

Note

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A short constructive proof of A.R. Rao's characterization of potentially K_{r+1} -graphic sequences^{*}

Jian-Hua Yin*

Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, PR China

ARTICLE INFO

Article history: Received 24 September 2010 Received in revised form 10 October 2011 Accepted 15 October 2011 Available online 5 November 2011

Keywords: Complete graph Graphic sequence A.R. Rao's characterization

1. Introduction

ABSTRACT

Let K_{r+1} be the complete graph on r+1 vertices. Rao proved that a non-increasing sequence (d_1, d_2, \ldots, d_n) of nonnegative integers with $d_{r+1} \ge r$ has a realization containing K_{r+1} as a subgraph if and only if $\sum_{i=1}^{n} d_i$ is even and $\sum_{i=1}^{s} d_i + \sum_{i=1}^{t} d_{r+1+i} \le (s+t)(s+t-1) + \sum_{i=s+1}^{r+1} \min\{s+t, d_i-r+s\} + \sum_{i=r+t+2}^{n} \min\{s+t, d_i\}$ for all s and t with $0 \le s \le r+1$ and $0 \le t \le n-r-1$. In this paper, we give a short constructive proof of this characterization that can be implemented as an algorithm to construct a realization containing K_{r+1} .

© 2011 Elsevier B.V. All rights reserved.

A non-increasing sequence $\pi = (d_1, d_2, ..., d_n)$ of nonnegative integers is said to be *graphic* if it is the degree sequence of a simple graph *G* on *n* vertices, and such a graph *G* is called a *realization* of π . The following theorem due to Erdős and Gallai [4] gives an explicit characterization for π to be graphic.

Theorem 1.1 (Erdős and Gallai [4]). Let $\pi = (d_1, d_2, ..., d_n)$ be a non-increasing sequence of nonnegative integers. Then π is graphic if and only if $\sum_{i=1}^{n} d_i$ is even and

 $\sum_{i=1}^{t} d_i \leq t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\} \quad \text{for each } t \text{ with } 1 \leq t \leq n.$

Many proofs of Theorem 1.1 have been given, including that by Berge [2] (using network flows or Tutte's *f*-Factor Theorem), Harary [5] (a lengthy induction), Choudum [3], Aigner–Triesch [1] (using ideals in the dominance order), Tripathi–Tyagi [8] (indirect proof), etc. Recently, Tripathi et al. [9] gave a short direct proof that constructs a graph whose degree sequence is the given sequence.

A non-increasing sequence $\pi = (d_1, d_2, ..., d_n)$ of nonnegative integers is said to be *potentially* K_{r+1} -graphic if there is a realization of π containing K_{r+1} as a subgraph. It is known that π is potentially K_{r+1} -graphic if and only if π has a realization containing K_{r+1} on those vertices having degree $d_1, d_2, ..., d_{r+1}$. The following theorem due to Rao [7] gives an explicit characterization for π to be potentially K_{r+1} -graphic. This is an extension of Theorem 1.1 (which corresponds to r = 0).

E-mail address: yinjh@ustc.edu.

[🌣] Supported by National Natural Science Foundation of China (Grant Nos. 11161016 and 10861006).

^{*} Fax: +86 0898 66262409.

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter S 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2011.10.015

Theorem 1.2 (*Rao* [7]). Let $n \ge r + 1$ and $\pi = (d_1, d_2, ..., d_n)$ be a non-increasing sequence of nonnegative integers with $d_{r+1} \ge r$. Then π is potentially K_{r+1} -graphic if and only if $\sum_{i=1}^{n} d_i$ is even and

$$\sum_{i=1}^{s} d_i + \sum_{i=1}^{t} d_{r+1+i} \le (s+t)(s+t-1) + \sum_{i=s+1}^{r+1} \min\{s+t, d_i - r+s\} + \sum_{i=r+t+2}^{n} \min\{s+t, d_i\}$$
(1)

for all s and t with $0 \le s \le r + 1$ and $0 \le t \le n - r - 1$.

In [7], Rao gave a lengthy induction proof of Theorem 1.2 via linear algebraic techniques that remains unpublished, but Kézdy and Lehel [6] have given another proof using network flows or Tutte's *f*-Factor Theorem. The purpose of this paper is to give a purely graph-theoretic and short direct proof that constructs a graph containing K_{r+1} whose degree sequence is the given sequence in Section 2.

2. Proof of Theorem 1.2

To prove the necessity, we let *G* be a realization of π with vertices v_1, v_2, \ldots, v_n such that $d_G(v_i) = d_i$ for $1 \le i \le n$ and $\{v_1, v_2, \ldots, v_{r+1}\}$ induce a complete subgraph. Then, $\sum_{i=1}^{s} d_i + \sum_{i=1}^{t} d_{r+1+i}$ is the sum of the number of edges from v_h to $\{v_1, \ldots, v_s, v_{r+2}, \ldots, v_{r+1+i}\}$ the summation being taken over $h = 1, 2, \ldots, n$. Now the contribution of v_h to this sum is at most s + t - 1 if $h \in \{1, \ldots, s, r+2, \ldots, r+1+t\}$, at most min $\{s + t, d_h - (r-s)\}$ if $h \in \{s + 1, \ldots, r+1\}$ and at most min $\{s + t, d_h\}$ if $h \in \{r + t + 2, \ldots, n\}$. Thus the necessity is proved.

For the sufficiency, let a *subrealization* of $\pi = (d_1, d_2, ..., d_n)$ be a graph with vertices $v_1, v_2, ..., v_n$ such that $d(v_i) \le d_i$ for $1 \le i \le n$. We will construct a realization of π through successive subrealizations. The initial subrealization is the disjoint union of K_{r+1} and \overline{K}_{n-r-1} , where \overline{K}_{n-r-1} is the complement of K_{n-r-1} , $V(K_{r+1}) = \{v_1, ..., v_{r+1}\}$ and $V(\overline{K}_{n-r-1}) = \{v_{r+2}, ..., v_n\}$.

In a subrealization, let *s* be the largest index such that $d(v_i) = d_i$ for $1 \le i < s$ and *t* be the largest index such that $d(v_i) = d_i$ for $r + 2 \le i < r + 1 + t$. While $s \le r + 1$ or $t \le n - r - 1$, we obtain a new subrealization containing the initial subrealization and having smaller deficiency $(d_s - d(v_s)) + (d_{r+1+t} - d(v_{r+1+t}))$ at v_s , v_{r+1+t} while not changing the degree of any vertex v_i with $i \in \{1, \ldots, s - 1, r + 2, \ldots, r + t\}$. The process can only stop when the subrealization is a realization of π .

Let $S = \{v_{s+1}, \ldots, v_{r+1}\}$ and $T = \{v_{r+t+2}, \ldots, v_n\}$. We maintain the conditions that $\{v_1, \ldots, v_{r+1}\}$ is a clique, T is an independent set and there is no edge between S and T, which certainly hold initially.

Case 1. $v_s v_i \notin E(G)$ for some vertex v_i such that $d(v_i) < d_i$. Add the edge $v_s v_i$.

Case 2. $v_{r+1+t}v_i \notin E(G)$ for some vertex v_i such that $d(v_i) < d_i$. Add the edge $v_{r+1+t}v_i$.

Case 3. $v_s v_i \notin E(G)$ for some $i \in \{r + 2, ..., r + t\}$. Since $d(v_i) = d_i \ge d_{r+1+t} > d(v_{r+1+t})$, there exists $u \in N(v_i) - (N(v_{r+1+t}) \cup \{v_{r+1+t}\})$. Replace uv_i with $\{v_s v_i, uv_{r+1+t}\}$.

Case 4. $v_{r+1+t}v_i \notin E(G)$ for some $i \in \{1, \ldots, s-1, r+2, \ldots, r+t\}$. If $i \in \{1, \ldots, s-1\}$, by $d(v_i) > d(v_s)$, there exists $u \in N(v_i) - (N(v_s) \cup \{v_s\})$. Since $\{v_1, \ldots, v_{r+1}\}$ is a clique, we have that $u \notin \{v_1, \ldots, v_{r+1}\}$. Case 3 applies unless $u \notin \{v_{r+2}, \ldots, v_{r+t}\}$. By $d(v_{r+1+t}) < d_{r+1+t}$, Case 1 applies unless $u \neq v_{r+1+t}$. Therefore, $u \in T$. Replace uv_i with $\{v_{r+1+t}v_i, uv_s\}$. If $i \in \{r+2, \ldots, r+t\}$, by $d(v_i) > d(v_{r+1+t})$, there exists $u \in N(v_i) - (N(v_{r+1+t}) \cup \{v_{r+1+t}\})$. In this case, if $d_{r+1+t} - d(v_{r+1+t}) \ge 2$, then replace uv_i with $\{v_{r+1+t}v_i, v_{r+1+t}u\}$. If $d_{r+1+t} - d(v_{r+1+t}) = 1$, then since $\sum d_i - \sum d(v_i)$ is even, there is an index k with $s \le k \le r+1$ or k > r+1 + t such that $d(v_k) < d_k$. Case 2 applies unless $v_{r+1+t}v_k \in E(G)$. Replace $\{v_{r+1+t}v_k, uv_i\}$ with $\{v_{r+1+t}v_i, v_{r+1+t}u\}$, and then increase t by 1 and continue.

Case 5. $v_i v_j \notin E(G)$ for some *i* and *j* with $1 \le i \le s - 1$ and $r + 2 \le j \le r + t$. Since $\{v_1, \ldots, v_{r+1}\}$ is a clique and $s \le r + 1$, we have that $v_i \in N(v_s)$. Case 4 applies unless $v_i \in N(v_{r+1+t})$. Case 3 and Case 4 apply unless $v_j \in N(v_s) \cap N(v_{r+1+t})$. Therefore, $v_i, v_j \in N(v_s) \cap N(v_{r+1+t})$. Since $d(v_i) > d(v_s)$ and $d(v_j) > d(v_{r+1+t})$, there exist $u \in N(v_i) - (N(v_s) \cup \{v_s\})$ and $w \in N(v_j) - (N(v_{r+1+t}) \cup \{v_{r+1+t}\})$ (possibly u = w). Since $\{v_1, \ldots, v_{r+1}\}$ is a clique, we have that $u \notin \{v_1, \ldots, v_{r+1}\}$. By $d(v_{r+1+t}) < d_{r+1+t}$ and Case 1, we have $v_s v_{r+1+t} \in E(G)$, implying that $u \neq v_{r+1+t}$. Moreover, Case 3 applies unless $u \notin \{v_{r+2}, \ldots, v_{r+t}\}$. Thus, $u \in T$. Similarly, Case 2 and Case 4 apply unless $w \in S \cup T$. Replace $\{uv_i, wv_j\}$ with $\{v_iv_j, uv_s, wv_{r+1+t}\}$.

Case 6. $v_i v_j \notin E(G)$ for some *i* and *j* with $r + 2 \le i < j \le r + t$. Case 4 applies unless $v_i, v_j \in N(v_{r+1+t})$. Since $d(v_i) \ge d(v_j) > d(v_{r+1+t})$, there exist $u \in N(v_i) - (N(v_{r+1+t}) \cup \{v_{r+1+t}\})$ and $w \in N(v_j) - (N(v_{r+1+t}) \cup \{v_{r+1+t}\})$ (possibly u = w). By $d(v_s) < d_s$ and Case 2, we have $v_{r+1+t}v_s \in E(G)$, implying that $u, w \ne v_s$. Moreover, Case 4 applies unless $u, w \notin \{v_1, \ldots, v_{s-1}, v_{r+2}, \ldots, v_{r+t}\}$. Thus, $u, w \in S \cup T$. Replace $\{uv_i, wv_j\}$ with $\{v_iv_j, uv_{r+1+t}\}$.

Case 7. $d(v_k) \neq \min\{s + t, d_k\}$ for some k with k > r + 1 + t. In a subrealization, $d(v_k) \leq d_k$. Since T is an independent set and there is no edge between S and T, we have $d(v_k) \leq s + t$. Hence $d(v_k) < \min\{s + t, d_k\}$. By $d(v_k) < d_k$, Case 1 and Case 2 apply unless $v_s v_k$, $v_{r+1+t} v_k \in E(G)$. Since $d(v_k) < s + t$, there exists i with $i \in \{1, ..., s - 1, r + 2, ..., r + t\}$ such that $v_i v_k \notin E(G)$. If $i \in \{1, ..., s - 1\}$, by $d(v_i) > d(v_s)$, there exists $u \in N(v_i) - (N(v_s) \cup \{v_s\})$. Then $u \in T$. Replace uv_i with $\{v_i v_k, uv_s\}$. If $i \in \{r + 2, ..., r + t\}$, by $d(v_i) > d(v_{r+1+t})$, there exists $u \in N(v_i) - (N(v_{r+1+t}) \cup \{v_{r+1+t}\})$, then replace uv_i with $\{v_i v_k, uv_{r+1+t}\}$.

Case 8. $d(v_k) - r + s \neq \min\{s + t, d_k - r + s\}$ for some k with $s < k \le r + 1$. In a subrealization, $d(v_k) - r + s \le d_k - r + s$. Since $\{v_1, \ldots, v_{r+1}\}$ is a clique and there is no edge between S and T, we have that $v_s v_k \in E(G)$ and $d(v_k) - r + s \le s + t$. Hence $d(v_k) - r + s < \min\{s + t, d_k - r + s\}$. Case 2 applies unless $v_{r+1+t}v_k \in E(G)$. Since $d(v_k) - r + s < s + t$, there exists i with $i \in \{r + 2, \ldots, r + t\}$ such that $v_iv_k \notin E(G)$. By $d(v_i) > d(v_{r+1+t})$, there exists $u \in N(v_i) - (N(v_{r+1+t}) \cup \{v_{r+1+t}\})$. Replace uv_i with $\{v_iv_k, uv_{r+1+t}\}$.

If none of these Cases applies, then $v_1, \ldots, v_s, v_{r+2}, \ldots, v_{r+1+t}$ are pairwise adjacent, $d(v_k) = \min\{s + t, d_k\}$ for k > r + 1 + t and $d(v_k) - r + s = \min\{s + t, d_k - r + s\}$ for $s < k \le r + 1$. Since *S* is a clique, *T* is an independent set and there is no edge between *S* and *T*, we have that

$$\sum_{i=1}^{s} d(v_i) + \sum_{i=1}^{t} d(v_{r+1+i}) = (s+t)(s+t-1) + \sum_{i=s+1}^{r+1} (d(v_i) - r+s) + \sum_{i=r+t+2}^{n} d(v_i)$$
$$= (s+t)(s+t-1) + \sum_{i=s+1}^{r+1} \min\{s+t, d_i - r+s\} + \sum_{i=r+t+2}^{n} \min\{s+t, d_i\}.$$
(2)

From (1) and (2), we get that

$$\sum_{i=1}^{s} d(v_i) + \sum_{i=1}^{t} d(v_{r+1+i}) \le \sum_{i=1}^{s} d_i + \sum_{i=1}^{t} d_{r+1+i}$$

$$\le (s+t)(s+t-1) + \sum_{i=s+1}^{r+1} \min\{s+t, d_i - r+s\} + \sum_{i=r+t+2}^{n} \min\{s+t, d_i\}$$

$$= \sum_{i=1}^{s} d(v_i) + \sum_{i=1}^{t} d(v_{r+1+i}),$$

implying that $d(v_s) = d_s$ and $d(v_{r+1+t}) = d_{r+1+t}$. Increase *s* by 1 and *t* by 1, and continue. The proof is completed.

The proof can be implemented as an algorithm to construct a realization containing K_{r+1} of the given sequence. Since the subrealization improves lexicographically with each step, the number of steps is at most $\sum d_i - r(r+1)$. To bound the time for each step, we maintain the graph as sequences of neighbors and non-neighbors for each vertex. We look through the non-neighbors of v_s and the non-neighbors of v_{r+1+t} to see if Case 1 or Case 2 or Case 3 or Case 4 applies. To apply Case 3 or Case 4 we access sequences twice to find u and possibly check the degrees of $v_s, \ldots, v_{r+1}, v_{r+2+t}, \ldots, v_n$ to find k. The implementations of Case 5, Case 6, Case 7 and Case 8 involve similar operations. Each step is implemented using a constant number of set-membership queries. Thus the running time is at most $O(n(\sum d_i - r(r + 1)))$.

Acknowledgments

The author would like to thank the referees for their helpful suggestions and comments.

References

- [1] M. Aigner, E. Triesch, Realizability and uniqueness in graphs, Discrete Math. 136 (1994) 3-20.
- [2] C. Berge, Graphs and Hypergraphs, North-Holland, 1973.
- [3] S.A. Choudum, A simple proof of the Erdős-Gallai theorem on graph sequences, Bull. Aust. Math. Soc. 33 (1986) 67-70.
- [4] P. Erdős, T. Gallai, Graphs with given degrees of vertices, Math. Lapok 11 (1960) 264-274.
- [5] F. Harary, Graph Theory, Addison-Wesley, 1969.
- [6] A.E. Kézdy, J. Lehel, et al., Degree sequences of graphs with prescribed clique size, in: Y. Alavi (Ed.), Combinatorics, Graph Theory, and Algorithms, vol. 2, New Issues Press, Kalamazoo Michigan, 1999, pp. 535–544.
- [7] A.R. Rao, An Erdős–Gallai type result on the clique number of a realization of a degree sequence (unpublished).
- [8] A. Tripathi, H. Tyagi, A simple criterion on degree sequences of graphs, Discrete Appl. Math. 156 (2008) 3513-3517.
- [9] A. Tripathi, S. Venugopalan, D.B. West, A short constructive proof of the characterization of graphic lists, Discrete Math. 310 (2010) 843-844.