space of Kapranov–
Voevodsky type.

Semisimple Hopf categories originate from cosemisimple cotrialgebras as follows. For the
corepresentation theory underlying the following results, we refer to [32].

Definition 5.18.

1. A coalgebra C is called cosemisimple if it is a direct sum of cosimple coalgebras, i.e. coal-
gebras that have no non-trivial subcoalgebras.

2. A strict commutative cotrialgebra H = (H0,H1, σ, τ, ε,Δ) is called cosemisimple if both
Hopf algebras H0 and H1 have cosemisimple underlying coalgebras.

Proposition 5.19. (See [32].) Let C be a [finite-dimensional] cosemisimple coalgebra over k.
Then the category MH of finite-dimensional right-C-comodules is [finitely] semisimple.

Corollary 5.20. Let H be a strict commutative cotrialgebra and C = Cat(comod(−))[H ] be the
strict symmetric Hopf category that is Tannaka–Kreı̌n dual to H . If H is [finite-dimensional and]
cosemisimple as a commutative cotrialgebra, then C is [finitely] semisimple as a symmetric Hopf
category.

5.5. Representations of compact topological 2-groups

The representation theory of a compact topological group G can be developed as follows by
first passing to its commutative Hopf C∗-algebra of continuous complex valued functions C(G)

and then studying the comodules of the dense subcoalgebra of representative functions.

Proposition 5.21. (See [32].) Let G be a compact topological group.

1. Let Calg(G) denote the algebra of representative functions of G, i.e. the C-linear span of
all matrix elements of finite-dimensional continuous unitary representations of G. Then
Calg(G) ⊆ C(G) forms a dense subcoalgebra which is cosemisimple.

2. Each finite-dimensional continuous unitary representation of G gives rise to a finite-
dimensional right-Calg(G)-comodule structure on the same underlying complex vector
space. Any intertwiner of such representations forms a morphism of right-Calg(G)-
comodules.

6 A 2-vector space of Baez–Crans type [2] is an internal category in Vectk .
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3. Denote by Ĝ a set containing one representative for each equivalence class of isomorphic
simple objects of MCalg(G). Then Calg(G) is isomorphic as a coalgebra to the following
direct sum of cosimple coalgebras,

Calg(G) =
⊕
ρ∈Ĝ

V ∗
ρ ⊗ Vρ, (5.21)

where Vρ = ωCalg(G)(ρ) denotes the underlying vector space of the simple object ρ. The
vector spaces V ∗

ρ ⊗ Vρ carry the coalgebra structure of the cosimple coefficient coalgebras
of the simple objects. In particular, Calg(G) is cosemisimple.

These results show how to proceed in order to formulate the representation theory of a
strict compact topological 2-group G = (G0,G1, s, t, ı,◦). First, use the equivalence of cate-
gories (4.17) in order to obtain the strict commutative C∗-cotrialgebra,

H := Cat
(
C(−)

)[G] = (
C(G0),C(G1),C(s),C(t),C(ı),C(◦)

)
. (5.22)

Then restrict to the dense subcoalgebras Calg(G0) ⊆ C(G0), etc. This also restricts the completed
tensor products to the algebraic ones. Notice that this restriction preserves colimits, i.e. Halg :=
(Calg(G0),Calg(G1),Calg(s),Calg(t),Calg(ı),Calg(◦)) is a strict commutative cotrialgebra. Then
use the equivalence (5.13) in order to obtain a strict symmetric Hopf category,

C := Cat
(
comod(−)

)[Halg]
= (

comod
(
Calg(G0)

)
, comod

(
Calg(G1)

)
, comod

(
Calg(s)

)
, comod

(
Calg(t)

)
,

comod
(
Calg(ı)

)
, comod

(
Calg(◦)

))
. (5.23)

This strict symmetric Hopf category C plays the role of the category of ‘finite-dimensional con-
tinuous unitary representations’ of the compact topological 2-group. Recall that Calg(−) is a
covariant functor if written as Calg(−) : compTopGrp → comHopfAlgop

C
, and so C is indeed an

internal cocategory in C
⊗,∗,s
C,rec .

5.6. Individual representations of 2-groups

Let G be a compact topological group and Rep(G) := comod(Calg(G)) be its category of
finite-dimensional continuous unitary representations, viewed as right-Calg(G)-comodules with
the forgetful functor to fdVectC.

If f :G → H is a homomorphism of compact topological groups, then Rep(f ) : Rep(H) →
Rep(G) is the functor that assigns to each finite-dimensional continuous representation of H the
same underlying vector space, but viewed via f as a representation of G.

The strict symmetric Hopf category (5.23) is in this notation,

Rep(G) = (
Rep(G0),Rep(G1),Rep(s),Rep(t),Rep(ı),Rep(◦)

)
:= Cat

(
comod(−)

)[Halg]. (5.24)

It plays the role of the representation category of the strict compact topological 2-group G =
(G0,G1, s, t, ı,◦). What is an individual representation of G?
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The answer is that an individual representation is just a (finite-dimensional continuous uni-
tary) representation of G1. There is no difference compared with the representations of ordinary
groups except that for 2-groups, the representation category Rep(G1) has got more structure.
The purpose of the category Rep(G0) and of the functors Rep(s), Rep(t), ε := Rep(ı) and
Δ := Rep(◦) is merely to describe this additional structure.

The most important additional structure is the functorial comultiplication, i.e. the symmetric
monoidal functor

Δ : Rep(G1) → Rep(G1) Rep(s)�Rep(t) Rep(G1) ∼= Rep(G1 s�t G1), (5.25)

where the isomorphism sign ‘∼=’ denotes isomorphism of objects of C
⊗,∗,s
k,rec , i.e. equivalence of

the corresponding categories by Lemma 2.1.3 of [42]. The functor Δ over Vectk assigns to each
finite-dimensional unitary continuous representation of G1 the same underlying vector space, but
viewed as representation of G1 s�t G1 via the homomorphism

◦ :G1 s�t G1 = {
(g, g′) ∈ G1 × G1: s(g) = t (g′)

} → G1. (5.26)

A functorial antipode can be constructed as in Proposition 5.14. It is the functor

Rep(ξ) : Rep(G1) → Rep(G1) (5.27)

over Vectk which is obtained from vertical inversion (Proposition 2.14(2)) and which is specified
up to natural isomorphism over Vectk .

6. The non-commutative and non-symmetric cases

Given the construction of cocommutative trialgebras and commutative cotrialgebras in Sec-
tions 3 and 4, one might be tempted to try the following definition.

Definition 6.1. The objects of the 2-category

TriAlgk := Cat(HopfAlgk) (6.1)

are called strict generic trialgebras and the objects of

CoTriAlgk := CoCat(HopfAlgk) (6.2)

strict generic cotrialgebras.

Remark 6.2. The above definition comes with an important warning, though. Although each co-
commutative Hopf algebra is at the same time a Hopf algebra, a cocommutative trialgebra would
not necessarily be a generic trialgebra. This is a consequence of the fact that the inclusion functor
cocHopfAlgk → HopfAlgk does not preserve all finite limits. Similarly, a commutative cotrial-
gebra would not necessarily be a generic cotrialgebra. In particular, strict 2-groups and crossed
modules are not immediately helpful in constructing examples of generic (co-)trialgebras.

A second objection against Definition 6.1 is the observation that it would use the categorical
product and pullback in HopfAlgk which is in general ‘much bigger’ than the tensor product of
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Hopf algebras. Experience with the theory of Hopf algebras, however, suggests that one ought to
consider their tensor product rather than their categorical product.

Notice further that in general, although every Hopf algebra has got an underlying vector
space, neither the objects of Cat(cocHopfAlgk) nor the objects of CoCat(comHopfAlgk) come
with an underlying strict 2-vector space of Baez–Crans type [2]. A strict 2-vector space of that
sort is an object of Cat(Vectk). This is a consequence of the fact that the forgetful functors
cocHopfAlgk → Vectk and comHopfAlgk → Vectk do not preserve all finite limits.

As soon as one has an example of a strict generic cotrialgebra, Tannaka–Kreı̌n duality can
still be used in order to obtain strict generic Hopf categories. In order to show this, we drop the
requirement of symmetry from Definition 5.1 and proceed as follows.

Definition 6.3.

1. C
⊗,∗
k,rec denotes the category whose objects are rigid monoidal categories (C,ω) over Vectk

such that C is a k-linear Abelian essentially small category and ω :C → Vectk is an exact
faithful k-linear functor into fdVectk . The morphisms of C

⊗,∗
k,rec are monoidal functors over

Vectk .
2. The objects of the 2-category

HopfCatk := CoCat
(
C

⊗,∗
k,rec

)
(6.3)

are called strict generic Hopf categories over k.

Then, slightly modifying the proofs of Appendix B, we obtain Tannaka–Kreı̌n duality in the
following form.

Theorem 6.4. There is an equivalence of categories

C
⊗,∗
k,rec 
 HopfAlgk (6.4)

given by the functors

comod(−) : HopfAlgk → C
⊗,∗
k,rec (6.5)

and

coend(−) :C⊗,∗
k,rec → HopfAlgk. (6.6)

Corollary 6.5. There is a 2-equivalence between the 2-categories

CoTriAlgk 
 HopfCatk (6.7)

provided by the functors

Cat
(
comod(−)

)
: CoTriAlgk → HopfCatk (6.8)
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and

Cat
(
coend(−)

)
: HopfCatk → CoTriAlgk. (6.9)

In order to generalize both the notions of trialgebra and of Hopf categories beyond the strict
case, one strategy would be to set up the entire analysis of the present article for the more general
case of weak or coherent 2-groups [4]. So far, it is not obvious whether these weaker structures
form models of any algebraic or essentially algebraic theory in Grp, and so there is no obvious
way of employing functors such as k[−] : Grp → cocHopfAlgk . It seems that one either needs
to extend and generalize the relevant universal algebra first or that one has to find a different way
of relating the various algebraic structures.
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Appendix A. Compact topological groups

In this appendix, we sketch how to encapsulate all the functional analysis of Gel’fand repre-
sentation theory in the algebraic statement that the category compHaus of compact Hausdorff
spaces with continuous maps is equivalent to the opposite of the category comUnC∗Alg of com-
mutative unital C∗-algebras with unital ∗-homomorphisms,

compHaus 
 comUnC∗Algop
. (A.1)

This allows us to present concise definitions for the category compTopGrp of compact topolog-
ical groups and for the category comHopfC∗Alg of commutative Hopf C∗-algebras so that we
can establish the equivalence

compTopGrp 
 comHopfC∗Algop
, (A.2)

which we have stated as Theorem 4.17.

A.1. Gel’fand representation theory

For background on C∗-algebras and for the proofs of the results summarized here, see, for
example [37].

There is a category comUnC∗Alg whose objects are commutative unital C∗-algebras and
whose morphisms are unital ∗-homomorphisms. This category has all finite coproducts. In
particular, its initial object is the field of complex numbers C. For each commutative unital C∗-
algebra A, there is a unique unital ∗-homomorphism C → A, 1C �→ 1A. The binary coproduct
A � B = A ⊗∗ B of two commutative unital C∗-algebras A and B is the completion of the ten-
sor product in the so-called spatial C∗-norm ‖ · ‖∗. By a theorem of Takesaki, this is the unique
C∗-norm on the algebraic tensor product A ⊗ B whereby the uniqueness result exploits that A

and B are commutative algebras. The colimiting cone of the coproduct is given by the unital
∗-homomorphisms ıA :A → A ⊗∗ B , a �→ a ⊗ 1B and ıB :B → A ⊗∗ B , b �→ 1A ⊗ b.
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Proposition A.1. There is a functor C(−) : compHaus → comUnC∗Algop which assigns to each
compact Hausdorff space X the commutative unital C∗-algebra C(X) of continuous complex
valued functions on X with the supremum norm

‖f ‖ := sup
x∈X

∣∣f (x)
∣∣, f ∈ C(X). (A.3)

The functor C(−) assigns to each continuous map ϕ :X → Y between compact Hausdorff spaces
the unital ∗-homomorphism,

C(ϕ) :C(Y ) → C(X), f �→ ϕf (A.4)

(first ϕ, then f ).

Let A be a commutative C∗-algebra. A character of A is a non-zero linear functional ω :A →
C for which ω(ab) = ω(a)ω(b) for all a, b ∈ A. One can show that characters are continuous
maps and that they satisfy ω(1A) = 1 if A is unital. The Gel’fand spectrum σ(A) of A is the
set of all characters of A. For each a ∈ A, one defines the Gel’fand transform â :σ(A) → C,
ω → ω(a).

Proposition A.2. There is a functor σ(−) : comUnC∗Alg → compHausop which assigns to each
commutative unital C∗-algebra A its Gel’fand spectrum σ(A). The set σ(A) forms a compact
Hausdorff space if it is equipped with the weak∗ topology which is the coarsest topology for σ(A)

such that all maps â :σ(A) → C, a ∈ A, are continuous. The functor σ(−) assigns to each unital
∗-homomorphism Φ :A → B between commutative unital C∗-algebras A and B the continuous
map,

σ(Φ) :σ(B) → σ(A), ω �→ Φω (A.5)

(first Φ , then ω).

Theorem A.3 (Gel’fand). Let A be a commutative unital C∗-algebra. The Gel’fand transform,

̂:A → C
(
σ(A)

)
, a �→ â, (A.6)

is a unital ∗-isomorphism.

This theorem shows that each commutative unital C∗-algebra arises as the algebra of func-
tions on its Gel’fand spectrum. In order to formulate the complementary result that each compact
Hausdorff space X arises as the Gel’fand spectrum of its function algebra, we define the follow-
ing characters of C(X) by evaluation at x ∈ X,

ωx :C(X) → C, f �→ f (x). (A.7)

Theorem A.4 (Gel’fand). Let X be a compact Hausdorff space. The map,

ω :X → σ
(
C(X)

)
, x �→ ωx, (A.8)

is a homeomorphism of topological spaces.
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The analytical results reviewed in this section can be summarized in categorical terms as
follows.

Theorem A.5. There is an equivalence of categories compHaus 
 comUnC∗Algop provided by
the functors

C(−) : compHaus → comUnC∗Algop (A.9)

and

σ(−) : comUnC∗Algop → compHaus (A.10)

with the natural isomorphisms ̂: 1comUnC∗Algop ⇒ σ(−)C(−) defined in Theorem A.3 and
ω : 1compHaus ⇒ C(−)σ (−) defined in Theorem A.4.

Recall that the category compHaus has all finite products. In particular, the terminal object is
the one-element topological space {∗} and the binary product X � Y = X × Y of two compact
Hausdorff spaces X and Y is their Cartesian product with the projection maps p1 :X × Y → X,
(x, y) �→ x and p2 :X × Y → Y, (x, y) �→ y. We can now use Theorem A.5 in order to relate
products in compHaus with coproducts in comUnC∗Alg. In particular there are isomorphisms
of unital ∗-algebras,

C
({∗}) ∼= C and C(X × Y) ∼= C(X) ⊗∗ C(Y ), (A.11)

and homeomorphisms of topological spaces,

σ(C) ∼= {∗} and σ(A ⊗∗ B) ∼= σ(A) × σ(B). (A.12)

A.2. Group objects

In this section, we recall the definition of group objects in categories with finite products.
Then we can define the notion of a topological group as a group object in compHaus and of a
commutative Hopf C∗-algebra as a group object in comUnC∗Algop.

Definition A.6. Let C be a category with finite products and T be a terminal object of C.

1. A group object G = (C,μ,η, ζ ) in C consists of an object C of C and of morphisms μ :C �

C → C, η :T → C and ζ :C → C of C such that the following diagrams commute,

C � C � C
(μ,idC)

(idC,μ)

C � C

μ

C � C
μ

C,

(A.13)
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T � C
(η,idC)

p2

C � C

μ

C � T
(idC,η)

p1

C,

(A.14)

C

δ(idC,ζ )

T

η

C � C
μ

C

C

δ(ζ,idC)

T

η

C � C
μ

C.

(A.15)

2. Let G = (C,μ,η, ζ ) and G′ = (C′,μ′, η′, ζ ′) be group objects in C. An internal group ho-
momorphism ϕ :G → G′ is a morphism ϕ :C → C′ of C such that the following diagrams
commute,

C � C
μ

(ϕ,ϕ)

C

ϕ

C′ � C′
μ′ C′,

(A.16)

T
η

η′

C

ϕ

C′,

(A.17)

C
ζ

ϕ

C

ϕ

C′
ζ ′ C′.

(A.18)

3. Let G = (C,μ,η, ζ ), G′ = (C′,μ′, η′, ζ ′) and G′′ = (C′′,μ′′, η′′, ζ ′′) be group objects in C
and ϕ :G → G′ and ψ :G′ → G′′ be internal group homomorphisms in C. The composition
of ϕ and ψ is the internal group homomorphism ϕ · ψ :G → G′′ defined by the morphism
ϕ · ψ :C → C′′ of C.
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4. Let G = (C,μ,η, ζ ) be a group object in C. The identity internal group homomorphism
idG :G → G is defined as the morphism idC :C → C of C.

Theorem A.7. Let C be a category with finite products. There is a category Grp(C) whose objects
are group objects and whose morphisms are internal group homomorphisms in C.

Similarly to the definition of internal categories in Section 2.2, the guiding example is the
following.

Example A.8. The category Set has finite products. Grp(Set) is the category of groups and
group homomorphisms.

Remark A.9. In the definition of group objects and internal group homomorphisms (Defini-
tion A.6) and also in the definition of internal categories, functors and natural transformations
(Definition 2.1), there is a technical subtlety which we have suppressed.

All objects that are constructed as limits and which are used in the diagrams (A.13) to (A.18),
for example, the terminal object T or the product C � C, are defined only up to isomorphism.
The definition of a group object in C should therefore contain an object C of C and in addition
the choice of an object T of C which is terminal and of an object C2 isomorphic to the product
C � C, and so on. Correspondingly, the definition of an internal group homomorphism should
contain besides the morphism ϕ :C → C′ in addition a morphism ϕ2 :C2 → C2, and so on. This
is tidied up and properly taken into account, for example, by the construction of sketches as in [6].
We have been reluctant to do the same for internal categories in Section 2.2 since this would have
made that section far less accessible.

Similarly to the study of internal categories in Section 2.2, we are interested in varying the
base category C in the definition of Grp(C).

Proposition A.10. Let C and D be categories with finite products and T :C → D be a finite-
product preserving functor. Then there is a functor Grp(T ) : Grp(C) → Grp(D) given as fol-
lows.

1. Grp(T ) associates with each group object G = (C,μ,η, ζ ) in C the group object
Grp(T )[G] := (T C,T μ,T η,T ζ ) in D.

2. Let G = (C,μ,η, ζ ) and G′ = (C′,μ′, η′, ζ ′) be group objects in C. Grp(T ) associates
with each internal group homomorphism ϕ :G → G′ in C the internal group homomorphism
Grp(T )[ϕ] : Grp(C) → Grp(D) in D which is given by the morphism T ϕ :T C → T C′ of D.

Proposition A.11. Let C and D be categories with finite products, T , T̃ :C → D be finite-product
preserving functors and α :T ⇒ T̃ a natural transformation. Then there is a natural transforma-
tion Grp(α) : Grp(T ) ⇒ Grp(T̃ ). It associates with each group object G = (C,μ,η, ζ ) in C the
internal group homomorphism Grp(α)G : Grp(T )[G] → Grp(T̃ )[G] in D which is given by the
morphism αC :T C → T̃ C.
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Theorem A.12. Let FP denote the 2-category of small categories with finite products, finite-
product preserving functors and natural transformations. Let Cat denote the 2-category of small
categories, functors and natural transformations. Then Grp(−) forms a 2-functor,

Grp(−) : FP → Cat. (A.19)

Remark A.13. It is known that the functor Grp(−) is actually a functor Grp(−) : FP → FP
and even Grp(−) : Lex → Lex. In particular, if C has all finite products, so does the category
Grp(C), and if C has all finite limits, so does Grp(C) [6].

Corollary A.14. Let C 
 D be an equivalence of categories with finite products provided
by (finite-product preserving) functors F :C → D and G :D → C with natural isomorphisms
η : 1C ⇒ FG and ε :GF ⇒ 1D . Then there is an equivalence of categories Grp(C) 
 Grp(D)

given by the functors Grp(F ) : Grp(C) → Grp(D) and Grp(G) : Grp(D) → Grp(C) with
natural isomorphisms Grp(η) : 1Grp(C) ⇒ Grp(F )Grp(G) and Grp(ε) : Grp(G)Grp(F ) ⇒
1Grp(D).

Definition A.15. Let C be a category with finite coproducts. We define,

CoGrp(C) := Grp
(
Cop)op

, (A.20)

and call the objects of CoGrp(C) cogroup objects in C and the morphisms internal cogroup
homomorphisms in C.

Remark A.16. We have added the last ‘op’ in (A.20) in order to make some familiar functors
turn out to be contravariant as they are usually written. Note that such an ‘op’ is not present in
the analogous definition of an internal cocategory in Definition 2.9.

Definition A.17. The objects of the category

compTopGrp := Grp(compHaus) (A.21)

are called compact topological groups. The objects of

comHopfC∗Alg := CoGrp(comUnC∗Alg) (A.22)

are called commutative Hopf C∗-algebras.

Remark A.18.

1. Let f,g be morphisms of compHaus, then (f ;g) = f × g (cf. Section 2.1). For morphisms
k, � of comUnC∗Alg, [k;�] = k ⊗∗ �. Let A be an object of comUnC∗Alg, then δop :A ⊗∗
A → A is precisely the multiplication operation of A since the unit law of the multiplication
agrees with the defining condition of δop.

2. Comparing Definition 4.15 with Definition A.17, we note that (A.13) gives the coassociativ-
ity axiom, (A.14) gives the counit axiom and (A.15) gives the antipode axiom.
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A.3. Gel’fand representation theory for compact topological groups

Combining Gel’fand representation theory (Theorem A.5) with Corollary A.14, we obtain the
main result of this appendix:

Theorem A.19. There is an equivalence of categories,

compTopGrp = Grp(compHaus) 
 Grp
(
comUnC∗Algop) = comHopfC∗Algop (A.23)

provided by the functors,

Grp
(
C(−)

)
: compTopGrp → comHopfC∗Algop (A.24)

and

Grp
(
σ(−)

)
: comHopfC∗Algop → compTopGrp. (A.25)

In the formulation as Theorem 4.17, we have just omitted the Grp(−) in the name of the
functors in order to keep the notation simple.

Appendix B. Tannaka–Kreı̌n duality

In this appendix, we review the key results on Tannaka–Kreı̌n duality following the presenta-
tion of Schauenburg [42] and show how to derive Theorem 5.8. We refer heavily to [42] in order
to take the quickest route to the theorem. In the following, k is some fixed field.

Schauenburg [42] shows the existence of an adjunction between the category of Hopf algebras
over k and a category of monoidal categories over Vectk which we restrict to the following
category.

Definition B.1. C
⊗,∗
k,rec denotes the category whose objects are rigid monoidal categories (C,ω)

over Vectk such that C is a k-linear Abelian essentially small category and ω :C → Vectk an exact
faithful k-linear functor with values in fdVectk . The morphisms of C

⊗,∗
k,rec are monoidal functors

over Vectk .

Theorem B.2. (See [42].) There is an adjunction,

C
⊗,∗
k,rec

coend(−)

HopfAlgk.

comod(−)

(B.1)

Proof. This result is stated in Remark 2.4.4 of [42] for a category that is bigger than our C
⊗,∗,s
k,rec .

For the definition of the functors, see Theorem 5.8. The unit of the adjunction is given by a
functor [IC, idω] : (C,ω) → (MH ,ωH ) over Vectk for each object (C,ω) of C

⊗,∗
k,rec. Here

H := coend(C,ω) and
(
MH ,ωH

) := comod(H).
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The functor IC → MH is defined in Theorem 2.1.12 of [42]. The counit is given by bialgebra
homomorphisms εH : coend(MH ,ωH ) → H where H is any Hopf algebra over k (Lemma 2.2.1
of [42]). The εH are obtained from the universal property of the coendomorphism coalgebra by
diagram completion.

In addition to [42], we have restricted the category on the left-hand side of (B.1) to our C
⊗,∗
k,rec

by adding the ‘reconstructibility’ conditions that any object (C,ω) of C
⊗,∗
k,rec consist of a k-linear

Abelian essentially small category C and an exact faithful k-linear functor ω (Section 2.2 of [42]).
This also guarantees that the category of monoid objects which appear in [42] on the left-hand
side, indeed agrees with our definition of C

⊗,∗
k,rec, cf. Lemma 2.3.4 of [42] and the comments

thereafter. �
We now restrict the adjunction (B.1) to the commutative and symmetric case. Note that C

⊗,∗,s
k,rec

is a full subcategory of C
⊗,∗
k,rec (Proposition 5.6) and that comHopfAlgk is a full subcategory

of HopfAlgk . In order to retain the adjunction, we have to show that both functors restrict (on
objects) to the subcategories.

Proposition B.3.

1. Let H be a commutative Hopf algebra over k. Then the category MH of finite-dimensional
right-H -comodules forms a k-linear Abelian rigid symmetric monoidal category. The for-
getful functor ωH :MH → fdVectk is a k-linear exact faithful symmetric monoidal functor.

2. Let (C,ω) be an object of C
⊗,∗,s
k,rec . Then the reconstructed Hopf algebra H := coend(C,ω) is

commutative.

Proof. The first part is standard. For the second part, commutativity of H is a consequence of ω

being a symmetric monoidal functor. The proof involves a large commutative diagram. �
Corollary B.4. There is an adjunction,

C
⊗,∗,s
k,rec

coend(−)

comHopfAlgk.

comod(−)

(B.2)

We finally show that both unit and counit of the adjunction are natural isomorphisms and
thereby establish the equivalence of categories claimed in Theorem 5.8.

Proposition B.5. The adjunction (B.2) is an equivalence of categories.

Proof. In order to see that the counit is a natural isomorphism, let H be a commutative Hopf
algebra over k. The counit εH : coend(MH ,ωH ) → H forms an isomorphism of coalgebras
(Lemma 2.2.1 of [42]). Since εH is also a homomorphism of bialgebras, it forms an isomorphism
of bialgebras and therefore also an isomorphism in the category comHopfAlgk .

In order to see that the unit is a natural isomorphism, let (C,ω) be an object of C
⊗,∗,s
k,rec . The

conditions on (C,ω) then guarantee that the functor IC → MH , H = coend(C,ω) that features
in the unit, forms an equivalence of categories (Section 2.2 of [42]). Together with the identity
natural isomorphism of the underlying forgetful functor, it forms a functor [IC, idω] : (C,ω) →
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(MH ,ωH ) over Vectk . By Corollary 2.3.7 of [42], IC is a monoidal functor. Since idω is a
monoidal natural transformation, [IC, idω] is a monoidal functor over Vectk , and by our Propo-
sition 5.6 it is symmetric monoidal as a functor over Vectk .

Consider now the representative (IC, idω) of the equivalence class [IC, idω]. Since the functor
ωH :MH → Vectk is the underlying forgetful functor, the condition (5.3) that [IC, idω] is a
symmetric monoidal functor over Vectk , implies that IC :C → MH is a symmetric monoidal
functor. Since IC is part of an equivalence of categories, by [41, Chapter I, Proposition 4.4.2],
IC forms a tensor equivalence, i.e. there exist a monoidal functor JC :MH → C and monoidal
natural isomorphisms η : 1C ⇒ ICJC and ε :JCIC ⇒ 1D .

The inverse of [IC, idω] as a functor over Vectk is given by [JC, ϑ] : (MH ,ωH ) → (C,ω)

where ϑ := (idIC · idω) ◦ (ε−1 · idωH ) :ωH ⇒ JC · ω (Lemma 2.1.3 of [42]). Obviously, ϑ is
monoidal, too. Both [IC, idω] and [JC, ϑ] are thus morphisms of C

⊗,∗,s
k,rec and mutually inverse. �

Remark B.6. Tannaka–Kreı̌n reconstruction is here done for comodules of coalgebras rather
than for modules of algebras for the usual two reasons.

First, if the coproduct Δ :C → C⊗C of the coalgebra C over k uses the algebraic tensor prod-
uct, then the category of all right-C-comodules is already determined by the finite-dimensional
right-C-comodules. The forgetful functor ωC :MC → Vectk from the category MC of finite-
dimensional right-C-comodules therefore maps into fdVectk , the full subcategory of Vectk that
contains the rigid objects (those that have left-duals).

Second, when one reconstructs the bialgebra structure of coend(C,ω), one wants the tensor
product of the underlying monoidal category into which ω maps, to preserve arbitrary colimits in
order to preserve the coend(C,ω), too. This is possible in Vectk . In order to provide an algebra
which is reconstructed as a universal end with a coalgebra structure, one would need the tensor
product to preserve arbitrary limits. This is not always possible.
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