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1. Introduction 

Science, and its attendant technologies, are in the midst of a serious crisis. The diagnostic of 
this crisis is our inability to control the trajectories of organisms or social structures as we can 
control, say, the trajectory of a rocket. We have long believed that the same kinds of laws, and 
the same modes of understanding and explanation, are of universal currency, and should in 
principle cover all situations of interest; hence our difficulties in the biological and social realms 
are regarded as transient phenomena arising from insufficient information and insufficient 
cleverness. 

We have come to use a single word, complexity, to cover these difficulties. Whenever a system 
does unexpected or unpredicted things, when it exhibits new qualities which we may call 
emergent novelties, when our ‘common-sense’ attempts at control turn out to exacerbate 
previous difficulties or create unanticipated new ones, we tend to invoke this word as an 
explanatory principle. 

If we believe that our present modes of system description and explanation are indeed 
universal, then this notion of complexity connotes one more system property, much like mass or 
temperature. It is part of a system phenotype, and raises no new issues of principle. It is 
synonymous with complication, and can be measured by such things as the dimension of a state 
space, or the length or cost of a program; it is a number whose magnitude tells us how ‘complex’ 
a system is. 

We can, however, take an alternative and more radical view. Namely, we can imagine that the 
myriad difficulties we presently associate with complexity represent not simply a technical matter 
within a universal paradigm, but rather indicate a failure of that paradigm. That is, we can 
imagine that complexity confronts us with a conceptual, and not a technical problem. This is the 
view we shall adopt in what follows. 

To have a specific context before us, we shall consider the relation of biology (which everyone 
agrees is a science of complex systems) and physics (which, I will argue, is presently the science 
of simple systems). In these days of ‘molecular biology’, the dominant view is that of reduction- 
ism; that organic behavior is no different in principle than the behavior of the solar system, or of 
a gas, only more complicated. Nevertheless, the fact is that there is no significant inferential 
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chain from anything in physics to anything in biology. We will argue that the fault lies in our 
physics; in the tacit epistemological assumptions underlying even the most general physical laws. 
As we shall see, these assumptions restrict us from the outset to a very special class of material 
systems (which may be called simple systems, or mechanisms). We shall briefly indicate what 
happens to physics itself when these restrictions are removed. 

What is true of biology is also true of human sciences. There are many profound homologies 
between biological and social organizations, which allow biological concepts to be transported, 
mutatis mutandis, to the human realm. However, we shall not discuss these in detail here. 

2. The modelling relation 

All science rests on two basic presumptions. The first of them is that the events we perceive in 
the external world are not totally whimsical, but exhibit regularities; satisfy laws or rules. The 
second is that these regularities can be perceived and articulated by the human mind. In short, 
we must believe that the order which is manifest in sequences of events in the external world 
(which we may describe as CUUSUZ order) can be reflected in a corresponding relation between 
propositions which describe these events (which we may call an inferential or logical order). The 
causal order may be probed directly by observation and experiment; the inferential order 
between propositions belongs to logic and mathematics; the establishment of explicit relations 
between the two kinds of order is the essential task of theoretical science. 

When we have established a congruence between causal order in the external world, and 
inferential order in a corresponding logical or mathematical system, we have created a model of 
the former in the latter. This modelling relation is at the heart of all theoretical science, and will 
be the basic point of departure for all that follows. Thus, it is well to spend a few moments 
discussing it in more detail. 

Let us consider the schematic diagram represented in Fig. 1. Here, the box on the left 
represents some circumscribed collection of behaviors or events in the external world, which we 
designate as a natural system IV. The box on the right represents some collection of propositions 
and inferential rules (production rules) which collectively constitute a formal system F. To 
establish a relation between these two disparate kinds of things, we must fix a way of naming 
attributes of N in the propositions of F. That is, we must establish a dictionary, or encoding, 
between events and propositions, utilizing procedures of measurement and observation. The 
nature of the relation we establish between N and F depends entirely on the nature of our 

Fig. 1 
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Fig. 2. 

encoding, and of the inverse decoding operation 
assertions about N. 

which converts propositions in F back to 

We say that a modelling relation exists between F and N when the inferential relations in F 

exactly mirror the causal relations in N. That is, we always get the same answer, whether we 
simply sit as observers and watch the causal order unfold in N (the arrow a), or whether we 
encode, use the inferential structure in F to derive consequences or theorems in F, and then 
decode these theorems into predictions about N. We then have commutativity in the sense that 

and we can say that F is a model of N (or alternatively, that N is a realization of F). 
This deceptively simple diagram has numerous important implications. We can only touch on 

a few of them here. For instance, suppose that two different natural systems N,, N2 stand in a 
modelling relation to the same formal system F, as shown in Fig. 2. We can then generally 
establish a direct relation (indicated by the dotted arrows) between the two natural systems N,, 
N2. This relation is like a modelling relation, except that it involves two natural systems, instead 
of a natural system and a formal one. This relation is one of analogv, in the sense of analog 
computation; the dotted arrows then represent transformations which allow data pertaining to 
one of them to be transformed into corresponding data about the other. 

The dual of the situation, shown in Fig. 3, arises when we have the same natural system N 
encoded into two different formal systems F,, F2. It turns out that in this case, we cannot 
generally establish a mathematical transformation between FI and F2. It thus follows that the 
same natural system N may have many distinct models. 

Fig. 3. 
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It is this last fact which shall be central to our discussion of system complexity. Quite 
generally, we may pose the following question: given a natural system N, what kinds of 
mathematical or formal systems can sit on the right-hand side of Fig. 1, and satisfy the 
commutativity relation? These will constitute some kind of family (category) of mathematical 
objects. Further, given such a category of formal images or models of N, what relations exist 
between them? In particular, is there a ‘biggest’ (free) image of N in this category, which in 
some sense maps effectively onto all the others? 

All of our traditional scientific epistemology, which has been drawn essentially from the 
structure of Newtonian mechanics and has persisted essentially unchanged since then, asserts 
that 

(a) the category of images of any natural system N is generally a category of dynamical 
systems, and 

(b) among these images is a unique largest one. 
We shall call any natural system which satisfies these two properties a simple system, or 
mechanism. The paradigm of Newtonian mechanics, which has become the general paradigm of 
theoretical science, basically then asserts that every system is simple. It also asserts the universal- 
ity of reductionism as a strategy of system analysis; this is simply the search for the unique free 
image posited in (b). 

Any system N which does not satisfy (a) or (b) is thus not a simple system; we will call it a 
complex system. If complex systems in this sense exist, then there is some fundamental deficiency 
already tacit in what we have called the Newtonian paradigm. In fact, there are several, and they 
reside in the choice of encoding and decoding arrows in Fig. 1. We shall not pause to critically 
review this here (cf. [2]); rather, we shall exhibit some alternate encodings, which immediately 
take us outside that paradigm. 

3. Information 

We return now to the relation between physics and biology. The basic difficulty in establishing 
an effective relation between them has been one of encoding and decoding, as we might expect 
from the above considerations. The technical vocabulary of physics is dominated by such 
concepts as energy; potential; force; work and the like. These terms do not appear in theoretical 
biology; instead, we find a vocabulary rich in informational words; code, translation, recogni- 
tion, specificity, memory, learning, computation, and so on. The reductionistic tradition tells us 
that these distinct vocabularies are a manifestation of the immaturity of biology as a science, and 
that the informational terms currently dominating biological discourse are only a facon de parler, 
to be replaced as soon as feasible by the technical terms of physics. 

As will soon become evident, our use of the term ‘information’ has very little to do with the 
‘Information Theory’ of Shannon [3]. This theory was developed for dealing with a special class 
of questions in communication engineering, and is of a purely syntactic nature. Rather, we shall 
take the view that ‘information’ pertains to whatever can be the answer to a question, and is thus 
of an essentially semantic nature. 

The relation of interrogation to ‘information’ is in itself interesting, because interrogation sits 
outside of formal logic. Questions belong only to informal discourse, and do not enter into any 
of the mathematical formalisms which we use to image natural systems. This is perhaps one of 
the main reasons why ‘information’ has proved so hard to quantify in traditional terms. 
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Nevertheless, interrogations have played an important role even in theoretical physics. The 
concept of the virtual displacement involves a quintessential question: if we vary some feature of 
a given situation, what happens to some other feature? In a sense, we may regard what follows as 
an extrapolation of the concept of the virtual displacement to more general dynamical contexts. 

It was Poincare who first drew attention to dynamical systems as direct images of natural 
systems. He regarded them as generalizations of the Newtonian equations of motion, considered 
as vector fields on phase spaces. Newton’s Laws relate such vector fields directly to impressed 
forces. But Poincarc’s approach, augmented and applied by many others, was to regard general 
dynamical systems as immediate descriptions of the natural world, without necessarily detouring 
through impressed forces and standard mechanics. This was in fact a profound innovation, but 
one so familiar to us that we now take it for granted. 

Let us see then what happens when we apply the notion of the virtual displacement to a 
general dynamical system of the form 

dx,/dt =fi(xi: . . . . x,), i = l,..., n. 

(We note that, buried in the functions f, are a family of structural parameters, which play the 
central role in determining the character of the system; for the moment, we shall confine 
ourselves to virtual changes of the state variables xi.) 

It was Higgins [l] who first pointed out a relation between the stability properties of the 
dynamical system (1) and the informational qualities of virtual displacements, by drawing 
attention to the quantities 

(2) 

He showed on the one hand that the signs (not the specific magnitudes) of the uij in a state were 
decisive for stability, thus relating stability to generalized forces, and on the other hand, showed 
that the uij had a specific informational interpretation. Namely, if a function uii is positive in a 
state, it means that a (virtual) increase in xi increases the rate at which xi is changing; 
alternatively, a (virtual) decrease in x, decreases that rate. Thus it is natural to say that xj is an 
actiuator of xi in these circumstances. Conversely, if uii is negative in a state, it means that xj is 
an inhibitor of xi (a virtual increase in xj decreases the rate of change in xi, etc.). Now clearly, 
activation and inhibition are informational concepts, tied by Higgins to stability and thus 
indirectly to forces. Moreover, in many contexts, it is more natural to describe a system through 
their activation-inhibition structure (i.e. the functions uij) than through a system of rate 
equations directly; e.g. in neural networks and in ecosystems, to give but two examples. 

Thus the question immediately arises: can we reconstruct a system of rate equations (1) from a 
posited activation-inhibition pattern { ulj}? Comparing (2) and (1) the answer is evident: from a 
given activation-inhibition pattern { uij}, construct the differential forms 

n 

Wi = C ~ij dxj. 
j=l 

(3) 

If these forms are exact, then there are functions fi such that 

wi = dfi. (4) 
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Putting 

f, = dx,/dt (5) 

gives us back our set of rate equations (at least, up to some inessential scale factors). 
But the exactness relations (4) are extremely nongeneric. Indeed, to postulate that all 

activation-inhibition patterns arising in nature must satisfy them is an incredibly strong restric- 
tion on the capability of systems for informational interactions. We can see this in another way 
by looking at the standard necessary conditions that the forms (3) be exact; namely, 

a a 
GUij= ,,j’ik, Vi, j,k. 

Now the quantities 

(6) 

appearing in (6) themselves have an informational interpretation; if such a quantity is positive, it 
means that a (virtual) increase in xk potentiates the effect of xj on the rate of change of xi; it is 
thus natUral to call xk an agonist of xi. Conversely, if Ujjk is negative, a (virtual) change in xk 
attenuates this effect; hence xk is then an antagonist of xi. The exactness conditions (6) thus 
mandate that the agonist-antagonist relation and the activator-inhibitor relation are completely 
symmetric; again, an excessively strong condition to impose on informational interactions. 

Indeed, if we start from a set of rate equations (l), then the activation-inhibition pattern, the 
agonist-antagonist pattern { Uijk}, and indeed all the higher-order patterns we can obtain by 
iterating the procedure, are completely determined; indeed, any one of them determines all of the 
others by a simple process of differentiation or integration. But if any of the differential forms 
(3), or their higher-level analogs, are inexact, then 

(a) in general, there are no rate equations (1) which can describe the system, and 
(b) all the informational levels { uij}, { uijk}, . . . become logically independent and must be 

posited separately. 
Thus, we see that the mathematical language of networks of informational levels which we 

have sketched is far more general than is the language of dynamics. Thus, if we could show that 
there are natural systems N which admit such descriptions, then these systems N could not be 
simple. 

4. Complex systems 

Let us begin by contrasting the characteristics of conventional dynamical systems with those 
of the more general informational networks which we have sketched in the preceding section. 

Dynamical systems are dual structures. On the one hand, they possess a state space, which we 
suppose can be fixed once and for all; on this is superimposed a set of dynamical laws, which is 
also assumed fixed. This mathematical dualism is tacitly imputed back to the external world, 
where in mechanics it takes the form of a dualism between phases and forces; between system 
and environment, or inside and outside. Once the state space is given, and the forces specified, 
the behavior of the system is completely determined; there can be no surprises, nothing 
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counter-intuitive, no emergence, and no error in the system. This is the essence of mechanical 
behavior, and this is why we have chosen to call natural systems describable in this way 

mechanisms. 
The formalism of informational networks is vastly different in these regards. There is no ‘state 

space’ which can be fixed once and for all, and there are no global dynamical laws. That is, the 
dualism between phases and forces on which the mechanical paradigm is based completely 
disappears. As we have noted, that paradigm, and its attendant duality, has persisted essentially 
unchanged from Newtonian times, despite all the upheavals and revolutions in science since 
then. Even in quantum mechanics, for example, which occasioned the most far-reaching 
conceptual changes in physics, the main issue involved the redefinition of the concept of state 
itself, and how the state of a system was to be related to what is actually observed; there was 
never any thought of abandoning either the concept of state, or the duality between states and 
dynamical laws. 

Nevertheless, there is a deep relation between the dynamical systems which describe simple 
systems, and the web of informational networks which can define complex ones. It is important 
to describe this relation, though we cannot enter into formal details here. The informational 
networks we have described, when appropriately characterized in mathematical terms, form a 
category, just as the dynamical systems do. The category of dynamical systems is, in fact, a very 
small subcategory of the category of informational networks. In the bigger category, we may 
impose a metric structure, and with it, an idea of approximation of one structure by another. 
Intuitively, an informational network, though it does not arise from a dynamical system, can 
nevertheless be approximated by one which does arise from a dynamical system, locally and 
temporarily. In other words, our complex systems can be approximated by simple ones, just as a 
planar map may approximate the surface of a sphere. As the curvature of the sphere becomes 
more and more important, we must use more and more distinct planar approximations; similarly, 
as the complexity of a system becomes more and more manifest, we must shift from one 
approximating dynamical system to another. And just as we may think of a sphere as the limit of 
its planar approximations, without itself being a plane, so a complex system can be regarded 
roughly as the limit of its approximating dynamical systems, without itself being a dynamical 
system. 

In these facts we find an understanding of why it is that we have been able to proceed so far 
with the hypothesis that all systems are simple, and how we must modify that hypothesis if we 
are to proceed further. The ‘counter-intuitivity’ of complex systems, the manifestations of what 
are called emergence and system error, depending on the context, are all interpretable as the 
deviation of behavior between a complex system and a particular approximating simple system; 
a sign that the approximation relating the one to the other is breaking down. 

Thus we see another fundamental distinction between simple systems and complex ones. 
Namely, the category of mathematical images of simple systems are all dynamical systems, and 
all approximate to the largest image, which again is a dynamical system. Complex systems 
possess a multitude of partial mathematical images which are dynamical systems, but these 
cannot be combined into a largest image of the same form. 

One final distinction between simple systems and complex ones may be briefly remarked upon 
here. In simple systems, as is well known, there is no room for any kind of behavior which may 
be termed anticipatory. An anticipatory system may be defined as one in which present change of 
state is, at least in part, determined by future state or future input. Indeed, any form of 
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dependence of the present upon the future is associated with the Aristotelian category of final 
causation, and dismissed as teleology. Indeed, it can be rigorously shown that anticipation of any 
kind is incompatible with the concept of state, and hence is excluded from the outset in the 
mechanical paradigm. Thus, indeed, simple systems cannot anticipate. But in the complex 
systems we have considered, there is no state set; thus these arguments against anticipation do 
not apply. Hence in these systems there is at least the possibility of anticipatory behavior; in fact 
we have shown (cf. [2]) that biological systems are replete with modes of anticipatory control, 
arising at every level of organization. Thus, in the context of complexity, we can hope to 
approach a theory of anticipatory systems in a completely rigorous, non-mystical way. 

Now we can return to the question: are there any natural systems N which are not 
mechanisms? That is, are there any natural systems which possess mathematical images which 
are not dynamical systems? On several grounds, I feel that this question must be answered in the 
affirmative. One of them has already been mentioned: namely, that organisms are capable of 
anticipatory behavior. Indeed, our question can be posed rather differently and more provoca- 
tively: are there any natural systems which are simple? I would answer: perhaps not. If not, then 
the revolutions we have already seen in physics are as nothing compared with those which must 

come. 
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